Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

Systematic Array Processors Design for Fraction-free
- Algorithm

Shietung Peng* , Igor Sedukhin* and Stanislav Sedukhin*

*) The University of Aizu, Fukushima 965-80, Japan
k e-mail: {s-peng, sedukhin}@u-aizu.ac.jp
+)R&D Group, Hiwada Electronic Corp. Fukushima 969-13, Japan

Abstract

The design of systolic array processors for solving
linear systems of equations using fraction-free Gaus-
sian elimination method is presented. The design is
based on a formal approach which constructs a fam-
ily of planar array processors systematically. These
array processors are synthesized and analyzed. It is
shown that some array processors are optimal in the
framework of linear allocation of computations and
in terms of number of processing elements, number
of input/output ports, time of processing, and data
pipelining period.

1 Introduction

Integer-preserving transformations for the exact so-
lution of systems of linear equations are studied in
this paper. Because integer operations are much more
faster than the operations for real numbers, integer-
preserving transformation is an effective technique in
- the areas like symbolic computation and the appli-
cation areas where input values can be presented as
integers and the results are required as rations of
integers [3]. Some mathematical software packages
(like MATHEMATICA and MAPLE) use techniques
of integer-preserving transformations simply because
of its efficiency.

In the era of high-performance computing, the
design of parallel algorithms and/or application-
specific architectures which show high regularity in
computations and communication is desired. Sys-
tolic/wavefront array processors design is one of can-
didates with great potential [5]. Traditionally, sys-
tolic/wavefront arrays were emphasized for its sim-
plicity for VLSI implementation. However, in the
recent study, it was shown that the design method-
ologies of systolic arrays can be applied elegantly to
other models of parallel computations [4].

In this paper, an approach [8] of systematic
design/synthesis of systolic arrays which use the
fraction-free Gaussian elimination method is demon-
strated. The systematic approach makes the algo-
rithmic/architectural design of systolic arrays more
attractive.

The rest of the paper is organized as follows.
Section 2 gives some theoretical background for the
fraction-free Gaussian elimination method [1], and

35

the first parallel algorithm (initial algorithm). In
Section 3, the three-dimensional (3-dim) data depen-
dency graph of the initial algorithm and its analysis
are given and some problems in the systolic design
using the initial algorithm are indicated. A refined
parallel algorithm is elaborated in Section 4. In Sec-
tion 5, systematic design of planar systolic array pro-
cessors using the refined algorithm are presented and
two optimal systolic arrays are demonstrated and an-
alyzed in details. Finally, some concluding remarks
and the further research directions are given in the
last section.

2 Fraction-free Algorithm
The formal specification of Jraction-free algorithm
is presented below. Let a linear system of equations

be given by
AX =B, (1)

where A =[aij|nxn, 1 < i,j < n, is a nonsingular
matrix with determinant |A|, X = [z;;],, x(m-n), 1 <
i <n 1 <j< m-—n,isa set of unknowns and
B = [bij]nx(m—n)a 1<i<n, n+1<j< m, is
an arbitrary right-hand side matrix. The reduction of
extended [n X m|-matrix A(®) = A ® B (A augmented
by B) to diagonal form can be done by the recurrence
formulas:

O _;,0_) aj 1<i<n, 1<j<n
%0 =10 =1 by, 1<i<nnii<j<m;

k=1,2,..,n, 1<i<n, k+1<jij<m:

ag;.—l), if 1 = k;
%) — k1) (k-1)
3 ;?F—Ll)_ ?,f__l) f,g_l) , otherwise.
k—1,k—1 [Q;p i
agf) =a.§c’;),1 <i<k-1;

(2)

Notice that from (2) follows

RO N P P
n —_ —_— —_
afck_lf,)c_l 121 a;;
k=1) (k-1
_ o -af)—O_a(k—l)_a(k)
= (k=1) Sl T T Oy
Q11

Proceedings of International Conference
on Algorithms

(&) . 3 k-1) k-1} (k-1)
a1 =(al’ aﬂfm - @l -‘é‘.m)/ ai-:,w

(k) —_ &) (&}
Cottpns =14 Qiyipns
Iy k-1)
k]
a* H %)
K+, : ke 1.k
(1 - (k1)
Cyu Cu
e
k k] .
&

k1 kel

W _g o el) el w1y - k1) k1)
a; =(aj a;,)- d ,'aij)/ai-u-:

k)
q;

k-1)
a

3) {3)

