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Abstract
In this paper, we develop a sequential algorithm
for the optimal ranking problem on interval graphs.
Guven a set of n intervals, our optimal ranking algo-
rithm takes O(an®) time to find an optimal ranking
on the corresponding interval graph, where o is the
cligue number of this inierval graph.

1 Introduction

An interval family I is a set of intervals on the
real line. Let V and E denote the vertex and edge
set of a graph G, respectively. An undirected graph
G = (V,E) is called an interval graph if its vertices
can be put into a one-to-one correspondence with an
interval family I such that two vertices in V are con-
nected by an edge of E if and only if their correspond-
ing intervals have nonempty intersection [2]. Figure 1
shows an interval family and its corresponding inter-
val graph. The interval family I is called an snterval
model of G. Conversely, G is referred to as the inter-
section graph of I, or the interval graph corresponding
to I. Interval graphs have been extensively studied
and used as models for many real world problems. For
instance, they have applications in course scheduling,
genetics, psychology, archaeology [2,7], job schedul-
ing, and computer aided design [1,3].

A ranking of a graph G is a mapping, I', from the
vertices of G to the natural numbers such that for
every path between any two vertices u and v, u # v,
with I'(u) = I['(v), there exists at least one vertex w on
that path with ['(w) > T'(u) = T'(v). The value I'(v)
of a vertex v is the rank of vertex v [4]. A ranking
1s optimal if the largest rank assigned is the smallest
among all rankings. And the ranking number r(G) of
a graph G is the largest rank assigned in any optimal

ranking of G. The optimal ranking problem on a graph .

G is the problem of finding an optimal ranking on G.
Figure 2 shows a ranking and an optimal ranking on
a graph. Figures 3 and 4 show two different optimal
rankings for the intervals in Figure 1. _

The constraints for the ranking problem imply that
two adjacent vertices cannot have the same rank.

*This work was supported by National Science Council, Re-
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Hence this problem is a restriction of the vertices col-
oring problem.

There are many sequential and parallel algorithms
provided for the optimal ranking problem on a tree
[4,5,8,9,10]. Now, the best sequential O(n) time al-
gorithm are proposed by A.A. Schaffer [8]. And an
optimal ranking on a cograph represented by its bi-
nary parse tree can be found in O(log n) time with
[O](n/log n) processors on an EREW PRAM model
6].

The organization of this paper is as follows. In
Section 2 we give some definitions, properties and no-
tations used in our method. In Section 3 we present
our method. In Section 4 we give our optimal rank-
ing algorithm to solve the optimal ranking problem on
intervals. In Section 5 we show the correctness and
complexity of ourmethod. In Section 6 we make some
concluding remarks.

2 Definitions, Properties and Nota-
tions

In this section, we shall give some notations in an
interval graph. Consider a family I = {I; = [a;, b;] |
a; < b;,1 <4< n} of intervals on the real line, where
a; is the left endpoint of interval ¢ and b; is its right
endpoint. We number these intervals by in creasing or-
der of their right endpoints. In this paper, we say that
interval z is greater than interval y if the right end-
point of interval z is greater than the right endpoint
of interval y. In this case, we also say that interval y
is smaller than interval z. Without loss of generality,
we assume that these 2n endpoints all are distinct.
Let G = (V, E) be the interval graph of a family I of
n intervals. We first introduce three operators.

U : the set union, _

U : the interval union, and

[ : the interval intersection.

For instance, if I 1,4], I, [2,5] and
13 [3,6], then {Il} U {12 U {13} = {Il,Iz,I,?,},
(1)U UtD) = 1.6 and (1] N1 () =
[9,4].

We now introduce a cut operation which can par-
tition a set of intervals I into three subsets. In the
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following, we define some functions and give examples
according to Figure 1.

Definition 1. An interval graph I can be cut at the

right point & of some interval I;, such that

I=L(I,5))UC(I,i)UR(,i), i=1,...,n-1
, Where

L(I,i) = the set of intervals Iy,...,I; sorted by
right endpoints.

C(I,7) = the set of the intervals which contain b;,
excluding I;,

= the set of the intervals which contain b; +

¢, where ¢ is an infinitely small positive number.

