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Abstract

The computation model on which the algorithms
are developed is the reconfigurable array of processors
with wider bus networks (abbreviated to RAPWBN).
The minor deference between: the RAPWBN model
with the other reconfigurable parallel processing sys-
tems is that the bus width of each bus network is
extended to N'/¢-bit, where ¢ is any constant and
c > 1. Such a sirategy is not only to make lots of im-
provement for saving the silicon area but also increase
the system power emnormously. In this paper, based
on the wider bus network architeciure, the channel-
assignment problem for N pairs of components can be
solved in O(1) time using 2N processors with a 2N-
row by 2N -column bus network, where the bus width is
NYe bit (NY¢ > log N) for any constant c and ¢ > 1.
Compared to the algorithms as proposed by Olariu et
al. [13] and Lin [10], our algorithm runs in the same
time complexily but reduces the number of processors
to O(N). Note that our algorithm is cost-optimal but
others are not.
Key Words: channel-assignment problem, minimum
coloring problem, interval graph, list ranking, inte-
ger sorting, parallel algorithm, reconfigurable array of
processors with wider bus networks.

1 Introduction

Researchers have shown that the computation
power of a single processor cannot be unlimitedly in-
creased even with the advance of the hardware tech-
nique. Instead of designing the super processor, it is
the best way to develop the parallel processing system
to increase the power of a computer system. Because
of its simplicity and regularity in architecture, the
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mesh-connected computer is one of famous parallel
processing systems. With the advance of VLSI tech-
nique, it is quite suitable to be implemented by inter-
connection networks [2, 5]. Unfortunately, both fixed
architecture and locality communication mechanism
are two inherent drawbacks of the mesh-connected
computer. Researchers overcome these two drawbacks
by equipping it with a reconfigurable bus system.

A reconfigurable parallel processing system can be
defined to be a set of processors connected to a re-
configurable bus system whose configuration can be
dynamically established at run time. There are lots
of varieties .of this kind of machine including the re-
configurable meshes [12], the polymorphic torus ar-
chitecture [9, 11], the processor array with a reconfig-
urable bus system [18] and the reconfigurable array of
processors [6, 7]. Due to the reconfigurability of the
bus system, many problems can be solved in constant
time on such a machine. Based upon the proposed
models, a VLSI chip, called YUPPIE (Yorktown Ul-
tra Parallel Polymorphic Image Engine) [9, 11], has
been implemented to prove these models being realis-
tic.

The more processors are used in the system, the
better executing time of an algorithm can be prob-
ably reached. In fact, the running timie of an algo-
rithm can be also improved by using the wider bus
system instead of using the more processors. Accord-
ing to the experimental results, Li and Maresca [9, 11]
have shown that by adding 20% silicon area over each
processor, each processor has the ability to control
the local switch between the processor and the sys-
tem buses at the instruction level. This implies that
it would be more efficient to save silicon area by in-
creasing the bus capacity rather than by increasing
the processor complexity. Based on such a fact, three
improved models have been proposed. There are the



Proceedings of International Conference
on Algorithms

012345678 9101112131415

0123456078 9101112131415

Figure 1: 8 pairs of components placed on the

two sided circuit board.
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Figure 2: A channel-assignment corresponding

to Figure 1.

reconfigurable multiple bus machine (abbreviated to
RMBM) [17], the distributed memory bus computer
(abbreviated to DMBC) [14] and the reconfigurable
array of processors with wider bus networks %abbre-
viated to RAPWBN) [6, 8]. The minor difference be-
tween the RAPWBN model with the other two models
is that the bus width of each bus network of the for-
mer is extended to N!/¢-bit, where ¢ is any constant
and ¢ > 1.