@
Gy 1G5 4 G5
{3) 3} (3)
Gy | 4 Bs | \Des
{3) (3} (3, {3]
@Gz (G | (sl | Do
x ? = ==

at? a? e =
k-1) -. -1}~
ch } c{: 1) ch }
k-1)
aii k-1) /ﬁ /([)
a 4 g
£ NPT S
a? ||a?||a?||as | ais
| a?| a9 ag| ag
i (0) (0) (0}) (0) (0)
@G G ay G G Oy

Figure 1: The data dependence graph of the initial algorithm.

bocause o) = 0fori < kand aff ™ = o7

for k > 2. Note the important property that when all
initial aﬁ‘?’ are integers, ag;) is also an integer, since it

is well known that

ay;y a2 aijr 15
az1 @22 azr Qzj
k ..
agj)= : : : o, k<ij<mn.
Akl Qg2 Akk Qfj
a;;y a;2 aix Q5

The description above is a formal specification of the
one-step integer-preserving Gaussian elimination al-
gorithm [1].

After k = n iterations we will have the form

as,':.) 0 0 a(l’;,)l +1 ai.
A — 0 40 .. o ag’:,), T ag’:,l
0 0 .o ™. a2

where o™ = o™ = |A]. Then the solution to (1)
is given by

o glntl) _ ()
Zij = Qinti = Cintj

/a(n)

nn?

1<i<n,1<j<m—n.

An initial algorithm for solving equation (1) can
be derived directly from (2) using indexed, single-

36

assignment format as follows:

\ input computations (initialization)

) 1
forall1< i< ndo
(0) - Qij, ISan'
% <\ by, n+l1<j<m;

\\internal computations
for k=1to ndo
begin
o
forall1<:<n,k+1<j<mdo
a® — if i = k then agck._l)else

j
(k—1) _ ag:-'l) . ag;._l))/a(k—l)

(k) | gk .
kk £%] k—1,k—1?

®)

(a
end
output computations

orall1< i< n,1<j<m-—ndo
(n4+1) _ (n) /a(")'
nn

Tij =4 = O ntj

i,n+j
From $3 it is easy to see that the internal compu-
tations of fraction-free algorithm requires

N= Zn(m — k) = mn? —n®/2 + O(mn)
k=1

steps, where each step contains at most 2 multiplica-
tions, one substraction and one integer division. The
output computations is not integer-preserving and re-
quire n(m — n) divisions. Thus this algorithm is suit-
able for solving the linear systems with integer coef-

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

CAG 3) (3)
3) f ”(3) s 3) yo
[0 :az.f (27
(£ 3h (3)
c® 3 | Gss1 | s
k+lk+l (r-1) [
b Cr :
& 1L 2 [
a::“ /l q%:i” ?‘: N --/5 2
Cup’ k
>
atsk-l) a* A 2
kel k] v
H
?3
® I T2 T2 2
kD) H 7
ag; i " o ¥
" . Ps N K .
a Lo AT
TR k-1 H
T, - T
*-1) : ol
: k-1) 5. - - . --
a; afl TS % s
Py
) -, ” ”, r'
J
k :
1
1
1]
H
H
(0) 0) 0) 0) 0)
Cy a;z a;: a;‘ 0;5) al“ﬁ”
1 0) 0) 0) (0) (0) 0
J 1 ‘éz ay| ay| ay | af
i 0) (0) 0) (0} (0) 0)
@G &Gy ay ay Ay Gy

Figure 2: The data dependence graph of the regular algorithm.

ficients since the algorithm needs only integer opera-
tions which can be computed much faster than opera-
tions with real numbers needed by other algorithms in
which fractions are generated as intermediate results.

3 Dependence Analysis of the Initial
Algorithm

As it directly follows from (3), the index or itera-
tion space T =Z3 of the initial algorithm consists of
the index subsets of input, internal and output com-
putations, i.e.

P= P‘in U Pint U 'Pouia

where
Pin = {(6,5,0)TU(0,0,0)T|1<i<n,
1<j<m} CZ%
Pt = {(65,k)T|1<k<n, 1<i<n,
E+1<j<m}CZ%
Pour = {Gn+in+1)T|1<i<n,

1<j<m-n}CZ?

where Z is a set of integer numbers. Each index
point p = (4,7,k)T € P is associated with a single
input/internal or output computation.