R(I,%) = the set of remaining intervals. [

Definition 2. Consider an interval graph which is
cut at by such that I = L(I,h) UC(I,h) U R(I,h).
Then R(I,h) can be partitioned into

R(I, k) = L(R(I, k),i) U C(R(I, k),3) U R(R(,h),1)

, where i € {R(I,h)} \ { the greatest interval in
R(I, h)},

such that _ . .

L(R(I,h),1) = the set of the intervals in R(I, h)
not greater than I;.

C(R(I,h),i) = the set of the intervals in R(I,h)
which contain b;, excluding I; '

= the set of the intervals in R(I,h)

which contain b; + e. )
RER%, h),i) = the set of the remaining intervals

Lh).

in R ,
= R(1,7). O
If interval I, = 0, then R(I, h) = I. We assume the
right endpoint of Iy is smaller than the left endpoints
of any other intervals and | {Io} |= 0.

Example 1. In Figure 1, the interval graph I can
be partitioned into I = L(I,1) U C(I,1) U R(I,1

such that L(I,1) = {Li}, C(I,1) = {I3,I3,I5

and R(I,1) = {I4,1s,...,113}. Then interval grap

R(I,1) can further be partitioned into R(I,1)
L(R(I,1),6) UC(R(I,1),6) U R(R(I,1),6) such that
L(R(I,1),6) = {I4,Is}, C(R(I,1),6) = {Ir,I3, 12}
and R(R(I, 1),6) = {Ig,Ilo,Ill,Ilg}. O

Definition 3. num(h,l,r)

= the number of the intervals in {fj41,..., I} which
contain b; and have left endpoints greater than by

= the number of the intervals in C(R(I,h),[), ex-
cluding the intervals which are greater than interval
I.. O

Definition 4. CR(h,l,7,k)

= the kth smallest interval in {fj41,...,I} which
contains b; and has left endpoint greater than by,.

="the kth smallest interval in C(R(I, k),!), excluding
the intervals which are greater than I,. O

Definition 5. head(l,r)
= the smallest interval in R(I,1) \ { intervals greater
than I,}. O

Definition 6. tail(l,r)
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= the greatest interval in R(I,l)\ { intervals greater
than I.}.

If head(h, j) = i then interval I; is called a head of
interval I, where j > 7> h.

Example 2. In Figure 1, if the interval graph I
was cut at by, then I = L(I,2) U C(I,2) U R(I,2)
such that L(I,2) = {L,I;}, C(I,2) = {I3,Is} and
R(I,2) = {I4,Ig,. .. ,113}. ‘We have head(2, 13) =4
and tail(2,13) = 13 because [y and I;3 are the
smallest and greatest intervals in R(I,2), respectively.
Now, if we cut R(I,2) at by then
R(1,2) = L(R(I,2),4) U C(R(I, 2),4§U R(R(I,2),4)
= 4}U{16}U{I71"') 13

Clearly, num(2,4,13) =| C(R(I,2),4) |= 1 and
CR(2,4,13,k) | k = 1,...,a} = C(R(1,2),4) =
Ig}. Hence CR(2,4,13,1) is Is. From the above
head(4,13) is I and tail(4,13) is I;3 because I7
and [;3 are the smallest and greatest intervals in
R(I,4) = R(R(1,2),4), respectively. 0O

Example 3. Consider another case. In Figure 1, if
the interval graph I was cut at b3, then I = L(I,3) U
C(I1,3) U R(1,3) such that L(I,3) = {hL, I3 I3},
C I,3 = {Is} and R(I,3) = {L;,Is,... ,113}. We
have head(3,13) = 4 and tail(3,13) = 13. Now, if we
cut R(I,3) at bs then

R(I,3)

= L(R(1,3),6) U C(R(I, 3),6) U R(R(I, 3%; 6)

= {ls,Is} U {Ir, I3, 12} U {Is, T10, [11, 13
learly,

(CR(3,6,0,F) |[k=1,...,0

o}
= C(R(I, 3),6{\{ intervals greater than Io}

={Ir,Is, 12} \ {112} = {I7,Is} , and
num(3,6,9) = | {I7, Is

So we have CR(3,6,9,1) and CR(3,6,9,2) are I
and Ig, respectively. From the above head(6,9) is Iy
and tail(6,9) is Iy because Iy is both the smallest and
greatest interval in
R(I,6) \ { the intervals which are greater than I}
= ?*9, Lo, I11, 13} \ { intervals greater than I}
={l}.