The channel-assignment problem is one of the fun-
damental problems and has many practical applica-
tions in computer-aided design. The problem defini-
tion is defined in the following. Given a two-sided
printed circuit board, there are horizontal lines called
channels on one side and vertical lines on the other.
There are N pairs of components, where each pair
of components is to be placed on a specific vertical
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Figure 3: The corresponding intervals for the

8 pairs of components of Figure 1.
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Figure 4: A linear RAPWBN of size 4 with a 4 by 4
bus network, where each bus network is 2 bits.

line, and each pair of components is to be connected
by the horizontal line segment. Two pairs of com-
ponents can be shared on the same channel if their
connections do not conflict with each other. The
channel-assignment problem is asked to minimize the
total number of channels. An example for 8 pairs
of components is shown in Figure 1. Figure 2 shows
the channel-assignment of these 8 pairs of components
corresponding to Figure 1. This problem also refers
to the minimum coloring problem on interval graphs
as follows. Let these N pairs of components be corre-
sponding to N intervals on a real line, where both the
left and the right endpoints of each interval are cor-
responding to the positions of a pair of components.
Then, the minimum coloring problem is to assign a
color to each interval such that the overlapping in-
tervals have distinct colors. For example, Figure 3
shows the relationship between intervals and compo-
nents corresponding to Figure 1.

The channel-assignment problem (or the minimum
coloring problem on interval graphs) has been stud-
ied extensively by many researchers. Gupta et al.
[4]| gave an O(N log N) time sequential algorithm to
solve this problem. The time complexity of their al-
gorithm can be reduced to O(N) if the intervals are
sorted. Clearly, both sorted and unsorted cases are
cost optimal. Dekel and Sahni [1] gave an O(log N)
time parallel algorithm for this problem on the EREW
PRAM model using O(N?) processors. With the dif-
ferent approach, Savage and Wloka [15], Yu et al. [19]
and Yu and Yang [20] gave an O(log N) time paral-
lel algorithm for this problem on the EREW PRAM
model using O(N) processors, respectively. The num-
ber of processors of their algorithms can be reduced
to O(N/log N) if the intervals are sorted. Clearly,
both sorted and unsorted cases are cost optimal. On
the reconfigurable parallel processing system, Olariu
et al. [13] gave an O(1) time parallel algorithm for
this problem on the reconfigurable meshes using N2
processors. Lin [10] also gave an O(1) time parallel al-
gorithm for this problem on the processor arrays with
reconfigurable bus systems using O(N?) processors.
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Figure 5: Six local switch configurations of an RAPWBN, where the bus width is 3 bits (w =

In this paper we are interested in using the recon-
figurable array of processors with wider bus networks
[6, 8] to solve the channel-assignment problem. We
review some basic operations including the list rank-
ing algorithm which was proposed by Kao and Horng
[6], and then derive an O(1) time integer sorting al-
gorithm. Based on these proposed basic operations,
a constant time optimal algorithm for the channel-
assignment problem is developed. This is the best
result and first reported in the literature.

2 The Computation Model

A linear RAPWBN of size N contains N proces-
sors embedded in an M-row by N-column bus neét-
work. Each processor is identified by a unique index
denoted as P;, 0 < j < N, and the bus width of each

bus network is usually assumed to be N1/¢-bit, where
N is the number of processors and ¢ is any constant

for ¢ > 1. For convenience, we assume N/¢ = m,
where m is an integer. The M-row by N column bus
network has 2M N ports denoted by +S;,; and
each port has m-bit bus connection sthcﬁes denoted
by —S; i (k), +Sij(k) for 0 <i< M,0<j < N and
0 < k < m. The it"-row bus, 0 < i < M, connects the
§**-column port switch +5;; to the (j + 1)**-column
port switch —S; j41 for 0 < ] < N—1. Each processor
also has a column bus with M ports denoted by
ﬁ.é, ; and each port has m-bit bus connection switches
denoted by §S; ;(k) for 0 < i< M and 0 < k < m.
The m-bit column bus of a processor can be connected
to any row bus by setting the port connection switches
ﬂS,] k) to —S; ;(k) and/or +S; ;(k) for 0 < i < M,
0<j<Nand0<k<m.
Any configuration of the bus system is derivable by
properly establishing the local connection among the
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+Si,;((r+1) mod 3), 0 <7 <3}

3).

data bus of each port within each processor. To repre-
sent the local connection within each processor, we use
the notations {go}, {91}, ..., {92}, where g;, 0 < i< ¢,
denotes a group of buses that are connected together
By setting the port connection {§S;0(k), —S; o(k),
+S;i0(k), 0 <9< 4,0< k <2}, we show an example
in Figure 4 for a linear RAPWBN of size 4 with a 4-
row by 4-column bus network, where the bus width of
each bus network is 2 bits. Six interesting switch con-
figurations derivable from a processor of an RAPWBN
are also shown in Figure 5. For simplicity, if each
bit of the i**-row bus is connected to the j**-column
bus one by one, we use {—S; ;,+S;;,4#5;,;} represen-
tation instead of using the representation {—S; ;(k),
+85i,i(k), #Si,;(k), 0 < k < m}.