A data dependence vector © is the difference be-
tween the index points where a variable is used as
input variable and the index point where that vari-
able was generated as output variable. From (3) it
(k)

follows that for each output variable a;;”, i.e. for any

37

index point p = (i,7,k)T € Pint, the data depen-

dence vectors of the input variables_afc';-'.'l), agz"l),
o™, afe™,at7)_ are O4; = (i—k,0,1)7, Oe =

(7: - k’." —k, I)T, Oij = (01 0, 1)Ta O = (Oa] - k" 1)T)
Ok—14-1 = (i —k+1,j —k+1,1)T, respectively. It
could be seen, that only ©;; is a constant dependence
vector and others reveal tﬂe global data dependence.

For example, since O = (i — k,j — k,1)7, each out-
put variable a{5),1 < i <m, k+1<j<m,i#k,

(k1) all of

(n — 1)(m — k) index points, that lie on k-th <;, ;7)—

plane, require the same instance of variable ag;c"l)
from (k — 1)-th plane. Because 1 < i,k < n, the
vectors Ok, Of_; k—1 and O; may have positive as
well as negative values of the indexes. Hence, the cor-
responding variables will be transmitted in opposite
directions. Since the variables afck__lf,)c_l and ag;_l)
. should be translated to all internal computations of
kth iteration it is convenient to combine two vari-
ables into one which will be formed in index point

depends upon the input variable a , le.

. k k k .
(k+1,k+LE)T, i o, 00 = {al),al?) ()1} with
initial value of cﬂ) = {a,(,%) =1, aﬁ)}.

For this algorithm, a non-local data dependence
graph (DG) can be constructed in 3-dim index space

(?, 7 E), representing the locations of the computa-

tions in the space (as the index points) and the data
dependencies (as the arcs) between the computations
of the algorithm. This non-local DG can then be con-

Proceedings of International Conference
on Algorithms

Figure 3:

verted to a local DG by localization via pipelining all
global data dependencies.

The localized DG TI'; of the algorithm (3) is shown
in Fig. 1 for the case of » = 3 and m = 6 (without the
output computations). The longest path in this DG
is any longest path between the index points pp;, and
Pmax, Where pnin = (la 1, l)T and pmax = (l,ma n)T°
It can be shown that the length £ of the longest path
is L(Pmin,Pmex) =4(n— 1)+ (m —n) =m + 3n— 4.

Since px(:i)n = (k, k, k) we have C(p!(lﬁ:l), pl(:i)n) =3.
From this, a timing (step) function step(p) : Py, —
7, which assigns a computational time step to each
index point p € P;,; can be defined as follows:

step(p) = |i — k| +|j — k| + 3k — 3,

bearing in mind that step(pmin) = 0, and assum-
ing that the computatic:. and the corresponding local
data communication are realized in each index point
.in one unit time-step. The internal computation set
of the algorithm can be evaluated in the minimal pos-
sible time

Tin(T1) = step(Pmax) = m +3n — 4,

which equals to the length of the longest path
L(Pmin; Pmax) in the DG of the initial algorithm.

In order to find an optimal design of a systolic ar-
ray processor from the large space of the admissible
solutions, the optimality criteria shall include many
factors. Some typical factors are ([6],[7])

o Computation Time (T);
e Array Size (P);

o Block Pipelining Period (8) : the time interval
between the initiations of two successive problem
instances by the processor array;

38

The array processor 5(0,0,1)-

¢ Data Pipelining Period (o) : the time interval
separating the neighboring items of input or out-
put data flow;)

® I/O Data Flow Formats , i.e. the structure in
* which flows of the input/output data of the prob-
lem are organized; .

o Number of I/O Ports.
Note that for 1 < i,k <n, k < j < m, we have

At

step(i, j, k + 1) — step(4, j, k)
{ 1, if £i>k3and§j>kg;
3,

if ({<k)and (7 >k
Hence, for the time consistency of processing and com-
munications, it is necessary to add (At—1) unit delays
(FIFO buffers) to each arc that connects two neigh-

boring nodes of the 3-dim DG laying along the £ axis.
Having the definition of the timing function

©)

step(p) the notion of a flow velocity vector of a vari-

able v along a direction €, can be introduced [4]:

q—p
step(g) — step(p)’

flow(v) =

where p,q € Pj;,; such that the variable v is used
firstly at the index point p and then at the point g,
i.e. step(p) < step(q).