Definition 7. rank(h,i,j) =
1.  ranking number of I;,..
head(h,j) =i and i <j;
2.0,if1=7=0;
3. *(undefined), otherwise. [
Clearly, if head(h,n) = i then rank(h;i,j) =
7(R(I,h)\{ intervals greater than I;} ). For instance,
rank(0,1,13) = r(R(I,0)) = r(I), rank(5,7,13) =
r(R(I,5)) and rank(3,4,11) = r(R(I,3) \ {intervals
greater than I;;1}) = »(R(I,3) L12,I13}), since
head(0,13) = 1, head(5,13) = 7 and head(3,11) = 4.

Example 4. In Figure 4, rank(0,1,13) = r(I) = 6,
rank(8,10,13) = r?R(I, 8)) = 3, which is not 4 be-
cause Ij5 is not in R(I,8) = {ho, N1, 13}. And
rank(5,8, 13) = x(undefined) because Iz is not the
head of Is. We make such an assignment because
we will not use this rank when we compute the
ranking number rank(0,1,n) of the interval graph
I. T we cut interval graph I at bs; then we have
to compute ranklg5,7, 13) rather than rank(5,8, 13?.
Specifically, in Figure 4, we know that intervals

LI in R(I,h), if



I, 14, Iz, I, 1o are heads of some intervals because
intervals Iy, I4,Ir, Iy, I1o are the smallest intervals
of R(1,0) = {1}, Ri[, 1) = R(1,2) = R(1,3) =
I4> IG) (R aIIS}; R(I) ) = R(I7 5) - {I7) s 7113}:
R(I,G) = R(I,7) = {19,110,111,113} and R I,S)
{Io, 11, 13}, correspondingly. That is, I is the head
of Io; I, is the head of I, I and I3; I is the head of
Iy and Is; Io is the head of Is and Ir; and Iy is the
head of Is. [
The values of function rank(h,,j) are shown in
Table 1.

Definition 8. cut(h,i,j)

= the smallest interval I; such that 7(C(R(I, h),1)) +
maz{r(L(R(I,h),1)), r(R(R(I,h),1) \ { intervals
greater than I;})} equals the ranking number of in-
tervals I;,...,I; in R(I,h), if head(h,j) =i O

Example 5. In Figure 4, cut(0,1,13) is I3 be-
cause I3 is the smallest interval satisfying »(C(Z, 3))+
maz{r(L(I,3)),r(R(I,3))} = 1+ maz{3,5} = 6 (the
ranking number of the interval graph I ), though in-
tervals I, I7 and I3 also satisfy the above condition.
And cut(3,4,13) is I3 because I3 is the smallest inter-
val satisfying r(C(R(I, 3), 8)) + maz{r(L(R(I, 3),8)),
r(R(R(,3),8))} = 2+ maz{3,3} = 5 (the ranking
pumber of intervals Iy, ..., I13 in R(I,3) ). The other
cut(h, i, j) functions used n our method are shown in
Table 2. O

Definition 9. .

['(z) = the rank of interval I;. O

A set of T'(i) functions leading to an optimal rank-
ing is shown in Table 3.

3 Our method

In this section, we present our method for the op-
timal ranking problem on an interval graph. We
use the example in Figure 1 to illustrate it. In our
method, an interval graph is partitioned into I =
L(I,i)UC(I,i)UR(I,i), where i = 1,...,n — 1 and
the ranking number of this interval graph is

Our method consists of two phases. In phase 1,
we find the ranking number of this interval graph. In
phase 2, we give each interval a rank according to
the result in phase 1. Figure 5 shows the process to
obtain the ranking number by applying our method.
In Figure 1, the ranking number of this interval graph
is

r(I).

