Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.O.C.

A Linear Time Algorithm for Finding Depth-First Spanning Trees
on Trapezoid Graphs

Hon-Chan Chen and Yue-Li Wang

Department of Information Management
National Taiwan Institute of Technology
Taipei, Taiwan, Republic of China.

Abstract

Let G be a connected graph of n vertices and m
edges. The problem of finding a depth-first
spanning tree of G is to find a subgraph of G
connecting the n vertices with n—1 edges by depth-
first search. In this paper, we propose an O(n)
time algorithm for solving this problem on
trapezoid graphs. Our algorithm can also find
depth-first spanning trees of permutation graphs in
linear time.

1. Introduction
Let G = (¥, E) be a connected graph with vertex

set ¥ and edge set E, where [V|=nand |E| =m. A
spanning tree of G is a spanning subgraph of G

which is a tree and connects the n vertices. -

Typically, there are many different spanning trees
in a graph. A depth-first spanning tree is a
spanning tree which is found by depth-first search
(DFS) [6]. In DFS, we select and visit a vertex a,
then visit a vertex b adjacent to a, continuing with
a vertex ¢ adjacent to b (but different from a),
followed by an unvisited d adjacent to c, and so
forth. As we go deeper and deeper into the graph,
we will eventually visit a vertex y with no unvisited
neighbors; when this happens, we return to the
vertex x immediately preceding y in the search and
revisit x. When all vertices were visited, we stop
the search. The edge (x, y) is placed into the depth-
first spanning tree if vertex y was visited for the
first time immediately following a visit to x. In this
case, x is called the parent of y and y is a child of x.

In this paper, we will find depth-first spanning
trees on trapezoid graphs. A trapezoid / is defined
by four corner points [a;, b, c;, ;] such that , and
b; are on the top channel and c; and d, are on the

bottom channel of the trapezoid diagram. A graph

59

G = (V, E) is a trapezoid graph if it can be
represented by a trapezoid diagram such that each
trapezoid corresponds to a vertex in ¥ and (i, /) € E
if and only if trapezoids / and j intersect in the
trapezoid diagram [5]. Figure 1 presents a
trapezoid graph with its trapezoid diagram. In the
diagram, there are 10 trapezoids, and the four
corner points of trapezoid i are a,, b;, c; and dyi=
1,2, .., 10. The class of trapezoid graphs includes
two well-known classes of intersection graphs: the
permutation graphs and the interval graphs. The
permutation graphs are obtained in the case where
a;=b;and ¢; = d; for all i, and the interval graphs
are obtained in the case where a; = c; and b, = d, for

all i.

It is easy to show that a trapezoid diagram can
be reconstructed into another trapezoid diagram
corresponding to the same trapezoid graph such
that each trapezoid has four distinct corner points
and all corner points for all trapezoids are distinct.
Therefore, we assume that the corner points on our
trapezoid diagram are all distinct, and each corner
point is at a specific position. We also assume that
trapezoids are labelled in increasing order of their b
corner points. That is, for two trapezoids i and j, i
<Jj if b, lies to the left of bj. For example, in Figure
1 (b),ktrapezoid 6 is before trapezoid 7 since bg is
at position 14 and b, is at position 15 on the top

channel.

Proceedings of International Conference
on Algorithms

position 1 2 3 4 5 6 7 8.9 10 11 121314 1516 17 18 19 20
pozfz:tesr a b a abb “s a, b, a; b a, a b b, by a, bya, b,

corner
points cz Cl dz 03 d: s dx e, dy ¢ e dod g d o d9 0 du dy

posiion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20

(®)

Figure 1. (a) A trapezoid graph
(b) The corresponding trapezoid diagram.

There are a wide variety of papers discussing
the depth-first spanning tree problem [1, 2, 3, 7, 8,
11, 13, 14, 15, 16]. In [17], Tarjan described the
technique of DFS in detail. The time complexity
of DFS in general graphs is O(n + m), where n is
the number of vertices and m the number of edges.
Trapezoid graphs were first studied in [4, 5].
Dagan, in [5], introduced a coloring algorithm for
trapezoid graphs. In [12], Ma presented an O(x%)
time algorithm for recognizing this class of graphs.
Recently, Daniel Liang gave some sequential
algorithms for dominating and breadth-first
spanning tree problems on trapezoid graphs [9, 10].
The class of permutation graphs is a subclass of
trapezoid graphs. Extending algorithms from
permutation graphs to trapezoid graphs is an
interesting study. » »

In this paper, we propose a linear time
algorithm for finding depth-first spanning trees on
connected trapezoid graphs. This implies that a
depth-first spanning tree of a permutation graph
can be f/‘ound in O(n) time by our algorithm. The
remaining part of this paper is organized as
follows. In Section 2, we introduce our algorithm
of finding a depth-first spanning tree. The
correctness of our algorithm is shown in Section 3.
Finally, in Section 4, we give the conclusion of this

paper.