For a unit time, we assume each processor can
perform one of the following operations: execute one
arithmetic or logic operation, access a local memory
word, set the local switches with the same connection
configuration on the same column bus, broadcast a
data on the established bus, and receive a data from
the established bus. We allow multiple processors to
broadcast data on the different buses or to broadcast
the same data on the same bus simultaneously at a
time unit, if there is no collision.

An RAPWBN is operated in an SIMD (single in-
struction stream, multiple data streams) model. The
bus width is not unlimited between processors. For
transferring an m-bit data between processors in con-
stant time, we assume the bus width is bounded by m-
bit as stated before, where m is an integer. The time
complexity an algorithm is assumed to be the sum of
the maximal computation time among all processors
and the communication time among all processors.
This assumption was also used by many researchers
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Figure 6: An illustration for ranking the linked list of size 4.

[6,7,8,9,10, 11, 12, 13, 14, 17, 18].

3 Basic Operations
Lemma 1 [7] Given a binary sequence bj, 0 < j <

N, with b; € {0,1}, the prefiz sum ZLO b; can be.

compuled in O(1) time on a linear N RAPWBN with
one row bus network, where the bus width of the bus
network is N'/¢-bit (N/¢ > log N) for any constant
candc> 1. o

3.1 The List Ranking Problem

Assume there is a linked list ag, ay, ..., ay_; with
a; following a;_; in the list, and the definition of the
list ranking problem is asked to find the rank for each
element of the list. The list ranking problem discussed
here is the data dependent version. Only the location
of the first element is given along with a map from
the i** element to the (i + 1)** element. Assume ele-
ment a; is contained in the j'* processor then element
a;+1 will be contained in the ne:ctgj) processor, where
next(j) is the link of element a;. If next(5) = nil then
element a; is the tail of the list and the rank of it is
assumed to be N — 1. :

The main idea of the algorithm proposed by Kao
and Horng [6] is to reduce the list ranking problem
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to the binary sequence prefix sum problem. It can
be described by the following two steps. First, es-
tablish the local connection of the bus system on an
RAPWBN according to the position of the next el-
ement. Then, compute the rank of each element in
the linked list by performing the prefix surn along the
established bus. Assume the head of the linked list is
ag. Initially, the linked list ag, a1, ..., ay—1 of N el-
ements with a;4, following a;, a; and a;41 are stored
in processors P; and Pres(j), respectively. That is,
the link of element 7 is stored in the local variable
nezt(j) of processor P;. Finally, the rank of element
a; 1s stored in the local variable rank(j) of processor
P;. Let ag be stored in processor Py. We simplify the
list ranking algorithm proposed by Kao and Horng [6]
in the following. Assume nezt(0) = 1, nezt(l) = 3,
nezt(2) = nil and next(3) = 2, and the bus width
has 4 bits (i.e., m = 4). An illustration of computing
the rank of each element of the linked list is shown in
Figure 6.

Algorithm LRA;

Input: next(j), 0<j< N.

output: rank(j), 0 <j< N.

0: begin



1: // Establish the local connection. //

Processor Pj, 0 < j < N, establishes the local
connection

{#Sij,—Sij,+Sij, 0 < i < N}; then proces-
sor P; with nezt(j) # nil, 0 < j < N, estab-
lishes the local connection {#5S;;,—S;;,+Sj}
~and {#Snezt(j),j(k))“Snext(j),j((k -+ 1) mod
N)a+sne1:t(j),j ((k + 1) mod N)) 0< k< N}

2: // Compute the rank of each element. //
2.1: Processor P; with holding the data ap, 0 <

J < N, writes a signal ”1” to the bit 0 of
the established bus on its port §5; ;.