= rank(0,1,13)

= min{

»(C(I,1)) + maz{r(L(I,1)),7(R(I,1))},
r(C(I,2)) + maz{r(L(I,2)),r(R(I,2))},
r(C(I,3)) + maz{r(L(I,3)),r(R(I,3))},
r(C(I,4)) + maz{r(L(I1,4)),r(R(I,4))},
r(C(I,5)) + maz{r(L(1,5)),7(R(I,5))},
r(C(I,6)) + maz{r(L({,6)),r(R(I,6)}},
r(C(1,7)) + maz{r(L(I,7)),(R(I,7))},
r(C(I,8)) + mazx{r(L(I,8)),r(R(I,8))},
r(C(I,9)) + maz{r(L(1,9)),7(R([,9))},
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1,10))},
1,11))},
mi

(9
C
C

L
L
L

R
R
R

:{;22?}3, L} + maw{r({h%%, r%%I‘;, Is, ..

r
r
r

1,10
1,11
1,12

1,10
1,11
1,12

, T
s T
, 7

+ mazir
+ mazxir
+ maz{r

. ,113} 3
r I3,Is})+ma:c 1’({11,12 , T I4,Ie,...,[13} i,
™ 15})+ma:c{r( 11,12,13} , T {I4,Is,... ,113} y
r 15,16})+ma:c T Il,...,I4}),1'({I7,...,113 )},
r({Ie}) + maz{r( L,....Is}),r({Iz,..., 113})},
r({I7,Is, I12
maz{r({I1,...,16}),v({Is, I10, 111, l13}) },
r({Is, I12})
m(II:{T’({Il,...,17}2,7'({19,110,111,113})},
r({Io, [12}) + maz{r({Iy, ..., Is}),r({ 10, L11, l13})},
r {I10;~~;Il3} +ma:c{r {Il,...,Ig} ,T({};},
({61, .., h3}) + maz{r({I1,..., f10}),"({ )}
r 2I12,113})+maa:{r({Il,...,In}),r({ )}
r({fs}) + maz{r({L1,..., [2}),r({}N} }
= min
3 + maz{1,5},2 + maz{2,5},
1+ maz{3,5},2 + maz{3,5},
1+ maz{4,5},3 + maz{4,4},

2 + maz{4,4},2 + maz{4,3},
4 + maz{4,0},3 + maz{4,0},
2 + maz{5,0},1 + maz{5,0
= min{8,7,6,7,6,7,6,6,8,7,7,6}
= 6.
In the following, we will show more about how to
get the ranking nuember of this interval graph I.

r(I) L
= ?"({ JEERER lﬁ)max{r(L(I)3))1T(R(I’3))}’ where

= r(C(1,3))
r(C(I,SS) =r({I}) =1
r(L(I,3
Z(?é{ﬁ,)}z, I3})
maz{r(L(L(I,3), 1)) r(R(7i(8(§(Ii§))}l)) *
= r({ I, Is}) + maz{r({1,}), {({})}
= 2+ maz{l, 0}
=3.
r(R(I,3))
= 1"({14, I6, . ,113})
;az{r(L(R(I 3),8) r(RZI(%CI(Ig()Ié?;}S)) whe:‘;
r(C(R(I,3),8)) = r?{fg, 112}3 =2
r:(%f%{’l?, ’Ii),)fs})
r(C(L(R(, 3),8),4)) +

maz{r(L(L(R(I, 3),8),4)),r£R(L(R 1,3),8),4))}

= 'I‘({Is}) + ma:c{'r({L;}), r({Iz, IS})
=1+ maz{l,2}

r(R(R(I,3),8))

= r({f10, L1, [13})
- r(C(R(RéI, 3),8),10)) +
masfr(LGR(E(L5).8) 10), (AR, 3),8), 100)
=r({h1, L13}) + maz{r({I10}),7({{ N}

2 + maz{1,0}
3.
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From the above, r(R(I,3)) = 5 and r(L(I,3)) = 3.

Hence,
r(I) = r(C(I, 3)) + maz{r(L(I, 3)),7(R(1,3))}
13,5}

=14+ maz

b

Figure 5 shows the relevant cut operations to ob-
tain rank(0,1,13) in phase 1.

By now, we know the ranking number of this in-
terval graph is rank(0,1,13) = 6 and cut(0,1,13)
1s I3. Because CR(0,3,13,1) is I5, we give rank 6
to Is. By this way, we rank intervals {I,...,Is}
and intervals {I4, I, ...; I3}, recursively. For inter-
vals {Is, Is, ..., 113}, we know cut(3,4,13) is Is. Be-
cause CR(3,4,13,1) is Iy, we give rank 5 to ;. And
CR(3,4,13,2) is I2, we give rank 4 to Iy, etc. In
this way, we can get the rank I'(i) of I; in Table 3.
Figure 6 shows how to rank each interval in phase 2.