As we assume step(pmin) = 0, an extension of the
domains of input/output computations is necessary
to obtain correct allocation of the input/output data
flows on the processing space. It can be done as fol-
ows.

e For the input data:

Pin = po — (step(po) + 1) - flow(v),

where py € Pip,v is the input variable of the al-
gorithm corresponding to the input computation
at the index point po, step(pin) = —1;

¢ For the output data:

Qout = Go + (Step(pmax) - step(qo) + 1) -ﬂow(u),

where qo° € Pout,2 is the output variable
of the algorithm corresponding to the output
computation at the index point ¢o,Pmax €
Pint, Step(Qout) = Step(pmax) +1.

After we apply these transformations to the do-
main of input/output computations we will obtain the
extended data dependence graph (EDG) of the algo-
rithm. This 3-dim EDG is ready to be mapped onto
2-dim space.

The spatial allocation of the set of computations
given in the space Z = Z* onto the space § = 72 is
accomplished by an allocation function

place(p): Z — S.

This function is given for each computation-node p €
P from EDG

o cither (when p € Pjn:) S-coordinates of a PE,
which will execute the computation and commu-
nication of the index point p at the step(p);

e or (when p € Pip UP,yt) coordinates of the index
point where the element p of the input/output
data will be allocated through the recurrent
steps.

A linear form of the allocation function is used:
place(p) = A, -p,

where A, is a (2 X 3)-matrix of the linear transfor-
mation corresponding to a projection direction 7 €
ker A, and which has the rank A, = 2.

Along all possible projection directions which the
cubic EDG may be projected onto the plane, only
those are admissible that

1) keep local data dependencies between computa-
tions;

2) do not map any index points p,q € Pjne, such
that step(p) = step(g), onto the same PE.

The problems are caused by the irregularity of the
algorithm and the DG it generated. The major prob-
lems concerning the initial algorithm and it’s DG are:

e some data are transmitted along opposite edges
in i direction, thus prevent projections in this
direction;

39

Joint Conference of. 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

e the arc-delays along k-axis vary as shown by
(4), thus complicate the control of computa-
tion/communication.

To design optimal array processors, we present a
new algorithm which eliminates the problems men-
tioned above using an innovative reindexing technique
in the next section.

4 The Design of the Regular Algo-

rithm
One way to resolve the irregularity problem of the
initial algorithm (3) is to reindex the nodes in the
DG. The reindexing is as follows: at the k-th iter-

ation, we shift the k-th row, (agfk_ _3,..., agjn—l)), to

(n + k)-th row. In this pattern the propagating vari-
ables move only in the positive directions. Based on
the above reindexation scheme we can rewrite the al-
gorithm (3) in the following form (effine recurrent
equations scripted as nested loops):

\ input computations (initialization)
(0)

ayo — 1;

foralll1< i< ndo
(0) a;;, 1<j<n;
a’i.‘i « ijs n+1§j’§m;

} internal computations
or k=1to n do
begin
k k-1
Ao
foralk<:<n+kk<j<m do
(k—1)

(5)

ag?) «—ifi=n+k then a; ’else
k) (k-1 k-1) (k-1 k—1
(“Sck) : agj - asik). aﬁ:j)/ asc—l,l)c-—l;

end
\ output computations
forall1< i< n,1<j<m-ndo
—ntl) _ (n (n),
Zij = i+n,j)+n - ai—}-?n,j—}-n/a’ﬂf)’

Notice that after k = n iteration we obtain the form

NEE
Al — 0 . 0 ay a’2?n+1 . a’21,Lm , (6)
0 . 0 as,’;.) ag:,), +1 S::)n

which is characterized by the desirable property of
locality for output computations. Note that the ele-

ments ag;c) in (6) are now the leading principal minors
of A. '
The index subspaces of the algorithm (5) are de-

scribed as follows:

Pin = {('L,],O) IISiSn, lgjsm}gzzs
“Pint = {(Z,J,k)TIISkS’n,k<'LS’n+k,
k<j<m}CZ¥%
Powt = {(7'+n$.7+n7n+1);r| 1<i<mn,

1<j<m-—n}CZ.