2.2: Processor P;, 0 < j < N, sets rahk(j) =r
if it can read the signal ”1” from the bit »
of the established bus on its port §5j; ;.

3: end

Lemma 2 [6] The list ranking problem can be solved
in O(1) time on a linear N RAPWBN with an N -row
by N-column bus network, where the bus widih of each
bus network is N -bit. 0

Algorithm LRA can be easily modified to run in

the case when the bus width is assumed to N1/¢-bit,
The interested reader can refer to the literature [6] for
details. From the result proposed by Kao and Horng
[6], we have the following corollary.

Corollary 1 [6] The list ranking problem can be
solved in O(1) time on a linear N RAPWBN with
an N-row by N-column bus nelwork, where the bus
width of each bus network is N'/¢-bit (N'/¢ > log N)
for any constant ¢ and ¢ > 1. m]

3.2 The Integer Sorting Problem

Given a data sequence A = {a;}, 0 < i < N, of
N O(log N)-bit integer numbers, the integer sorting
problem is to rearrange these N numbers into ascend-
ing or descending order. Subbaraman et al. [17] have
proposed an O(1) time integer sorting algorithm on

a linear N'+1/¢ RMBM with an N-row by N-column
bus network, where ¢ is any constant for ¢ > 1, and
each bus network is assumed to be log N-bit. The
main idea of the algorithm proposed by Subbaraman
et al. [17] is to reduce the integer sorting problem
to the list ranking problem. It can be described by
the following four steps. First, link the numbers which
have the same value into one linked list and then iden-
tify the head and the tail of each linked list. Next,
link these linked lists to one linked list according to
the value of the head and the tail. Then, apply the list
ranking to rank these numbers on the linked list. Fi-
nally, each number is copied to the position according
to its associated rank.

As stated by Subbaraman et al. [17], the time com-
plexity of these four steps are analyzed as follows.
On a linear RMBM, the first two and the last steps
take O(1) time using N processors with an N-row by
N-column bus network, respectively. The third step
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takes O(1) time using N'+1/¢ processors with an N-
row by N-column bus network. Obviously, the total
time complexity of the algorithm is bounded on the
third step (i.e., list ranking algorithm). Therefore,
based on the approach proposed by Subbaraman et
al. [17] and the list ranking algorithm proposed by
Kao and Horng [6], the integer sorting problem can
be solved on-a inear N RAPWBN with an N-row by
N-column bus network, where the bus width of each
bus network.is N'/-bit (N'/¢ > log N) for any con-
stant ¢ and ¢ > 1. This is an efficient approach to
imiprove the integer sorting algorithm by increasing
the bus capacity rather than by increasing the pro-
cessor complexity. This leads to the following lemma.

Lemma 3 Given N O(log N)-bit integer numbers,
these N numbers can be sorted in O(1) time on a
linear N RAPWBN with an N-row by N -column bus
network, where the bus width of each bus network is
N/e_bit (NMe > log N) for any constant ¢ and ¢ > 1.

0

4 The Channel-Assignment Problem

Let I = {L;},0 < i< N, be a family of N intervals
on a real line for an interval graph. Each interval I;
is represented by [a;, b;], where a; represents the left
endpoint of interval I; and b; represents its right end-
point. Without loss of generality, we may assume that
the endpoint a; is smaller than that of b; and these
2N endpoints all are distinct integers. The minimum
coloring problem of an interval graph is defined as to
assign a color to each interval such that the overlap-
ping intervals share the distinct colors. Let these N
intervals be corresponding to N pairs of components,
where both the left and the right endpoints of each
interval are corresponding to the position of a pair
of components. Through such a transformation, the
channel-assignment problem is equivalent to the min-
imum coloring problem of an interval graph.

