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Abstract

Let G = (V, E) be a' connected graph of n
vertices and m edges. ~The problem of con-
structing a spanning tree is to find an acyclic
subgraph of G with n—1 edges. In this paper, we
propose an efficient parallel algorithm for solving
this problem on trapezoid graphs. Our algorithm
runs in O(log n) time with O(n / log n) processors
on the EREW PRAM model.

1. Introduction

Let G = (¥, E) be a graph with vertex set V" and
edge set E. A spanning tree of G is a spanning
subgraph of G that is a tree [5]. Typically, there
are many different spanning trees in a connected
graph. Some properties of a tree are described as
follows: On a graph T with |V] = n and |E| = m, the
following statements are equivalent:

(1) Tisatree;
(2) Tisconnectedandm=n—1;
(3) Every pair of distinct vertices of 7 is joined by

“a unique path;_

(4) Tisacyclicandm=n~1. .

In this paper, we will construct a spanning tree
on. trapezoid graphs. A trapezoid i is defined by
four corner points [a;, b,, c;, d;] such that a; and b,
are on the top channel and ¢; and d; are on the
bottom channel of the trapezoid diagram. A graph

= (V, E) is a frapezoid graph if it can be
represented by a trapezoid diagram such that each
trapezoid corresponds to a vertex in V' and (i, j)
E if and only if trapezoids i and j intersect in the
trapezoid diagram [4]. Figure 1 presents a
trapezoid graph with its trapezoid diagram. In the
diagram, there are 10 trapezoids, and the four
corner points of trapezoid i are a;, b, c;and d,, i =

2, ..., 10. The class of trapezoid graphs mcludes
two well-known classes of intersection graphs: the
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permutation graphs and the interval graphs. The
permutation graphs are obtained in the case where
a;=b;and c¢; = d, for all i, and the interval graphs
are obtained in the case where g, = ¢; and b, = d,
for all ;.

It is easy to show that a trapezoid diagram can
be reconstructed into another trapezoid diagram
corresponding to the same trapezoid graph such
that each trapezoid has four distinct corner points
and ‘all corner points are distinct. Therefore, we
assume that the corner pointers on our trapezoid
diagram are all distinct, and each corner point is at
a specific position. We also assume that trape-
zoids are labeled in increasing order of their »
corner points; i.e. i <j if b; < b, For example, in
Figure 1 (b), trapezoid 6 is before trapezoid 7 since
b is at position 13 and b, is at position 14 on the
top channel.

9 10 11 12 13 14 15 16 17 18 19 20

3 4 b4 aS bS a6 b6 b7 aB a9 bB alO b9 blo

LN

comer
points czclc‘dzc’dzcsd‘dc dc dc dc ddycwdw

posion 1 2 3 4.5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

®)

56 7 8
a a b a

4
comer a a b b

points 2 1 1 2 37

Figure 1. (a) A trapezoid graph
(b) The corresponding trapezoid diagram.
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A number of algorithms for finding spanning
trees are well known. In 1959, Moore [12] gave
the Breadth-First Search algorithm to explore an
unweighted graph and find its spanning tree. Its
time complexity is O(n + m), where n is the
number of vertices and m the number of edges.
For some restrict graphs, efficient sequential and

parallel algorithms of finding spanning trees have

been proposed [2, 6, 13, 14, 15]. Trapezoid
graphs were first studied in [3, 4]. In [4], Dagan
introduced a coloring algorithm for trapezoid
graphs. Ma [11] presented  an O@?) time
algorithm for recognizing trapezoid graphs.
Recently, Daniel Liang [9, 10] gave some
sequential algorithms for dominating and
spanning tree problems on trapezoid graphs.
There have been some parallel algorithms for
permutation graphs [1, 6, 14]. Extending those
algorithms from permutation graphs to trapezoid
graphs is an interesting study.

In this paper, we will propose an efficient
parallel algorithm for constructing a spanning tree
on connected trapezoid graphs. Our algorithm
runs in O(log n) time with O(n / log n) processors
on the EREW PRAM (Exclusive-Read-Exclusive-
Write Parailel Random Access Machine) compu-
tational model. The remaining part of this paper
is organized as follows. In Section 2, we introduce
a parallel algorithm for constructing a spanning
tree. The correctness of our algorithm is shown in
Section 3. Finally, in Section 4, we give the
conclusion of this paper.

2. An Algorithm for Constructing a
Spanning Tree

Let G be a trapezoid graph of » vertices which
are labelled from 1 to n, and let v be a vertex of G.
Vertices adjacent to'v are called the neighbors of v.
The maximum neighbor of v is the neighbor which
is greater than all other v's neighbors. If v's
neighbors are all less than v, we call v an absorbed
vertex. and let v itself be its maximum neighbor;
otherwise, v is a normal vertex. Our algorithm of
constructing a spanning tree is presented as
follows. In the algorithm, pos(-) stands for the
position of some corner point, and (i, j) stands for
the edge whose end vertices are i and j.
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Algorithm A

Imput: The trapezoid diagram of G with » trape-
zoids. :

Output: A spanning tree T of G.

Method:

Step 1. Let 7 be a graph with » vertices and no
edges.

Step 2. Scan corner points on the top channel

from position 1 to position 2n. Let x,, 1 <

i < 2n, be the maximum trapezoid number

among scanned trapezoids.

Scan corner points on the bottom channel

from pgsiﬁon 1 to position 2n. Let y;, 1 <

i < 2n, be the maximum trapezoid number

among scanned trapezoids.