4 Algorithm-

In this section, we present an algorithm for the op-
timal ranking problem on interval graphs. Our algo-
rithm consists of two phases. In phase 1, we compute
the ranking number of this interval graph. In phase
2, we give each interval a rank according to phase 1
by backtracking. Figure 4 shows the optimal ranking
obtained by applying our algorithm. Our algorithm
is Algorithm Optimal-ranking shown below.

Algorithm Optimal-ranking.

Phase 1.: /* Find the ranking number. */
1. Sort n intervals by their right endpoints;
2. Initialize num(h,i,j), CR(h,i,j,k), head(i, 7),
tail(i, j), cut(h,i,j) to nil, and set rank(h,i, 75 =
*(unde fined), rank(h,0,0) = 0, where h,i,j =
0,...,nand k=1,..., a;
3. fori=1lton—1
forj=i+1ton
find num(0,1, j), head(t, §), tail(i, j),
CR(0,1,7,k), where k = 1,..., a;
endfor;
endfor,
4. forh=n—-1to1
if (head(h,n) # nil)
find num(h, 4,j) and CR(h,i,j, k),
1,..., «, where )
t € {head(h,n), ... tail(h,n) — 1}\
i{CR(O(,h,n),k) | & :(1,..?,a ,
je{i+1,...,n}\
{CR(0,h,n,k) | k=1,...,a};

?

endif,
endfor,
5. forh=n—-1t00
if (head(h,n) # nil)
i = head(h,n);
rank(h,i,1) = 1;
find rank(h,i, j) = ming{num(h, k, j)+
maz{rank(h,i, k),
rank(k, head(k, j),tail(k,;))}}, where
JjE {i-}il,...,n} \ {CR(0,h,n,l) |

=1,...,0;p,
I__ .

N &
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Set cut(h,i,j) = u, where u is the smallest
interval which satisfies rank(h, i, j) = num(h, u,j) +
maz{rank(h,i,u), rank(u, head(u, j), tail(u, j))};
endif;
~ endfor;

Phase 2 : /* Assign ranks to the intervals. */
ranking(0,1,n,rank(0, 1,n));
func ranking(h,i,j,p

f(j—i>0)
{ J

for k = 1 to num(h, cut(h, i, j), §)
T(CR(h, cut(h,i,7),3,k)) = p;
p=p-1

endfor,

ranking(h, i, cut(h,1, j), p);

ranking(cut(h, i, 7), head(cut(h, i, j), ),
tail(cut(h,1,7),7),p);

elseif (i # nil )
[(CR(h,i,35,1)) = p;
endelseif;
endif;
)

5 Correctness and Complexity

In this section, we give some notations and prove
that our method is correct. The following notations
will go through out this paper. :

P = the ranking number of an interval graph.

For any optimal ranking of an interval graph, we
define ¢, T and ¢, as follows.

g = the greatest rank which appeared more than once
in this interval graph.

T = the number of the ranks which appeared exactly
once in this interval graph.

=P—gq. '

t. = the number of the intervals which contain the
real number ¢ and have ranks appeared exactly once
in this interval graph.

Figure 3 shows an interval graph with the ranking
number P = 6. We will use this interval graph to
explain the following Lemmas and Theorems.

\

Lemma 1. For any optimal ranking of a connected
interval graph, the number of the intervals ranked the
ranking number P must be 1.
Proof: If not, we assume I'(l;,) = I'(I;,) = P. Then
we can find a path '

Iil_’lh_"[jz_) ...... —>Ijr_*Ii TZO

21

such that I'(15,),T'(Ij2),...,T(;,) < P. This contra-
dicts the definition of ranking. g

Example 6. In Figure 3, the ranking number is 6
and only I5 is ranked 6. [

Lemma 2. If an interval graph has a ranking number
P, for any optimal ranking, we can find the greatest
rank ¢ which appeared more than once. That is, ranks
q+1,..., P appeared exactly once. Then there exists
at least one real number z = ¢ such that every interval
I; containing ¢ must be of rank greater than q.



