MACE:
A MOBILE AGENT CARRIER ENVIRONMENT

Tzone I. Wang

Laboratory of Intelligent Network Applications
Department of Engineering Science
National Cheng Kung University
Taiwan
wtib35@mail.ncku.edu.tw

Abstract

This paper presents a Mobile Agent Carrier Environ-
ment -MACE. MACE is designed in allusion to a new
computation notion called the service-on-demand that
makes its design philosophy quite different. A mobile
agent carrier envoriment instead of a mobile agent de-
velopment system is constructed. A specially designed
protocol, the Service Framework, provides an easy and
flexible way of building service-oriented applications.
In the framework, a service is abstracted and realized
by two closely related components, an Agentlet and a
Serverlet; and the mobile agent carrier plays the role
in associating them together. While special in its ar-
chitecture, MACE retains the flexibility of a general
mobile agent system. It may as well support many
other domains of applications without any difficulty.

1 Introduction

Mobile agents are recognized as software modules that
move from host to host. They may interact with each
other and access distributed resources in a heteroge-
neous network [KK1]. Mobile agents consume fewer
network resources and, therefore, are particularly use-
ful for developing distributed applications. There have
been studies, implementations, and prototype appli-
cations of mobile agents [CTB1], [KGN+1], [KLO1].
Most of them use a model combing multi-agent compu-
tation and mobile code technology, and are for systems
with permanent network connection.

In contrast to the client/server model in distributed
computing paradigm, which ships data to remote ap-
plication codes, the computation model of mobile agent
paradigm migrates application codes to remote data.
The motivation is to reduce network traffic by reduc-
ing interactions and data transfers between distributed
components. The aim is to gain more efficient band-
width utilization and higher system availability. This
code mobility greatly benefits those distributed appli-

cations that compute with simple logic and huge re-
mote data.

Along with the advance of network technology, a new
concept of computation is also gradually taking its
shape. This new notion is referred to as service-on-
demand, and the core of it is a service base. A service
base resides in a service station and is a collection of
various services supplied by different service providers.
Users may choose their necessary and favorite services
in a base, and pay for the use of them afterwards.
The same scenario has been happening in our daily
life. Customers are using yellow page service, consul-
tant service etc. and there are so many such service
providers.

Mobile agents, combining multi-agents, mobile code
and the client/server technologies, present a new
paradigm for distributed computation. They are inher-
ently suitable for seamlessly realizing the service-on-
demand notion, and for easily building service-oriented
applications. At the first impression, it might seem nat-
ural to implement services as mobile agents, and agents
migrate to the site from which requests are made. Af-
ter a second thought, it turns out that implementing
a service as a mobile agent might not be meaningful
in such situations when a computation happens at the
same site on which the data it consumes resides. Unfor-
tunately, most of the service-on-demand applications
belong to this category. So, what is the point in using
mobile agents to build such kind of systems?

Besides reducing network traffics, perhaps a very good
answer to the question is being able to support the
so-called ”fire-and-forget” functionality. Users, after
launching the agents, are free from engaging in any
interactions with the code that actually performing
computations. They just collect the results later in
a convenient time and space. For example, before tak-
ing a teatime break, a user can launch agents to visit
flight and ticket information (service) sites at three air-
lines. And, after the break, without being attended,
the agents would have chosen a ticket of right time and
good value for the user.

This paper describes first the design and then the im-
plementation of a Mobile Agent Carrier Environment-
MACE to support service-on-demand applications.
The rest of this paper is organized as follows: in section
2, the design philosophy behind the MACE is advo-
cated. This philosophy gives the reasons for designing
a carrier system instead of a complete mobile agent
developing system. Section 3 describes the details of
the MACE architecture, including the functionality of
each component. In section 4, some security issues on a
mobile agent system and on the MACE are discussed.
Section 5 presents the use of MACE in different appli-
cations. In section 6, comparisons between MACE and
other mobile agent platforms are made. Finally, sec-
tion 7 makes a conclusion and describes the possible
future works.

