hERE/+/\F2EEEREGH®

An Efficient Algorithm for Searching Nearest Objects in Spatial Database

Jeang-Kuo Chen
Department of Information Management
Chaoyang University of Technolog
Wufeng, Taichung County, Taiwan 413
Republic of China
Email: jkchen@mail.cyut.edu.tw

Abstract
Querying the nearest ob jects of a given point is an
important function in spatial database systems. The
algorithm called RKV [9] solves the requirement
incompletely because only one nearest object can be found.
Besides, the performance of RKVis low because its
depth-first search causes backtracking of re-accessing some
visited nodes. Based on breadth -first search, we propose a
complete and efficient algorithm called CC in this paper to
provide an alternative for high performance. To verify that
CCis l;ezl‘er than RKV in performan ce, several experiments
were conducted on the efficiency of these two algorithms.
The experiment results indicate that CC performs better
than RKV does about one-and-half to four -and-half-fold as
the number of data objects in the database is increased. The
more the spatial objects in adatabase, the better the
performance of CC compared with that of RKV.
KEYWORDS: Nearest object query, R -tree, Breadth-first

search, Algorithm, Spatial database

1. Introduction

Many data structures, such as Grid file, k-d tree, R-tree, etc.
[10], are wildly applied to some non-traditional applications
such as GIS, image processing, pattern recognition, and
spatial database systems [2,6,7,8] etc. Among them, the
R-tree and its variants [1,4,11] are the most popular ones. In
applications of astrophysics, astronomy, geography, etc., to
find the nearest spatial objects around a given query point in

a certain area is a frequent request. For example, the nearest

Yeh-Hao Chin
Institute of Computer Science
National Tsing Hua Universit

Hsinchu 30043, Taiwan
Republic of China
Email: yhchin@cs.nthu.edu.tw

object of the point P in Figure 1 is object A because the
distance between P and A is the shortest. Based on [3] and
the branch-and-bound technique, the algorithm proposed by
Rousopoulos, Kelly, and Vincent [9] (called RKV), was

developed to solve the requirement of querying a nearest
object of a given point. However, there ar e two drawbacks
in RKV. First, RKV solves the requirement incompletely
because only one nearest object can be found, while there
may have several nearest objects to a given point. Second,
the performance of RKV is low since its depth-first search
induces backtracking which results in re-accessing some
visited nodes. The upper the level of a node, the larger the
number of the node been accessed. An examplé is given

below. Assume a nearest object query operation, based on

the RKV algorithm, traverses and acce sses the nodes a, b, c,
e, g, and h of the R-tree as shown in Figure 2. The accessing
sequence of nodes is “abebacgchca,” as shown in Figure 2.
The nodes, a, b, and ¢ are repeatedly accessed due to the

backtracking property of depth-first search.

;
r:\“@

Figure 1. An example of a nearest object query.

@: accessing scqucnce/@
%@9 % N

Flgure 2. The search sequence of RKV.

9: accessed node

A-38

Based on breadth-first search, we propose a complete and
efficient algorithm, called CC (Chen and Chin), for nearest
object queries. For a nearest object quer_;/ of a given point,
CC accesses fewer nodes than RKV does because no
backtracking is required in CC. Each node is accessed onl
one time by CC whatever the level of the node is upper or
lower. Following the case of Figure 2, Figure 3 is an
example that details the advantages of CC. A nearest object
query operation based on CC descends down the tree,
level-by-level and left-to-right, without bélcktfacking‘
Therefore, the accessing sequence of nodes is “abcegh,” as
shown in Figure 3. Comparing the accessed nodesby CC
and RKV, RKV accesses 11 nodes while only 6 nodes are -
accessed by CC. CC avoids backiracking t o reduce the
number of nodes to be accessed. The efficiency of CC is
promoted since the cost of node access dominates the total
cost of an algorithm. Therefore, our approach is superior t
RKV in term of accessed nodes. Another advantage of C
is that CC can find out all nearest objects of a query point,
while RKV can find out only one. CC completely performs
the requirement of the nearest object query, compared with
RKV. To verify such observations, several tests were done
to compare the performance of CC and RKV. The
simulation results indicate that the performance of CC is
about one-and-half to four-and-half-fold that of RKV as the

number of spatial objects is increased.