2. An Algorithm for Finding a Depth-
First Spanning Tree

Before describing our algorithm, we introduce
some notations which will be used later. Let G be
a trapezoid graph of » vertices labelled from 1 to n.
We will proceed our algorithm on the
corresponding trapezoid diagram of G. Denote
pos(-) the position of some corner point. For

60

example, in Figure 1 (b), pos(b3) = 6 on the top
channel and pos(d;) = 5 on the bottom channel.

On the contrary, a position corresponds a corner
point as well as a trapezoid. We denote 140
(respectively, V(")) the corresponding trapezoid
of some position on the top (respectively, the
bottom) channel. For instance, (7) is trapezoid 6
and Vy(7) is trapezoid 1 since the corner point at
position 7 on the top channel is a; while d, is at

position 7 on the bottom channel. Index top
(respectively, bottom) indicates the latest scanned
comner point on the top (respectively, bottom)
channel. When a vertex v of G is visited, set
flag(v) = TRUE; otherwise, flag(v) = FALSE.

Our algorithm of finding a depth-first spanning
tree is presented as follows. In the algorithm,
parent(v) stands for the parent of v in the depth-
first spanning tree, and (i, j) stands for the edge
incident to 7 andj.

Algorithm A
Input: A trapezoid diagram with » trapezoids
Output: A depth-first spanning tree T starting
from vertex 1.
Method:
Step 1. {Initialize all conditions.}
T:=0;
fori:=1tondo
flag(i) = FALSE; _
parent(1) :=0; Y
i=1; ‘
top = 1; / , ;
bottom = 1; ‘
Slag(i) := TRUE,;
Step 2. {Scan corner points on the top channel to
find an unvisited neighbor.}
while flag(V (top)) = TRUE and top <
pos(b,) do
top :=top +1;
Step 3. {Scan corner points on the bottom channel
to find an unvisited neighbor.}
while flag(V,(bottom)) = TRUE and
bottom < pos(d)) do
bottom = bottom + 1,
Step 4. {If vertex / has no unvisited neighbors, go
back to its parent.}
while fop 2 pos(b;) and bottom 2 pos(d))
andi=0do
i := parent(i);
if i # 0 then

goto Step 2;
Step 5. {Find the next vertex to visit or stop the
algorithm.}
ifi#0 then
begin '
if 1op < pos(b,) and bottom < pos(d,)
then
u :=min{ ¥ (top), V;(bottom)}
elseif fop < pos(b,) and bottom >
pos(d;) then
u = Vtop)
elseif fop > pos(b,) and bottom <
pos(d;) then
u = Vy(bottom),
parent(u) =i,
T:=Tv (i, u),
i=u
Sfag(i) := TRUE;
goto Step 2;
end
else
output T.
End of Algorithm A

We use the graph of Figure 1 (b) as an example
to illustrate Algorithm A. After the initialization in
Step 1, we consider trapezoid 1. Scanning the top
channel and the bottom channel, we find trapezoid
2 intersects trapezoid 1. Let vertex 1 be the parent
of vertex 2, and let (1, 2) be an edge of 7. Now
consider vertex 2. Continuing the scanning on
both channels, we find trapezoid 3 intersects
trapezoid 2. Let vertex 2 be the parent of vertex 3,
and insert edge (2, 3) into 7. Continuing the
scanning, we find that no unvisited trapezoids
intersect trapezoid 3. At the moment, go back to
the parent of vertex 3; i.e. vertex 2. Since all
corner points before pos(b,) and pos(d,) were
scanned, no unvisited trapezoids intersect trapezoid
2. Therefore, we still go back to the parent of
vertex 2; i.e. vertex 1. Continuing the scanning,
we find trapezoid 6 intersects trapezoid 1. Thus,
let vertex 1 be the parent of vertex 6, and let (1, 6)
be an edge of 7. After Algorithm A terminates, T
is a depth-first spanning tree of G as shown in
Figure 2.

61

Joint Conference of 1996 International Computer Sympdsium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Figure 2. The resulting depth-first spanning tree starting
from vertex 1.