2 The MACE’s Approach - The
Service Framework

Many prototype or commercialized mobile agent sys-
tems have been proposed and developed in recent years
[Wh1],[Grl], [KGN+1]. The development of JAVA fur-
ther accelerated the design and implementation of mo-
bile agent systems [LO1], [Agl],[Gel]. Most of these
systems offer an integrated environment for agent pro-
gramming, transportation, communication, execution,
and more. In spite of offering a total solution, they may
not be appropriate for service providers in a service-on-
demand application. From a service provider’s point of
view, a mechanism for delivering a service easily will be
much more appreciated. Service providers may be will-
ing to program their services using their own business
logic in a language that they are already familiar with.
Or, they would like to just quickly plug in some already
running services. They may not be pleased to do the
programming job with a whole new mobile agent devel-
oping system, let alone the tedious debugging works in
a complex application in which agents interact heavily.

On the other hand, giving an entire mobile agent de-
veloping system to a service user seems also inadequate
in a service-on-demand application. When providing
a service, the service provider cannot expect a user to
code an agent to interact correctly with the service pro-
gram at the service station. What the service provider
most likely does is to offer the user an input program
with an attractive user interface. When the user calls
for the service, this input program is run to collect from
the user only the necessary arguments for instantiating
the service program. The business logic of the service
is totally soft-coded in the input and the service pro-
grams by the service provider. In this way, it is not the
entire input program but only the list of arguments
that has to migrate to instantiate the service program.
This observation establishes the important principles
behind the design of the Service Framework in the

MACE system.

MACE adopts the weak migration notion, in which the
execution state of an agent is not transferred [PTV1].
In fact, it uses an even weaker migration mechanism.
The Service Framework is established for realizing
the service-on-demand concept, in which distributed
resource accesses and management are abstracted as
services. In the Service Framework, a service is ful-
filled by the execution of two closely related compo-
nents, an Agentlet, and a Serverlet. In general, both
of them are developed by a same service provider. The
Agentlet is distributed to some dedicated servers that
provide directory services to all the users. The Server-
let is stored at a service station where the service will
be actually carried out. Agentlets of frequently used
services are downloaded and cached locally in a user’s
local directory. In fact, service providers can run a
directory service of their own and users may be autho-
rized to download Agentlets to their interest. Agentlets
may be renewed regularly by its service provider and
MACE’s directory service mechanism guarantees that
the newest version of an Agentlet is always invoked.
Users invoke Agentlets via an Agent Creator. An
Agentlet, after invoked, may produce one or more ser-
vice items, each of which corresponds to an invocation
of a Serverlet at a service station. Thus, an agent car-
ries service items instead of codes, and a service item is
actually the tight connection between an Agentlet and
a Serverlet.

The beauty of a service item is that its content can
range from as simple as a list of arguments to as com-
plex as a segment of code written in a customer-defined
scripting language. In the latter case, the associated
Serverlet of such a service item becomes an interpreter.
To the extreme, the Agentlet becomes a compiler and
the Serverlet serves as a virtual Machine. In such a
case, MACE is in reality as well in name a Mobile
Agent Carrier Environment. Therefore, the Service
Framework is simple yet powerful, confined mainly in
the rules for transferring information among three par-
ties - Agentlet, Agent Creator, and Serverlet.

The design of the Service Framework frees users from
programming agents by themselves. Service provides
may use their own familiar language for developing
Agentlet and Serverlet as long as they are confined to
a user-defined information exchange protocol. Though
designed in allusion to service-on-demand applications,
MACE retains the flexibility of a general mobile agent
system. It may as well support many other domains of
applications without any difficulty.

3 MACE: the Mobile Agent

Carrier Environment

The whole MACE system is divided into four major
parts as shown in Figure 1. The Agent Launch Mod-

Directory Service
Module

Agnet Launch
Module

Fixed Network

{EL

Fixed Network

Agnet Launch Mobile

Module Accessing
(MobilePlatform)| | Module

Fixed Network

LR

Figure 1: The MACE System

ule, as the name suggests, creates and launches agents
into the network. Launched agents will roam through
the network and reach some Agent Server Module
where services are carried out. Agent Launch Mod-
ule is the implementation of Agent Creator in the
Service Framework. While creating agents, users can
consult the Directory Service Module to find out
preferable or favorite services and download the asso-
ciated Agentlets. The Mobile Accessing Module
is a bridge for mobile platforms to launch and collect
agents to and from the network.