. a
@: accessing sequence [TaefeZel] B « accessed node
Q-

?Mﬁmcs
e O~
d e g h

Figure 3. The search sequence of CC.

Section 2 introduces the basic concepts of the nearest
object query and the CC algorithm. Section 3 describes the
experiments and the analysis of the experiment results. Last

Section 4 presents the conclusion.

2. Concurrency Control Algorithm

2.1 Search Method

The R-tree [4] is adynamic data structure for
n-dimensional data objects, as shown in Figure 4. Each
node contains index records between m and M (fM/Z] Snﬁ
where M is the maximum number of index records in a
node, called fanout. Bach index record in a leaf node
contains a pointer that indicates to the location of an object
stored in a storage device and a rectilinear rectangle, called
the minimal bounding rectangle (MBR), that tightly binds
the indicated objcct'. Each index record in a non -leaf node
also has a pointer that indicates to a descendent node and
an MBR that tightly binds all the rectangles of the
descendent node. To find the nearest object of a query point,
the nearest object query operation in an R -tree must
descend down from the root to the particular leaf node that
contains the desired nearest object of the query point. At
each level of the tree, somé formulas are used to decide
which children of the current node should be visited next.
Finally, the desired nearest object can be found when the

bottom level of the tree is reached.

oo |y e
X |- ‘;[‘M‘-A i-\
LU= >
]
5=
a_
l (_—Kﬁf\——f‘)/_ . _‘ CD AB HI FG JK XY

(a) Objects distribution space (b) The corresponding R-tree

Figure 4. Data objects and the R-tree.

"An object (i.e., the rectangles such as A, B, etc. in Figure 4)

is represented by its corresponding MBR in an R-iree. For
simplicity, the distance from a point to an objectis
considered as the distance from that point to the
corresponding MBR of that object as defined in [9]. The
formula MINDIST [9] (abbreviated to MD hereafter),
measuring the minimal distance between a query point and
an MBR, determines which child node of a par;snt node
sﬁould be visited next. Thus, the suitable candidate among
several child nodes of a parent node can be selec ted by
measuring the MD of each node with respect to the quer

point and the one that has the smallesi MD is selecied as

A-39

the next node to be examined. However, in some situations,
the node determined by MD may be not the correct node
that contains the nearest object of a query point because of
dead space inside the MBR of a node [9]. To compensate
the inaccuracy of MD in identifying the real nearest object,
another formula MINMAXDIST [9] (abbreviated to MM
hereafter) is used to find the appropriate node th at probably
contains the real nearest object. The function of MMD is t
measure the minimum of the maximum possible distance
from a query point to an edge or a vertex of an MBR. The
MMD of a node from a point guarantees that the nearest
object of the point can be found inside the node at a

distance less than or equal to the MMD of the node [9].

\02______ R3
~
~

Figure 5. Three cases of MD.

The following examples illustrate the semantics of MD and
MMD. The MD of an MBR from a query point denotes the
shortest distance between the query pointand a cert ain
point on one edge of the MBR. Figure 5 shows three MD’s
of three MBR’s. The MD of Ry, Rs, and R; from the quer
point P are the distance between P and the top-left vertex
of Ry, the bottom-right vertex of R,, and a certain point on
the vertical lefi-edge of R, respectively. Sometimes, an
incorrect candidate for finding the nearest object is selected
if only using MD, as shown in Figure 6. If the operation for
finding the nearest object of the query .point P is at node q,
then node ¢ is selected next because the MD of node ¢ is
smaller than the MD of node b. Consequently, object H is
found as the nearest object of P. However, the real nearest
object of P is object A in node b. The dead space in node ¢
makes the MD of node ¢ smaller than that of node b.
Therefore, anode that contains a candidate which is the
nearest object/node to a query point should be considered.
To find such a node, the MMD of an MBR from a query

point is used to denote the shortest distance between the

query point and one of the four veriexes of the MBR where
at least a child of the MBR can be found within the MMD.