For the channel-assignment problem, Gupta et al.
[4] have proposed a popular algorithm to solve this
problem. The main idea of the algorithm proposed
by Gupta et al. [4] can be described as follows. Let
these 2N endpoints of N intervals are sorted in as-
cending order. First, assume that all colors are avail-
able and a stack is created. Then the intervals are
colored sequentially from the smallest left endpoint
to the largest right endpoint. If the input interval is a
left endpoint then assign a color to it and push it into
the stack; otherwise, if the input interval is a right
endpoint then release its color and pop it from the
stack. Each released color can be reused for the next
interval whose left endpoint is the nearest after it. Fol-
lowing this way, each interval will be assigned to its
associated color after scanning these 2/V endpoints.
That is, all pairs of components will be assigned to
their associated channels.

Based on the idea as proposed by Gupta et al. [4],
this problem can be solved by the following four steps.
Step 1, sort these 2N endpoints in ascending order.
Step 2, determine the minimum number y of colors
which at least are required to color these N inter-
vals and number these colors from 0 to ¥ — 1. Step
3, determine the successive interval of each interval
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which can share the same color provided that it ex-
ists. Thus, there are x linked lists to be created. Step
4, find the head of each linked list and then broadcast
its associated color number from it to the intervals
along the linked list. In the following of this section,
we will explain the detailed implementation of these
four steps.

Let ¢(j), 0 < j < 2N, be the endpoints sequence of
the left and right integer endpoints which are sorted
in ascending order, where the endpoint a; is smaller
than that of b; and these 2N endpoints all are distinct
integers. For example, the sorted endpoints sequence
of Figure 3 is as follow.

{e(0), ¢(1), ..., ¢(14), e(15)} = {ac, a1, ..., b7, bs}.

Without confusion, let each ¢(j) represent not only
the attribute of an interval but also its coordinate.
For example, ¢(14) = b; represents the right endpoint
of the interval I; with its coordinate being 14. Like
Sprague and Kulkarni [16], we define a density se-
quence d(0), d(1), ..., d(2N — 1) as follows. For a
fixed integer k, 0 < k < 2N, d(k) is the density of in-
tervals at coordinate k to be the number of intervals
which contain &+ ¢, where 0 < € < 1. For example,
the density sequence of Figure 3 is as follows.

{d(0), d(1), ..., d(14), d(15)} = {1, 2, ..., 1, 0}.
Note that [d(j) —d(j —1)|=1for 1 < j < 2N.

"The density sequence d(j), 0 < j < 2N, can be
obtained by first setting w(y) as follows.

(1 if e(j) is a left endpoint,
w(y) = e M
—1 if ¢(§) is a right endpoint.
Then,
J
d(j) =) w(i)- (2)

i=0

Let x be the minimum number of colors which are
needed to color the family of intervals I. Thus,
% = max{d(j)[0 < j < 2N} 3)

Based on the density sequence d(j), for each inter-
val, define a successor sequénce, denoted by next(j),
0 < j < 2N, as the nearest successive interval which

can share the same color among all intervals. nezt(j),
0 < j < 2N, can be formularized as follows.

b if e(y) = as;
a, if F(j) =b; and a, =
next(j) = min{ax|d(ax) = d(b;) 4
+1, b < ax < 2N};
nil otherwise.

That is, if ¢(j) is a left endpoint a; of an interval I;
then the nezt(j) is set to its right endpoint b;. If ¢(5)
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is a right endpoint b; of an interval I; then the nezt(j)
is set to the left endpoint aj of interval I;., where I is
the nearest successive interval for ¢(b;) < e¢(ax) < 2N
and the density d(ax) of ap is equal to the density
d(b;) + 1 of b;; otherwise, if such a left endpoint ay
cannot be found by b; then the next(j) is set to nil.
For example in Figure 3, ¢(1) is a left endpoint aj,
next(1) is therefore set to the coordinate 2 of the right
endpoint ;. Since ¢(2) is a right endpoint b;, both
d(az) and d(a4) are equal to d(b1) + 1 for c(b)) <
c(az) < c(ag). ag is the nearer to b; of the two left
endpoints a; and a4, next(2) is therefore set to the
coordinate 3 of the left endpoint ay of the interval I.
Since we cannot find a left endpoint as the successor
of bz, next(14) is set to nil.

Based on d(j), x and next(j) as defined above, we
have the following theorem.