3.1 Agent Launch Module

Agent Launch Module

| | Agent -

~
S
S
o
z
ks
X
&

Joredlunwwo)d

Figure 2: Functionality of Agent Launch Module

There are two types of Agent Launch Module, one is
for hosts with permanent connection to the network,
and the other is for mobile platforms. They have al-
most the same components except the physical links to
the permanent network. The main functionality of this
module can be shown as in Figure 2.

A user interacts with the Service Broker component
via a GUIL The Service Broker displays to the user the
services whose associated Agentlets are cached locally.
Alternatively, when requested, it may consult a remote
Directory Service Module for a wider range of services.
The associated Agentlet of a service that is found in a
remote Directory Service Module is downloaded if the
user chooses that service. Thus, through the Service

Broker a user can easily find out the desired services
and use them. To use a service, the associated Agentlet
is invoked first to collect from the user the necessary
information for carrying out that service. This informa-
tion may be the key attribute of a distributed database
table to be sorted, or it may be the business logic of a
transaction for some electronic commerce, and so on.
Several Agentlets may be activated in the course of cre-
ating an agent. In other words, many service items may
be packed into a single agent, and each of them with its
own service information. A service item normally starts
with a migration command followed by some services.
In addition to the service items, every agent also has
an ID field, which uniquely identifies the agent and the
user who creates the agent. The content of a simplified
agent carrier is shown as in Figure 3.

,/| 14011603905565109 01 01F 03F

7 ,’] 1. moveto=140.116.39.53:4735
. " | 11GetURL =http://140.116.39.55/a htm
Agent DFidd |7 | 15 search=Clncku.edutw/1141111M2
Serviceltemsfidld | 2. movet0=140.116.39.54:4735
Result field N 2.1 GetURL =http://140.114.76.5: 3456

v N | 3. Stop=140.116.39.55:4735

\ 1.1 *****result of GElURL*****
\ 1.2 *****result of Search*****

\\ 2.1 *****result of GEtURL*****

Figure 3: A Simplified Agent Carrier Content

After an agent is created, the Service Broker puts it into
the Out Queue. The Agent Launcher will launch all
the agents in the Out Queue into the network to start
their journeys. For mobile platforms, the Out Queue is
replaced with a Temporarily Waiting Lounge. Agents
created in a mobile platform will stay in the lounge
until a proper connection to the permanent network is
made. An agent, after roaming through the network
and having all its service items served, does not neces-
sarily return to it birthplace. Users can specify the final
location for an agent to stop. This capability allows a
mobile platform to release agents to work and later col-
lect them at another location, a great support for mo-
bile computing. In any case, agents are received and
put into a Caching Zone by the Agent Receiver. Users
can then inspect the results of all the services carried
by an agent via the Service Broker. Other housekeep-
ing works, such as terminating an agent and saving the
results, are also the responsibility of the Service Broker.

3.2 Agent Server Module

The Agent Server Module plays the major role in serv-
ing the service items in a received agent. It resides at a
service station that provides different kind of services.
Figure 4 shows the functionality and components of an
Agent Server Module.

Fixed Network

Agent Launcher
1 Agent I]l

Served Agent
Result Packer

Agent Receiver

Go]

Agent Reception Desk
Served Agent Serverlet —
Result Collector Invoker J_IJ-

f@u ‘ Serverlet

Serverlet Ececution Areé-l__i 3

/Agent Interpreter & Serverlet Invoker ||Sit€ Manager

Figure 4: Functionality of Agent Server Module

Agent Fetcher
1] nterpreter

An incoming agent is received by the Agent Receiver,
and is put into a waiting area called the Agent Recep-
tion Desk. Later, the Agent Fetcher/Interpreter fetches
the agent, picks out the service items targeted for this
service station, and extracts service information from
these items. The extracted information from a service
item is then handed to the Serverlet Invoker to initi-
ate and instantiate the corresponding Serverlet. Af-
ter instantiated, a Serverlet enters the Serverlet Exe-
cution Area and executes there. When the service is
finished, the execution result is passed to the Served
Agent Result Collector that finds out the agent owning
the result. It then gives both the agent and the result
to the Served Agent Result Packer. This component
packs the result together with some indexing informa-
tion into the agent and puts it into the Out Queue.
Finally, the Agent Launcher fires the agent into the
network to continue its unfinished journey.