Figure 7 shows three MMD’s of three MBR’s. Here, the

MBR R, has four vertices, v), vy, vs, and vs, and two
childre r; and r,. To find a child in R, within the least
distance, the MMD must be the distance between P and v,
as shown in Figure 7. Hence, the correct nearest object of a

query point can be determined through the values of MD
and MMD. In RKV, MMD is used to find the nearest object
while MD is used to prune some unnecessary branches. In
CC, both MD and MMD are concurrently used to focus on

nearest objects when descending the tree, level by level.

<—i | P b <o
IRl
H
) 1
!
,I - — CD AB HI FG JK XY
L e oo
(a) The location of P (b) Node ¢ is accessed next
Figure 6. An error due to using MD only.
W 2 =
&kl
" R
\[&r]
w3,
Figure 7. Three cases of MMD.
2.2 The Algorithm

The search techniqueusedin the CC algorithm is
breadth-first search that supports a search order of
top-down and left-to-right without backtracking, Two
formulas for computing MD and MMD respectively are
used concurrently to select some non-leaf nodes that
contain the desired nearest objects during descending the
tree. The concept of the CC algorith can be simpl
described in the following steps.

S1. Set and access the root of the R -tree as Current and
descend the tree.

S2. For each MBR i in Current, measure the MD and
MMD of i from the query p;)int.

53. Select the MBR’s in Current with the smallest MD or

MMD and the relative nodes of the selected MBR’S as

A-40

candidates for accessing later in sequence.

S4. Set a selected node as Current to be visited next.

§5. if Current is a non-leaf node, then go to S2.

$6. For each MBR ! in the candidate leaf nodes, measure
the MD of i from the query point.

S7. Select the MBR’s with the smallest MD and return the
relative objects of the selected MBR’s as the nearest objects

of the query point.

e T
__]<—_c_|f~__ CD AB HI FG JK XY
(a) The location of P~ (b) The search sequence
Figure 8. The behavior of the CC algorithm

l
|
l e
l

To find the nearest neighbors of a given point, CC starts at
the root of an R-tree and descends, level by level, toward
the bottom of the tree. Initially, the root is accessed and set
as the Current node. The MD and MMD of each MBR in
Current from the query point is measured and saved. Then,
the MBR’s with the smallest MD or MMD a re selected and
the nodes correspoﬁding to the selected MBR’s are added
into a queue in a left -to-right order. Next, an element in the
queue is selected and set up as Current following the
sequence of first-in-first-out. These actions, obtaining,
visiting, measuring, and selecting the nodes in the queue,
are repeated until Current is a leaf node. Finally, the MD’
of the objects in the candidate leaf-nodes (Current and the
nodes in the queue) are measured. The objects with the
smallest MD are returned as the nearest objects of the query
point. Figure 8 illusirates the searching behavior of CC.
Assume P is the query point. The MD and MMD of nodes
b and ¢ are measured when the query operation arrives at
node a (corresponding to steps S1 and S2). Next, node b is
selected and accessed since its MD and MMD are both
smaller than those of node ¢ (83 and S4). Then, the MD
and MMD of nodes d, ¢, and f are measured (S5 and S2)
nodes f and e are found to have the smallest MD and MMD

respectively (S3). Therefore, nodes ¢ and f are accessed as

Current in sequence (S4). Finally, the MD of objecis C, D,

E, F and G are measured (S5 and 56), and the nearest
object of P is object C (S7). The detailed CC algorithm is

listed below.