Proof: If the interval graph is a clique, then ¢ = 0
and ranks 1,...,n appeared exactly once. Hence, for

any real number
N {5,

ie{l,...,n}

ceE

the intervals containing ¢ must be of ranks greater
than q. :

If the interval graph is not a clique. By Lemma
1, there exists at least one rank ( P, for example)
appeared exactly once. We assume that we cannot
find such a point ¢, that is, for any point

U {Ii},

i€{g+1,..,P}

S

there exists an interval containing  whose rank isin
{1,...,9}. Then

Uie{q_,_lwyp}{intervals ranked i}

c Uie{l,...,q} {intervals ranked i}
= I=
Uie{l,m,q}{intervals ranked 1}.

Because rank g appeared twice at least, there exists
I'(L;,) =T(I;,) = ¢g. We can find a path

ie{l_,m,P}{intervals ranked i}

L, =L, — I, — I;, = I

r>0

27

such that I'(Z;,),...,T'(I;,) < ¢. This contradicts the
definition of ranking.

Therefore, we can find at least one real number c
such that the intervals containing ¢ must be of ranks
greater than ¢. O

Example 7. In Figure 3, P = 6, ¢ = 3, ranks 4,5,6
appeared exactly once and we can find a real number
¢ €(7,8),(18,19) such that every interval I; contain-
ing ¢ must be of rank greater than 3. 0O

Theorem 1. Consider the optimal ranking of an in-
terval graph. We can find a real number ¢ such that
this interval graph can be partitioned into

I=W(I,c)UM(I,c)UE(Ic),where

W(I,c) = the set of thie intervals whose right end-
points are in the left of ¢,

M(I,¢) = the set of the intervals containing ¢ whose
ranks are greater than q,

E(I,c¢) = the set of the intervals whose left endpoints
are 1 the right of ¢,

P =t.+maz{r(W(l,c)),7(E(l,c))}, and

te =| M(I,c) |{:(r(1l£.f(I,)c) ( &N

Proof: By Lemma 2, we can find a real number ¢
such that every interval I; containing ¢ must be of
rank greater than q. Hence we have

I=W(,c)UM(I,c)UE(I,c)
Now, we want

to show that maz{r(W(I,c)),r(E(I,¢c))} = P —t..
We consider the fol{lowing two cases : )
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case 1: maz{r(W(I,c)),7(E(l,c))} = s < P —t..
Then we can rank the intervals in W (I, ¢) and E(I,¢c)
with the ranks in {1,...,s} and rank the intervals in
M(I,c) with the ranks in {s+1,...,5+1t.}. Because
any path from the intervals in W(I,¢) to the inter-
vals in E(I,c) must be via some intervals in M(I,c).
Hence the ranking number of this interval graph 1s
s+t < P—1t.+1t. = P. This contradicts that
P is the ranking number of this interval graph. So
maz{r(W(l,c)),r(E(I,c))} > P —t..

case 2: maz{r(W(I,c)),r(E(l,c))} = s > P—t.. Be-
cause the ranks of the intervals in M (I, ¢) appear ex-
actly once, the ranking number of this interval graph
is s+t > P—t.+t. = P. This contradicts that P
is the ranking number of this interval graph.

From the above, P = t, + (P — ;) = tc+
maz{r(W(I,c)),7(E(I,c))}. This proof is complete.
O

Example 8. In Figure 3, let ¢ € (7,8) or ¢ € (18,19)
we can partition I = W(I,c)UM(I,c)UE(I,c). There
are two cases :

case 1: If ¢ € (7,8), then W&I,c) = {L, L, I3},
M(I,C) = {15} and (I,C) = 14,16,...,113}. We
ave P = 6, t. = | M(I,¢) | = 1, n(W(I,¢)) =
3 and r(E(l,c)) = 5. Hence P
maz{r(W(I,0),(E(1,¢))}.

),

case 2: If ¢ € (18,19), then W(I,c) = {11, ...