The data dependence vectors of the input variables

(k—1) (k—1) (k1) (k=1) (k—1) 0 the same

Opi 8 28 Ty Qg 5 0p gk

Proceedings of International Conference
on Algorithms

as for the irregular algorithm (3), but since now i > k,
the vectors O; = (i—k,0,1)%, Oy = (i—k,j—k,1)T
and Ok_y 41 = (i—k+1,j—k+1,1)7 may only have
positive values of the indexes. Hence, the correspond-
ing variables will be transmitted in one direction.

The dependencies localization procedure [8] ap-
plied to the initial affine recurrent equations (5) re-
sults in the uniform recurrent equations which have
the following form:

/ input computations
(t=1,j=1):9(p) — {1,a§°)};)
. . (0} pE P‘rn
(376101‘.7751):9(17)‘—“5]' ;
/ internal computations
[(k<i<k+nk<j<m):
(((i=k+1):
1z1(p) < y(p — e1);
(i#k+1):
: 4 t21(p) — zi(p—er);
z2(p) z2(p —e2);
z3(p) ,?ljz(p ~ €3); .
y(p) « A (p)'z’s(:;):(:;(p) z(p),

(k<i<k+mj=k):

l . { @3(p) ygp— es);

€P; @)
y(p) « z3 »); p int
=k+nk<j<m):
2| 2(p) — 2(p — er);
" ylp) « =i(p);
(i=kk<j<m):
(=k+1):

(G#k+1

: 932(11) — iBz(P - ez);
z3(p) « y(p — e3);
(y(p) « {z2(p), z3(p)};
/ output computations

al?) — y(p —es); p € Pows

where ¢; = (1,0,0)T,e; = (0,1,0)T,e; = (0,0,1)T
are local data dependence vectors, y(p) is an output
variable and z; (pg, z2(p), z3(p) are input variables of
the computation at the point p € P. Note that in
uniform recurrent equations we use set-variables of
the forms v = {v',4?}, w = {{w'!, w'?},w?}, and an
operation to join two variables in a set (see i = k, k <
Jj < m case).

The localized regular DG T', corresponding to the
equations (7) is depicted on Fig. 2 for the case of

n =3, m = 6. In DG Ty, variables afc’;—l) and

ag-c__lf,)c_l are denoted together as cﬁ—l) since they are

distributed along the same route. As above, for the

distribution of global variables ag;c_l) and ag:f,)c_l
on each k-th plane we have some degree of freedom
for the selection of the localization contour from all
possible patterns. This selection may be done ac-
cording to the chosen projection direction of the DG.

One of the desirable localization contours (not the

best one for some projections) is shown in Fig. 1
and Fig. 2 by dashed lines. The DG of the regu-
lar algorithm without output computations contains
n(n—1)(2m—n—1)/2 nodes associated with the inter-
nal computations (fraction-free operations) and some
number of time-delays nodes associated with the re-
definition of global (transmitted) variables. Notice
that this redefinition will expand a bit the subset of
internal computations Pj,;.

For the regular DG the timing function step(p) can
be specified in the linear form as step(p) = A-p+ 7.
This function defines a set of hyperplanes orthogonal
to the schedule vector A on the index space of the
algorithm. It is easy to show that the timing function
of the minimal form for the regular DG is

step(p) =i+j+k—3
for any p € P;,, taking into account that
step(pmin) = 0, where pmin = (1,1,1)T € P;y,q. Thus,
the schedule vector A is (1,1,1) and 7 is —3. Because
At = step(i, j, k) — step(i, j,k — 1) = 1,

no additional delays in between k-th and (k — 1)-th

_ layers are needed.

40

It can be proved that the length of the longest path
in the regular DG is

E(pmimpmax) = 3(” - 1) +m,

where prax = (2n,m,n) € Pips. The set of all com-
putations can be evaluated in the minimal time

Tmin(r2) = Step(pmax) = 3("’ - 1) +m,

which equals to the length of the longest path in the
DG of the regular algorithm. :

5 Optimal Array Processors

As mention before, the timing and allocation func-
tions must guarantee that each PE executes at most
one computation, which associated with any index
point of DG, at any given time step. For the regu-
lar DG with a linear timing function this requires the

condition
An#0 ®

to be held.