Theorem 1 Gwen e family I of intervals with the
successor sequence next(j), there are x linked lists,
where each interval belongs to exactly one linked list
and the intervals in the same linked lhist can share the
same color. ]

From the successor function nezt(j), the head of
each linked list, denoted by head(j), 0 < j < 2N, is
identified and marked by

1 ife(j) = a; and a; # next(by),
head(j) = Osk<N, (8)
0 if e(j) = b;.

Hence, the color number of each head can be num-
bered by ‘

(SJ: head(k)) — 1 if head(j) =1,
color(j) = k=0

nil otherwise,
where 0 < j < 2N.

Based on Equations (1)-(6) and Theorem 1, we
will propose a constant time parallel algorithm for
the channel-assignment problem on a linear 2N RAP-
WBN with a 2N-row by 2N -column bus network.. Ini-
tially, the left and right endpoints of these N intervals
a; and b; are stored in the local variables a; and b;
of processor P;, 0 < j < N, respectively. Finally,
the associated channel of ach interval I; is stored in
the local variable asgn(j) of processor P;, 0 < j < N.
The detailed channel-assignment algorithm (CAA) is
shown in the following.

Algorithm CAA

Input: A family I of intervals {; |0 <i < N} of an
interval graph, where I; = [a;, b;].

Output: The channel-assignment asgn(j),0 < j <
N.

0: begin

1: // Sort the left and right endpoints of N intervals
into ascending order.//



1.1: Processor P;, 0 < j < 2N, establishes
‘the local connections {—S;;, +S;;, 0 <
i < N} and {§S(; mod N)j> —S(j mod NYj»
+S(; mod N),j}- Then processor P;, 0 < j <
N, broadcasts b; to processor Pjyn_1 using
the jt*-row bus network.

1.2: By Lemma 3, sort a; and bjyn-1,0< j <
N, into ascending order and store each end-
point ay (or b,) to the local variable ¢(a)
of processor Py for ¢(0) < ¢(1) < --- <

¢(2N - 1).

. // Compute d(5). //

2.1: Processor Pj, 0 < j < 2N, sets w(j) to 1
if it holds a left endpoint; sets w(j) to —1,

otherwise.

2.2: By Lemma 1, perform the prefix sum on
w(j) to obtain d(j) = Y I_,w(i) for 0 <
J<2N.

. // Compute next(3). //

3.1: Processor P;, 0 < j < 2N, establishes the
local connection {-S;;, +S;;, 0<i< N},
and then establishes the local connection
{8S:;, —Sij, +Si;} if e(§) = a; or e(j) = b;,
0 €7 < N. hen processor P; with
c(j)=b;,0< j<2N,0<1i< N, broad-
casts the coordinate of b; on the i**-row bus
network from the port §5; ;.

Processor P; with cgj) =a;, 0<j < 2N,
0 < i < N, reads the data from the port
$Si; through the i**-row bus and stores it
into next(j).

Processor P;, 0 < j < 2N, establishes the
local connection {~S;;, +S;;, 0 < i <
N}, then establishes the local connection
ﬁSr,j, _Sr,jy r= d(]) - 1} if ¢(j) = a;,
and then establishes the local connection
{8Sr;, +Srj, 7 = d(j)} if ¢(j) = b;. Then,
processor P; with ¢(j) = a; and r = d(j)—1,
0<j<2N,0<i< N, broadcasts the co.
ordinate of a; on the established bus from
the port §S; ;.
3.4: Processor P; with ¢(j) = b; and r = d(j),
0<j< 2N 0<i<N, reads the data
from the port §S, ; through the r**-row bus
and stores it into next(j).

3.2:

3.3:

4. /[ Compute head(j). //

4.1: Processor F;, 0 < j < 2N, estab-
lishes the local connections {~S;;, +5S; ;,
0 < i < N}, then establishes the io—
cal connection {§S;;, —S;;} if ¢(j) = a;,
and then establishes the local connection
{ﬁsnezt(j),j, +Sne:r:t(j),j} if ¢(j) = b; and
next(j) # nil. Then, processor P; with
c(j) = b; and nezt(j) # nil, 0 < j < 2N,
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0 £ 7 < N, broadcasts a signal * on the
established bus from the port ﬂSnem(j).j.