3. The Correctness of Algorithm A

In this section, we will prove the correctness of
Algorithm A. Let G be a connected trapezoid
graph of n vertices. When we visit a vertex i of G
in the execution of our algorithm (no matter i is
first visited or not), i is, at the moment, called the
currently visited vertex. The vertex which is
visited immediately after visiting the currently
visited vertex is- called the nexs visited vertex.
Remember that top (respectively, bottorn) always
indicates the latest scanned corner point on the top
(respectively, bottom) channel. For completmg the
correctness, we will show that
(i) the graph T constructed by Algorlthm A is in
depth-first search,

(ii) T'is a tree connecting » vertices, and
(iii) Algorithm A takes O(x) time.
The following property of trapezoid graphs is

. useful for our proofs.

Property. Let i and j, i < j, be two vertices of G.
Then i is adjacent to if and only if pos(b) > pos(aj)

or pos(d)) > pos(cj) in the trapezoid diagram.

Lemma 1. Let i, 1 < i< n, be the currently visited
vertex in the execution of Algorithm A. If top <
pos(b;) in Step 5, then V(top) is an unvisited
neighbor of i in G. Similarly, if bottom < pos(d) in
Step 5, then Vi(bottom) is an unvisited neighbor of
iinG.

Proof. We shall only prove the case where fop <
pos(b). The other case, bottom < pos(d;), can be
proved similarly. Since top < pos(b)) in Step 5,
Slag(V (top)) must be FALSE in Step 2. If V(top)
> i, then ¥ (top) is an unvisited neighbor of i since

Proceedings of International Conference
on Algorithms)

top = pos(aV,(top)) < pos(b; < pos(bV,(top))- If
V(top) < i, then V(top) is also an unvisited

neighbor of i. If it is not a neighbor, then

pos(byt (top)) < pos(a) and pos(dV’ (top)) <
pos(c;). Butiis visited. This implies that V(top) is

also visited since by, (1p) OF dy,(10p) have been

scanned. A contradiction. Thus, if fop < pos(b)),

then V(top) is an unvisited neighbor of / in G.
Q.ED.

If top < pos(b) and bottom < pos(d;) for
currently visited vertex 7 in Step 5 of Algorithm A,
1 < i < n, then both V(top) and Vy(bottom) are
unvisited neighbors of i in G. Either V(fop) or
V(bottom) can be the next visited vertex. In this
case, we select = min{V (top), V;(bottom)} as the

next visited vertex for simplicity.

Corollary 2. If top > pos(b;) and bottom > pos(d))
Jfor currently visited vertex i in Step 4 of Algorithm
A, 1 i< n, then i has no unvisited neighbors in G,
and the next visited vertex is parent(i).

Lemma 3. The graph T constructed by Algorithm
A is in depth-first search.

Proof. The main idea of DFS is that if currently
visited vertex i has unvisited neighbors in G, then
one of the unvisited neiglibors will be the next
visited vertex. Otherwise, if all the neighbors of i
were visited, then parent(i) is the next visited
vertex. In the execution of Algorithm A, we have
to consider four cases:

Case 1. top < pos(b;) and bottom < pos(d);

Case 2. top < pos(b;) and bottom 2 pos(d));

Case 3. top > pos(b,) and bottom < pos(d;);

Case 4. top 2 pos(b,) and bottom 2 pos(d,).

If it is in one of the first three cases, by Step 5 of
Algorithm A and Lemma 1, either V(top) or
V(bottom) is the next visited vertex which is an

unvisited neighbor of 7 in G. Then, we insert edge
(i, u) into T, where u is the next visited vertex. If it
is in Case 4, by Corollary 2, parent(i) is the next
visited vertex and no new edge is added on T.
Thus, the graph T constructed by Algorithm A is in
depth-first search.

QE.D.

62

Lemma 4. The graph T constructed by Algorithm
A is a tree connecting n vertices.
Proof. In Step 5, we always insert an edge (i, u)
into T only when we find an unvisited neighbor u
of currently visited vertex i. It is impossible to
insert an edge incident with two visited vertices to
form a cycle. Thus, T is a tree. Since G is
connected and top and botfom scan all corner
points on both channels, all of the »n vertices of G
can be visited in Algorithm A. Therefore, 7" is a
tree containing » vertices.

Q.E.D.

Obviously, each edge of T was visited at most
twice. This is because we go through (parenz(i), i)
if i was first visited and go through (i, parent(7)) if i
has no unvisited neighbors in G.