According to [8] for the 3-dim DG of the regular
algorithm there are 17 possible projection directions
that keep the local communications and define systolic
solutions. However, only 13 directions are admissible
for the DG T'; according to the condition (8). The
system of uniform recurrent equations (7) are used for
CAD tool [8] which automatically generates all admis-
sible projects of array processors for the given algo-
rithm and presents them graphically with necessary
space-time analysis provided. With the help of this
graphic analysis tool, characteristics of each project
can be investigated and generalized. The number of
PEs, delays, I/O ports and the data pipelining period
a = |X- 7| of all admissible projects are listed in the
following Table.

3)

Cs3
. Ay
) o
- &
cl‘:”
@ ap . .
4 af o -
o o ap
4 o
qg)

k

L.

i

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. :

3)
6
s
6
3)
5

(a) out,
in, — out,

‘in;

© O
Gs G
© 0
Qs Gy
(0)
G

Figure 4: The array processor 5(1,0,0)

From this Table, it can be shown that the only solu-
tions, generated by mapping the DG T'; along the pro-
jection directions 7, = (0,1,0)T and 7, = (1,0,0)7,
i.e. along f—a.xis.and E"-axis, are characterized in aggre-
gate by the minimal numbers of PE’s and I/O ports,
and the number of delays. The array processor 5(0,1,0)
is generated by mapping the EDG T, along 7 direc-
tion, i.e. along projection direction 7 = (0,1,0)7.
This 2-dim rhombic array processor S(0,1,0) (see Fig. 3
for the case of n = 3, m = 6) consists of

Po,1,0) =n(n—1)

orthogonally connected PEs, n controlled delays
(CDs) and n ordinary delays (OD). Thus a size of
array is independent of m. The initial matrix A(®) =
[agg)],,x,n is loaded into the array processor column
by column.

The functions of each PE; ; and CDg « can be pre-
sented as follows (variable r represents internal regis-
ter in each PE and CD):

C.Dk,k (Fig. 3(a)) PE,',k, (Fig. 3(b))
1<k<n: 1

<k<L SkL<n,k<i<n+k:
/ first step / first step
T ing; T — ing;
/ next steps / next steps
S U S
{out; —r;out; —in} {out; « ﬂi%g—rﬂ;

outy « iny; outs « ins}

The rhombic array processor S(0,1,0) simulates the
3-dim DG I'; without time extension, i.e. it solves the

41

problem in time T{g 1 0)(1,72,m) = Tpnin(T2) = 3(n —
1) + m. The data pipelining periodis o = |A - m|l=1
and the block pipelining periodis 8 = m + 1, i.e. the
next task can be pushed into this array processor after
m+1 time steps. The number of I/O ports is 2n. Also
it is evident that for [tasks the time of processing is
Tio,1,0)(l,vym) = 3(n — 1) + I(m + 1) — 1.

Another optimal design can be obtained by map-
ping the EDG along ¢ axis, i.e. along the projection di-
rection 7, = (1,0,0)%. The corresponding systolic ar-
ray processor and input/output data flows are shown
in Fig. 4 for the case of n = 3 and m = 6. The array
uses

P00 =n(2m —n—1)/2

processing elements PE;; (see Fig. 4 (a)), 1 < k <
n+1,k+1 < j < m, and n ordinary delays. It
is not difficult to show that array processor 5(1,0,0)
has smaller number of PEs than S(0,1,0) and all other
admissible projects if

n<m<(3n—-1)/2 % L5n.

The functions of each PE; x can be presented as fol-
lows (71,72, 73 are the internal registers in each PE):

/ first step
Ty iy ;T — ind;Ty — ind;
/ next steps
{out; — (73 -iny —iny- 1) /r3;
out; « iny;outy — iny}

The number of I/O ports in this design is 2m —
n. The initial expanded matrix A, [ag)]nxm is

Proceedings of international Conference

on Algorithms

[] Project || PEs [Delays | I/0 ports [[a]
S(D,O,l) 2m(n— 1) - n(n+3)/2+2 2m+n—2 — 1
S(O,I,O) n(n - 1) 2n 2n 1