Processor P; with ¢(j) = a;, 0 < j < 2N,
0 < i< N, sets head(j) to 0 if it can read
the signal * from the port {S; ; through the
established bus; sets head(j) to 1, otherwise.

Processor P;, 0 < j < 2N, set head(j) =0
ife(j)=06;,0<i<N.

4.2:

4.3:

. // Compute color(j). //

By Lemma 1, perform the prefix sum on head(s)
to obtain color(j) = (3°I_, head(i)) — 1 for 0 <
J < 2N. Then, processor P;, 0 < j < 2N, sets
color(j) to nil if head(j) = 0.

. // Assign the color to all intervals. //

6.1: Processor Pj, 0 < j < 2N, establishes the
local connections {-S;;, +S;;, 0 < i <
2N} and {#S;;, —Sj,;, +5;,;}, and then es-
tablishes the local connection {#Sneﬂ(j)’j,
—Snest(§)is tSnezt(j)i} if next(j) # nil.
Then, processor P; with ¢(j) = a; and
head(j) = 1,0 < j < 2N, 0 < i < N,
broadcasts color(j) on the established bus
from the port §5; ;.

Processor P; with ¢(j) = a;, 0 < j < 2N,
0 <7 < N, reads the data from the port
§5; ; through the established bus and stores
it into asgn(j).

6.2:

. // Copy the assigned color number of each inter-

val back to its corresponding position. //

7.1: Processor P; establishes the local connec-
tion {—Si,j,'+$i,j, 0<i<N}if0<j<
2N, then establishes the local connection
{HS]',J‘, =55 +Sj]j} if N <j < 2N, and
then establishes the local connection {{S; ;,
—Sij, +Si;} if CS]) =a, 0 <i< N,
0 < j < N. Then, processor P; with
c(j) =a;,0<i< N,0<j< N, broad-
casts asgn(j) on the i**-row bus from the
port §5; ;.

Processor P;, N < j < 2N, reads the data
from the port §S;_ v ; through the (j—~N)A-
row bus and stores it into temp(j).
Processor P;, 0 < j < 2N, establishes
the local conpections {~S;;, +Si;, 0 <
i < N} and {#5( mod N),j» =S¢ mod NYj»
+S(; mod N),j}- Then processor Pj, N <
J < 2N, broadcasts temp(j) back to
asgn(j-N) of processor Py asing (j-
N)"-row bus network.

7.2:

7.3:

7.4: Processor P; establishes the local connec-
tion. {-—Si', +Si,j, 0 <i< N} if 0 <
j < 2N, tl{len establishes the local connec-
tion {ﬁSj,j, —Sjyj, +Sj,j} if0<j< N, and
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then establishes the local connection {f5; ;,
_Si,jy +SZ,]} if C(]) = ai, 0 S i < N:
N £ j < 2N. Then, processor P; with
c(j) =a;, 0<i< N, N <j< 2N, broad-
casts asgn(j) on the i**-row bus from the
port §5; ;.

Processor P;, 0 < j < N, reads the data
from the port §S; ; through the j**-row bus
and stores it into asgn(j).

7.5:

8. end

Theorem 2 Given a family I of N inlervals, the
channel-assignment problem can be solved in O(1)
time on a linear 2N RAPWBN with a 2N -row by 2N -
column bus network, where the bus width of each bus
network is NV/¢-bit (N*/¢ > log N) for any constant
candc> 1. u]

5 Concluding Remarks

As we can see, the silicon area of the reéconfigurable
array of processors with wider bus network can be
saved much by increasing the bus capacity rather than
increasing the processor complexity according to the
result as shown by Li and Maresca [9, 11]. It is not
only to make lots of improvement for saving the sili-
con area but also to increase the system power enor-
mously. Based on the wider bus network architecture,
the channel-assignment problem can be solved in O(1)
time on the reconfigurable array of processors with
"wider bus system using 2N processors and a 2N-row
by 2N-column bus network, where the bus width of
each bus nétwork is N/¢-bit (N'/¢ > log N) for any
constant ¢ and ¢ > 1. Compared to the well-known
algorithms as proposed by Olariu et al. [13] and Lin
[10], our algorithm is the best in both time complexity
and processor complexity.
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