Theorem 5. Algorithm A finds depth-first
spanning trees on trapezoid graphs in O(n) time.
Proof. Lemmas 3 and 4 have shown that the graph
T constructed by Algorithm A is a tree connecting
n vertices in depth-first search. Since edge (i,) is
added into T only when we find an unvisited
neighbor u of currently visited vertex 7, (i, %) is an
edge of G. This completes that T is a depth-first
spanning tree of G. We-show the complexity of
Algorithm A as follows. Since fop and bottom,
respectively, scan the top and the bottom channels
once on the trapezoid -diagram, Steps 2 and 3
totally take O(n) time. When we visit a vertex i
which has no unvisited neighbors, we go back to
parent(i) on T to continue our algorithm. Since T
has at most #»—1 edges and each edge was visited at
most twice, Step 4 totally takes O(n) time. Step 5
can totally be done in O(#n) time and Step 1 is also
in O(n) time. Therefore, Algorithm A takes O(n)
time.

Q.E.D.

4. Conclusion

In this paper, we present an O(n) time algorithm
for finding depth-first spanning trees on trapezoid
graphs. Since the class of permutation graphs is a
subclass of trapezoid graphs, depth-first spanning
trees on permutation graphs can also be found in
O(n) time by our algorithm.

Reference

[1] A. Aggarwal, R. J. Anderson, and M. Y. Kao,
Parallel Depth-First Search in General
Directed Graphs, SIAM Journal on Com-
puting, Vol. 19, 1990, pp. 397-409.

[2] H. S. Chao and R. C. T. Lee, Finding Depth-

First Search Trees on Permutation Graphs in

Linear Time, The 13th Workshop on Com-

binatorial Mathematics and Computation

Theory, 1996, pp. 135-139.

[3] P. Chaudhuri, Finding and Updating Depth-

First Spanning Trees of Acyclic Digraphs in

Parallel, Computer Journal, Vol. 33, 1990, pp.

247-251.

[4] D. G. Corneil and P. A. Kamula, Extensions

of Permutation and Interval Graphs,

" Congressus Numerantium, Vol. 58, 1987, pp.

267-275.

I. Dagan, M. C. Golumbic, and R. Y. Pinter,
Trapezoid Graphs and Their Coloring,
Discrete Applied Mathematics, Vol. 21, 1988,
pp. 35-46. '

5]

[6] M. C. Golumbic, Algorithmic Graph Theory
and Perfect Graphs, Academic Press, New
York, 1980.

[7] T. Hagerup, Planar Depth-First Search in
O(log n) Parallel Time, SIAM Journal on
Computing, Vol. 19, 1990, pp. 678-704.

[8] E. Korach and Z. Ostfeld, On the Existence of
Special Depth First Search Trees, Journal of
Graph Theory, Vol. 19, 1995, pp. 535-547.

(]

52, 1994, pp. 309-315.

Y. D. Liang, Dominations in Trapezoid
Graphs, Information Processing Letters, Vol.

63

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

[10] Y. D. Liang, Steiner Set and Connected
Domination in Trapezoid Graphs, Information
Processing Letters, Vol. 56, 1995, pp. 101-
108.

[11] Y. Liang, C. Rhee, S. K. Dhall, and S.
Lakshmivarahan, NC Algorithms for Finding
Depth-First-Search Trees in Interval Graphs
and Circular-Arc Graphs, IEEE Proceedings
of SOUTHEASTCON "91, Vol. 1, pp. 582-585.

[12] T. H. Ma and J. P. Spinrad, On the 2-Chain
Subgraph Cover and Related Problems,
Journal of Algorithms, Vol. 17, 1994, pp. 251-
268. '

[13] C. Rhee, Y. Daniel Liang, S. K. Dhall, S.
Lakshmivarahan, Efficient algorithms for
finding depth-first and breadth-first search
trees in permutation graphs, Information
Processing Letters, Vol. 49, 1994, pp. 45-50.

[14] H. Salehi-Fathabadi and H. Ahrabian, A New
Algorithm for Minimum Spanning Tree Using
Depth-First-Search in an Undirected Graph,
International ~ Journal of Computer
Mathematics, Vol. 57, 1995, pp. 157-161..

[15] G. E. Shannon, A Linear-Processor Algorithm
for Depth-First Search in Planar Graphs,
Information Processing Letters, Vol. 29,
1988, pp. 119-123.

[16] M. B. Sharma, S. S. Iyengar, and N. K.
Mandyam, An Efficient Distributed Depth-
First-Search Algorithm, Information Pro-
cessing Letters, Vol. 32, 1989, pp. 183-186.

[17] R. E. Tarjan, Depth-First Search and Linear
Graph Algorithms, SIAM Journal on
Computing, Vol. 1, 1972, pp. 146-160. ;