= c

1-[8}1

M(I,C) = {Ig,[lz} and E(I,C) = {110,[11,113}. We
have P = 6, t. = | M(I,¢) | = 2, r(W(l,c)) =
4 and 7(E(l,c = Hence P = t, +

3.
mam{r(W((I,(c)),)g(E(I,c))}. O

Lemma 3. If an interval graph I with the ranking
number P is partitioned into ] = W&I, ) UM(I,c)U
E(I,c¢), where c is a real number and | W(I,¢c) | = 1,
such that P = t.+maz{r(W(I,c)), rSE(I, ¢))}. Then
r(CUL D)4 magr(L(L ) (1)) = F(bT )+

maz{r(W(I,c)),r(E(I,c))}.

proof: We want to show that r(C(I,?))
 mas{r(L(Ti), (RN} < r(M(I,e)) +
maz{r(W(I,c)),r(E(I,c))}. _

If we choose | L([,7) | = | W(I,c) | = 4, then

L(I,7) = W(I,c). Because W(I,c) is the set of the
smallest 7 intervals sorted by the right endpoints. We
know that if | W(I,z) | = | W(l,y) | and = < y,
then | C(I,z) | < | C(l,y) |. Because if £ < y,
there may be some interval with left endpoint z, <
z < y: In this case | C(I,z) |<| C(I,y) |. And it is
impossible to have some interval with nght endpoint
2,z <z <y, because | W(I,z) | = | W(I,y) |. Now,
we have | C(1,7) | < | M(I,c) | because | W(I,c¢) |
=|L(I,t) | and b; < c.
From the above, we have | L(1,i) | = | W(I,¢) |
and | C(I,i) | < | M(I,c) |. Assume | C(I,7) | =
M(I,c) |-k, where k is a nonnegative integer. Hence
R(L3) | = | E(Ie) | + k. Sor(C(I,4)) = r(M(I,c))
-k and r(R(1,1)) < r(E(I,c)) + k. We have
W(C(1,8)) + maz{r(L(T,),"(R(L, i)}
=r(M(I,c)) — k+ maz{r(W(I,c)),7(R(I,%))}
<r(M(I,¢))—k+maz{r(W(I,c)),r(E(,c))+k}
=r(M(I,c)) + maz{r(W(I,c)) — k,7(E(I,c))}
<r(M(I,ec W(l,c)),r(E(I,c))}.

+ mazqr
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(I1) We know that r(M(I,¢c)) +
maz{r(W(I,c)),r(E(I,c))} = P is the ranking num-
ber. So, 7(M(I,c)) + ma:c{réW(I, c;i,r(E(I, o)} <
r(C(1,9)) + maz{r(L(I,3)),r(R(1,%)

By (I) and (II), this proof is complete. [

Example 9. Consider Figure 3. When ¢ € (7, 8),
i= (UL D) (R =
i =3 and r(C(I,3)) + maz{r(L(I,3)),r(R(Z,3))} =
r(M(I,¢c)) —(}- Sna:t:) r(W(I,c) ,(r(E(I,)c))} = 6. Jlnd
in this case, C(1,3) = M(I,c), L(1,3) = W(I,c) and
R(I,3) = B(I,c).

(18,19),

st (C(L9) % mas (r(LL D), (R
t=28andr ,8)) + maz{r ,8)), 7 ) =
r(M(I, c))+max{‘r(W(I,c);,r(é([, c;)} = 6. And in
this case, C(I,8) = M(I,c), L(I,8) = W(I,c) and
R(1,8) = E(I,c¢).

Theorem 2. Our method provides a ranking number
on interval graphs.

proof: According to our method, the interval graph
I can be partitioned into I = L(Z,$)UC(I, i)UR(1,1),
where ¢ = 1,...,n — 1 and the ranking number of our
method is

ranking_number

mini=1, . n-1{r(C(1,3)) + maz{r(L(I,i)) +
r(R(1,4))}}

= miniz1,.. n—1{F;},where

P; = r(C(1,7)) + maz{r(L(I,7)) + r(R(I,1))}.

- By (T}(xeorl)m 1, ai (ini(;ervzz)l gra(bpé I ))vgith the
ranking. number P can be partitioned into I =
W(I,c)UM(I,c)UE(I, c) such that P = r(M(lI, )+
maz{r(W(I, c)),r(EQI, ¢))}. By Lemma 3, let 7 =

| wl l, then
i)} = r(M(1,c))

,C
r(C(1,49)) + maz{r(L(I,1)),r(R(I,
a0V (1) 151 )

We want to show that ranking number = P. If
not, there are two cases :
1. ranking number > P

This contradicts that ranking_number is the min-
imum of {Py,...,P,_;} and P = P;, for some i €
{1,...,n—=1}.
2. ranking number < P

This contradicts that P is the ranking number of
this interval graph.