(011) |2m(n—1)—n(n+3)/2+2 |m+3n—-1 |2n 2
S(1,0,0) n(2m —n —1)/2 o 2m —n 1
S(l,O’,l) (n - 1)(m - 1) 2m +n— 2 2m —n 2

(1,1,0) (m—2)(m—-1)2+n(n-1) | 2n 2m+n—-2 2

(1,1,1) (n—1)(m-1) ’ 12m+n—-2 [2m+n—-2]3

(1,-1,1) | (m+n—2)(n—-1) 2m+3n—4[2m+n—-211

(-1,14) | (R —1)(3m —n—3) 2m+3n—-4|2m+n-211
Si,1,-1) | (m—2)(3n —2) 2m+3n—-4 | 2m+n—-2 |1
Si1a,2) | 6mn—n®—4n —4m dm+2n—-2 | 2m4+n—-2 |4
S(—1,1,2) | 8mn —4m —3n®* - 3n+5 dm+4n—T7 [2m+n—2 |2
S(1,—1,2) | 6mn —Tn —2n° —4m 44 dm+2n—-4 | 2m+n—-212 -

Table 1: Admissible projects

loaded into array row by row. As it is shown in

k)

Fig. 3 by dashed lines the global variable civ) =

(k=1)

k—1
{akk iy

’a’k—-l,k—l} is transmitted mainly along the

projection direction 7, = (1,0,0)T and thus, after
mapping, it will be stored in the internal registers r,
and 73 of the corresponding PE’s. The total compu-

tation time is ’

11(1,070)(1’"" m) = Tmin(PZ) = 3(n - 1) + m,

i.e. the array processor will simulate the DG without
time extension. This processor supports a noninter-
leaved block pipelining period of 3 = n and a data
pipelining period of a = |A- 73] = 1, so successive
computations can be repeated every n time steps.

6 Conclusion

In this paper the design of systolic array proces-
sors for solving systems of linear equations based on a
fraction-free algorithm were presented. A new regular
iterative algorithm whose dependency graph meets lo-
cal communication/computation requirements, while
remaining input/output equivalent to the initial algo-
rithm is the key of the design. The reindexing tech-
nique used in this paper should be applicable to other
classes of algorithms for designing efficient, special-
purpose array processors. The proposed array proces-
sors were derived by the systematic design methodol-
ogy [8]. It is interesting to investigate the possibility
of using non-linear scheduling for reducing number of
PEs in optimal array processors generated by linear
scheduling [2]. It is also interesting to implement the
algorithm on high-performance parallel computers for
performance evaluation, error analysis, and empirical
study of scalability and benchmark.

References

[1] Bareis E.H. Sylvester Identity and Multistep
Integer-Preserving Gaussian Elimination. Math-
ematics of Computation, No. 22, 1968, pp. 565-

578.

42

[2] Clauss Ph., Mongenet C., Perrin G.R. Synthesis
of size-optimal toroidal arrays for the algebraic
path problem. Proc. of the International Work-
shop Algorithms and Parallel VLSI Architectures
II, France, June 3-6, 1991, Elsevier Publisher,

1992, pp. 199-210.

[3] Fox L. An Introduction to Numerical Linear Al-.
gebra. Oxford University Press, New York, 1965.

[4] Huang C.H., Lengauer Ch. The derivation of sys-
tolic implementations of programs. Acta Infor-
- matica. No. 24, 1987, pp. 595-632.

[5] Kung S.Y. VLSI Array Processors. Prentice Hall,
1988.

[6] Kung S.Y., Lo S.C., Lewis P.S. Optimal systolic
design for the transitive closure and the short-
est path problems. IEEE Trans. on Computers.

Vol. C-36, No. 5, 1987, pp. 603—614.

Sedukhin S.G. Design and analysis of systolic al-
gorithms for the algebraic path problem. Com-
puters and Artificial Intelligence. Vol. 11, No. 3,

(7

1992, pp. 269-292.

(8l

sign.

Lecture Notes
Number 854,

Sedukhin S.G., Sedukhin I.S. Systematic ap-
proach and software tool for systolic de-
in Computer Science,
Buchberger B. and Volkert
J. eds., Springer-Verlag, 1994, pp. 172-183.

(http://gemini.u-aizu.ac.jp/HPCC/S4CAD/)