Algorithm Find_nearest_objects(P, Rtree)

I* 1

// Function . /"
/I Given a query point P, find the nearest objects of Pin //
// an R-tree Riree. 7
/[Variables and procedures /"

/I Current - a variable for representing the node currently //

// being visited. 1
/I Dist: a variable for keeping the distance of the 1/
// temporary nearest object from P. "

/I Set: a set variable for keeping the found NN (maybe //

// more than elements). /!
/I Queue: a queue for saving some nodes to be visited //
// 1ater in breadth-first search. "
/I AddQueue: a procedure for adding a node into a queue. //

/I GetQueue: a procedure for getting an element froma //

/I queue. /"

/,“.‘ K kg kR K % % o} i //
Current € the root of Rtree; reset Queue, RIY
while Current is a non-leaf node, do /181,851

for each index record i of Current, compute the MD
and MMD of the MBR in i; 11821/

select the index records, say SMD, of Current that have

the smallest MDD "Ss3n
for each index record j in SMD, do 1183/
AddQueue(the pointer in j, Queue); 11831/
endfor; : -

select the index records, say SMMD, of Current that

have the smallest MMD;, 11831/
for each index record k in SMMD, do /18311
if k¢ SMD then 11831

AddQueue(the pointer in k, Queue); 1/ S3//
endif;

endfor;

A-41

Current & GetQueue(Queue);
/! get a new node to be visited next // /15411

endwhile;

/I now Current & the member in Queue are all leaf nodes /

Dist & o0 Set &
while Current is not null, do S61f
for each object o of Current,d 11561/
compute the MD of o, say Md, from P, // S6//

if Dist > MD,), then sTi
Dist < MD,; 81l
discard all elements in Set; ST
Set € o st
else
if Dist = MD,,, then 118711
Set & Set + o, ST
endif;
endif;
endfor;

if Queue is not empty, then
Current < GetQueue(Queue);,
else Current € null;
-endif;,
endwhile;
return the objects in Ser; 11871/

end Find_nearest_objects.

Table 1
Differences between CC and RKV
Property CC RKV

Search order jBreadth-first searcl] Depth-first search

of nearest More than one Only one
objects can be

found
Data objects | Raw data objects Pre-sorted data
objects
R-tree structure Raw R-tree Pre-packed R-tree |

The similarity and difference between CC and RKV are
stated as follows. The similarity is that the two formulas,
MD and MMD, in RKV are also adopted in CC. The major
differences are (1) the search order and (2) the way MD and
MMD are used. RKV uses depth -first search, while CC
uses breadth -first search. RKV uses MMD durin

descending the tree and MD durin

descending/backtracking the tree, while CC uses both MD
and MMD simultaneously during descending the iree.

Table 1 lists the differences of the two algorithms.

3. Experiment Results

To evaluate the perfor mance of CC and RKYV, several
experiments were conducted to measure the average
number of accessed nodes for each algorithm. The more an
algorithm accesses nodes, the lower the performance of the
algorithm. The average number of accessed nodes foran
algorithm is used to represent the performance of the
algorithm because the time of accessing nodes foran
algorithm dominates the response time of the algorithm,
The parameter values of the experiments refer to those
values in [9] in order to get the objective results. For each
R-tree, the fanout of each node was set at 50 [9]. There
were five data sets of object (i.e., 1k, 4k, 16k, 64k, and
256k [9)) for building five R -trees with different heights.
The_ 1k, 4k and 16k, and 64k and 256k data objects were
used to produce R-trees with heights of 2, 3, and 4,
respectively. In each experiment, the underlying R -tree was
built by one of the five data sets, each with the same
accessed probability. All data objects were randomly
generated and uniformly distributed in the data space. In
each experiment, 1,000 operations were performed t
access the R -tree uniformly. Likewise, all locations of the
query points were randomly generated and uniformly
distributed in the data space. To ensure that the number of
samples met the r equirement in the central limit theorem,
each experiment was repeated 30 times to get a 90%
confidence interval [5].