This proof is complete. O

Theorem 3. Given an interval graph G with n un-
sorted intervals, our optimal ranking algorithm takes
O(an®) time to solve the optimal ranking problem on
interval graphs, where « is the clique number of this
interval graph.

proof: The correctness has been shown in Theo-
rem 2. We now analyze the time complexity of Al-
gorithm Optimal-ranking. There are two phases in
Algorithm Optimal-ranking. In Phase 1 : Step 1
takes O(n log n) time to sort n intervals by their
right endpoints. Step 2 takes O(an®) time to initial-
ize the values of num(h, i, j), CR(h,i, j, kg, head(s; ),
tail(4,7), cut(h,i,j) and rank(h,i,j). Step 3 takes
O(an?) time to compute the values of num(0, 4, 5),
head(i, j), tail(i, j) and CR(0,3, ], k). Step 4 takes
O(an®) time to compute the values of num(h, i, j) and
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CR(h,i,j, k). Step 5 takes Ogloma) to compute the
values of rank(h, i,j) and cut(h,i,7). In Phase 2, we
take O(n) time to give each interval a rank. Hence Al-
gorithm Optimal-ranking takes O(an®) time to solve
the optimal ranking problem on interval graphs. 0O

6 Concluding Remarks

Some further research topics are as follows.

1. To reduce the time complexity of the optimal rank-
ing problem on interval graphs.

2. To solve the optimal ranking problem on some
other special graphs.
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Table 1. The vilaes of rank(h,i,j), where h,#,j =0,...,n.

cut(0,1,13) | 3
cut(0,1,3) 1
cut(3,4,13) | 8
cut(3,4,8) 4
cut(4,7,8) 7
cut(8,10,13) |10

Table 2. The values of cut(h,i,j)

for h,i,5 =0,...,n.

1

12345678910111213

['(2)

365642631251 3 4 2

Table 3. A set of I'(z) functions

leading to an optimal ranking.
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(a) A family of intervals sorted by their right endpoints.

, ; 6 7 13
3 5 8 12 "
4 9 10

(b) The interval graph corresponding to the intervals in (a).

Figure 1. An interval family and its corresponding interval graph.

(a) A ranking on a graph.

(b) An optimal ranking on a graph.

Figure 2. A ranking (a) and an optimal ranking (b) on a graph.
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. N . . - Figure 4. The optimal ranking obtained by applying our method
Figure 3. An optimal ranking of the interval grapgh in Figure 1. i i '

The numbers above the intervals are their ranks. The numbers above the intervals are their ranks.

1ank(0.1,13)=6 rank(0,1,13)=6
cut(O 1 13)—3 cut(0,1,13)=3
I (5)=6
rank(0,1.3)=3 rank(3.4.13)=% rank(0,1,3)=3 rank(3,41,; )3);5
1(0,1,3) 1 cut(3.4, 13 =8 cut(0,1,3)=1 cut(3,4,13)=
o = ¢ ) num(3.8.13)=2 r(2)=5 I (9)=5
r(3)=4 T (12)=4
ki = -
= rank(0,1,1)=1 rank(3,4,8) =3 rank(8,10,13)=3
cut(a 4 8)-4 cut(B 10, 13) 10 r (g)__.z cut(3.4 8)- 4 cut(8,10,13)=10
r(6)=3 r 1)-
/ \ + / \ r)=2
cut(4,7 a)-7 rank(3.4.4)=1 rank(4,7,8)=2 rank(8,10,10)=1
num(4.7.8)=1 r@)=2 cul(4,7,8)=7 T (10)=1
/ . re=2
ank(4.7.7)=1 /

rank(4,7,7)=1
r@=1

Figure 5. How to obtain rank(0,1,13) in phase 1.

The rank on a node can be computed once the ranks of its

children are known. Thus a order to obtain the ranks are : Figure 6. How to give each interval a rank in phase 2.
rank(8,10,13)=3,rank(4,7,8)=2,rank(3,4,8)=3,rank(3,4,13)
=5,rank(0,1,3)=3 and rank(0,1,13)=6.
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