Step 4. For each trapezoid i, 1 < i < n, find its
maximum neighbor. Suppose pos(b;) = s
on the top channel and pos(d,) = ¢ on the
bottom channel. Let z; = max {x, y,}.
Then, the maximum neigh-bor of trape-

Step 3.

zoid i is z;.
StepS. Fori=1,2, ..,n-L1let T=Tu (i, z) if i
#2Z;

Step 6. If i # z; for all i, 1 < i < n—1, then go to
Step 8. Otherwise, let p;, 1 <i < n-1, be
the maximum number in {1, 2, ..., #} such

> Zj}'

Step7. Fori=1,2,..,n-11etT=Tv (i, p)ifi
=z, ‘ ' ' '

Step 8. The resulting T is a spanning tree.

End of Algorithm A

that Zp, =max {21, 25, ...

We use the graph of Figure 1 (b) as an example
to illustrate Algorithm A. After the initialization
in Step 1, we scan corner points on both channels
from left to right. Figure 2 (a) shows the results of
doing Steps 2 and 3. Step 4 finds the maximum
neighbor for each trapezoid. For example, the
maximum neighbor of trapezoid 3 is trapezoid 7
since pos(b;) = 7 and pos(d;) = 6 and the
maximum of x, =7 and y, =4 is 7. In Step 5, we
construct edges for normal vertices. Figure 2 (b)
illustrates Steps 4 and 5. Since trapezoid 7 is an
absorbed vertex, Steps 6 and 7 are needed. Since 6
is the maximum number in {1, 2, ..., 7} such that
Zg = max {z, z, .., 27}, p; = 6. Edges for
absorbed vertices are constructed in Step 7. Steps
6 and 7 are shown in Figure 2 (¢). Figure 2 (d) is
the resulting spanning tree.
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Figure 2. (a) Scanning all corner points
(b) Constructing edges for normal vertices
() Constructing edges for absorbed vertices
(d) The resulting spanning tree.

By applying parallel prefix computation
technique [7, 8], Steps 2, 3, and 6 take O(log n)
time and O(n / log n) processors on the EREW
PRAM model. Other steps obviously can be done
in O(log n) time using O(n / log n) processors.
Thus, the time complexity of Algorithm A is O(log
n) time with O(» / log n) processors on the EREW
PRAM model.

3. The Correctness of Algorithm A

In this section, we will prove the correctness of
our algorithm. We assume trapezoid graph G is
connected. The following two properties are
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Jor each vertex i, 1 < i < n-1.

vertex j, j < i
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according to the definition of trapezoid graphs and
the trapezoid diagrams,

Property 1. Leti andj, i <j, be two vertices of G.

If i is adjacent to j, then pos(b)) > pos(a ) or
pos(d,) > pos(c) in the trapezoid diagram.

Property 2. Leti, j, and k, i < J <k, be three
vertices of G. If i is adjacent to k, then Jis
adjacent fo i or k.

Lemma 3. Suppose pos(b)) = s and pos(dy) =t for

some vertex i, 1 < i < n, in the trapezoid diagram.
Let z; = max {x
neighbor of i is z,.

Proof. Since x, is the maximum trapezoid number

o V3. Then, the maximum

among all scanned trapezoids at position s on the
top channel, i < x, and pos(b) > pos(axa).

Similarly, i < y, and pos(d) > pos(c, , ) on the

bottom channel. Thus, the maximum nelghbor of
vertex i is z,

Q.E.D.

Lemma 4. Let z; be the maximum neighbor of i
Then, the graph
composed of edges (i, z;) for all normal vertices i
is acyclic.

Proof. By Lemma 3, it is clear that @, z) is an

edge of G if i is a normal vertex. Since z; > i for
all normal vertices i, there is no cycle in the graph
composed of all (i, z,).

Q.E.D.

LemmasS. Let i be an absorbed vertex, 1 <i < n—
1. Then, there must exist a vertex j, J < i, whose
maximum neighbor z; is greater than i and (i, j) is
an edge of G.
Proof. Assume to the contrary that z;< i for every
Since no vertex less than i is
adjacent to vertices greater than i and i is an
absorbed vertex, G is disconnected. This is a
contradition. Therefore, there must exist a vertex J
such thatj <i < z;. By Property 2, i is adjacent to j
or z, Since all of i's neighbors are less than i i
must be adjacent to j. Thus, (i, /) is an edge of G.
QED.

Theorem 6. Algorithm A constructs a spanning
Iree on trapezoid graphs in O(log n) time using
O(n / log n) processors on the EREW PRAM
model.
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Proof. The time complexity of Algorithm A is
described in Section 2. All we need to show is that
the graph constructed by our algorithm is acyclic
with n—1 edges. Let z, be the maximum neighbor
of i for each vertex i, 1 <i < »-1. By Lemma 4,
the graph T composed of edges (i, z;) for all
normal vertices i is acyclic. Let j be an absorbed
vertex. By Lemma 5, there must exist a vertex k, k
<J, such that z, > j and (j, k) is an edge. We then
insert edge (j, k) into 7. Since we add a new
vertex with a new edge into 7, 7 is still acyclic.
After all absorbed vertices (except vertex ») with
their incident edges are inserted into 7, 7 remains
acyclic. Therefore, T is acyclic with n—1 edges.
This completes the proof. '
QED.

4, Conclusion

Extending algorithms from permutation graphs
to trapezoid graphs is an interesting study. In this
paper, we use prefix computation technique to
design a parallel algorithm for constructing a
spanning tree on trapezoid graphs. Our algorithm
runs in O(log n) time with O(n / log n) processors
on the EREW PRAM model.
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