The experiment results are analyzed as follows. The curves
of the average number of accessed nodes of CC and RK

at each different size of the data set are shown in Figure 9.
CC has better performance than RKV does because the
former accesses fewer nodes than the latier does in each
data set. The larger the size of the data set, the larger the

difference between the curves of the two algorith ms, as

A-42

shown in Figure 9. For example, in the size of the 16k data
set, the difference between the two curves is 7.36, while
that is 11.31 in the size of the 64k data set. The curve of C

ascends slightly as the size of the data set is increased,
while the curve of RKV ascends rapidly, asshown in
Figure 9. For instance, the curve of CC ascends from 2.81
to 4.95 when the size of the data set is increased from 1kt

256k, while that of RKV ascends from 4.19 to 22.58.

Therefore, CC has better performance than RKV does.

N
u
m 25 -
b
RKV © —j—
5 S

=
20 4

o

a 154+

c

[~

€

. 10+

5

[

d sl

n G/‘e———e/e'———e
o

d 0 T 5 . . :
< 0 1k 4k 16k 64k 256k

Number of data objects

Figure 9. The average number of accessed nodes.

4. Conclusion

To implement the function of querying the nearest objects
of a given point, we propose an algorithm that can find out
all nearest objects and accesses each node at most one time.
CC performs better than RKV does about one -and-half to
four-and-half-fold under various daia sets of spatial objects
in the experiments. The primary reason is that breadth -first
search avoids backtracking to re-access some visited nodes.
Therefore, the performance of the algorithm, based on
depth-first search, is lower than that of the one based on
breadih-first search. It is worth while to state two additional
comments. First, CC can be easily extended to find the k -th
nearest object; the modification is similar to that in[9].
Second, except for uniform data distribution, the same
number of experiments based onnon -uniform, namely,
normal data distribution, were also done and similar results
as those for uniform data distribution were obtained. Hence
discussion of the non -uniform distribution resulis is

omitted.

References

[1]1 N.Beckmann, H. Kriegel, R. Schneider, and B. Seeger,
"The R'-tree: An Efficient and Robust Access Method
for Points and Rectangles," in Proc. ACM SIGMOD
Int. Conf. on Management of Data, pp. 322-331, 1990.

[2]1 T. Brinkhoff, H. Kriegel, R. Schneider, and B. Seeger,
"GENESYS: A System for Efficient Spatial Query
Processing," in Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 519, 1994.

{3] . H. Friedman, J. L. Bentley, and R. A. Finkel, "An
Algorithm for Finding the Best Matches in
Logarithmic Expected Time, ACM Trans. on Math.
Software, Vol. 3, pp. 209-226, 1977.

{4] A. Guttman, "R-trees: A Dynamic Index Structure for
Spatial Searching," in Proc. ACM SIGMOD Annual
Meeting, pp. 47-57, 1984.

[51 R. Jain, The Art of Computer Systems Performance
Analysis, MA: John Wiley & Sons, 1991.

[6] -F. Korn et al, " Efficient and effective nearest neighbor
search in a medical image database of tumor shapes,
Image description and retrieval , pp. 17-54, 1998.

[7] S. Nene and S. Nayer, " Simple algorithm for nearest
neighbor search in high dimensions," IEE
Transactions on Partern Analysis and Machin
Intelligence, vol. 19, no. 9, pp. 980-1003, 1997.

[8] The Paradise Team, "Paradise: A Daiabase System for
GIS Applications," in Proc. ACM SIGMOD Int. Conf.
on Management of Data, pp. 485, 1995.

[9]1 N. Roussopoulos, S. Kelley, and F. Vincent, "Nearest
Neighbor Queries," in Proc. ACM SIGMOD Int. Conf.
on Management of Data, pp. 71-79, 1995.

[10] H. Samet, The Design and Analysis of Spatial Data
Structure, MA: Addison Wesley, 1989.

{11] T. Sellis, N. Roussopoulos, and C. Falouisos, "The
R*tree: A Dynamic Index for Multi -dimensional
Objects," in Proc of the 13th VLDB Conf-, pp. 507-518,
1987.

A-43