For the time being, MACE is targeted at applications
in which agents execute to produce only simple short
results and agents carry these results while they are
travelling. For those applications that might transfer
voluminous results between distributed sites, a logistics
and delivery system is being investigated.

3.3 Directory Service Module

Figure 5 shows the functionality of a Directory Service
Module. This Module, as its name suggests, helps a
user to find specific services. It is an important part
of the implementation of Service Framework in MACE.
Agentlets of a variety of services are managed by the
Directory Server in the module and entries for these
services are kept in the Service Directory. The Service
Framework defines how a service provider can register
a certain kind of services with the Service Directory. In
the mean time, associated Agentlets of these recorded

Directory Service Module

Service
Directory
Directory Server

F|xed Network

Figure 5: Functionality of Directory Service Module

services must be uploaded to the service station. A ser-
vice provider can renew the Agentlet of a service when
it is necessary. The Directory Server automatically ma-
nipulates version information of Agentlets.

3.4 Mobile Accessing Module

To support mobile computing, MACE includes a com-
ponent named Mobile Accessing Module. In addition
to the operations of normal wireless network connec-
tions, this module supports the so-called disconnected
operations for mobile platforms [GKN+]. The func-
tionality of the module is shown as in Figure 6.

The Mobile Accessing Module resides in a docking host
that operates a physical device to accept wireless con-
nection from mobile platforms. The Accessing Point is
a bridge between wireless and permanent network. As
described in section 3.1, there is a Temporarily Waiting
Lounge in the Agent Launch Module of a mobile plat-
form. Agents created in the mobile platform wait there
until a proper wireless connection is established be-
tween the mobile platform and the docking host. They
then quickly jump off to the docking host, from which
they are launched into the permanent network to carry
out their missions. This allows the mobile platform to
disconnect from the network as soon as possible, and to
stay disconnected while the computation is going on.

On the other hand, mobile agents, after being properly
served, may return to the original or a pre-specified
docking host to find that the mobile platform is still
disconnected. They then enter another Temporarily
Waiting Lounge to wait for the reconnection. Once the
reconnection happens, mobile agents will quickly jump
back to the mobile platform and report their achieve-
ments.

4 Security Notes

Security is one of the most concerned issues in the mo-
bile agent paradigm [FGS1]. To be widely accepted,
especially for electronic commerce, a mobile agent sys-
tem must secure the safety in every perspective. Allow-
ing a foreign code segment to access directly the CPU

Mobile Accessing

Accessing

Fixed Network

Reception

Figure 6: Functionality of Mobile Accessing Module

and other system resources in a server is always wor-
rying. Virus attacks are the most obvious examples.
There are so many methods by which malicious or ille-
gitimate mobile agents can destruct an agent execution
environment. With no mechanism to authenticate in-
coming agents, servers are easily exposed to security
threats. On the other hand, mobile agents are also
vulnerable to malicious hosts. For example, a mali-
cious host can implant its own tasks into an agent or
modify the agent’s state. This may lead to the theft of
resources from the agent or from other sites.

The argumentation of this paper is that, from secu-
rity’s perspective, passive agents that are interpreted
are preferable to active agents that execute on their
own. This can be proven from the acceptance of JAVA
applets and Aglets [LO1], [Agl]. However, security
threats may still exist even though one can guarantee
the safety and the creditability of the agent execution
environment of a service station. Travelling agents are
particularly vulnerable to interception, modification,
and cloning. Most of the mobile agent systems and
agent construction languages include security manage-
ment architecture and security model [KLO1], [TFM1],
[TV1].

4.1 Security in MACE

Limited to the paragraphs, this paper focuses mainly
on the details of functionality and the Service Frame-
work of MACE. In fact, security issues in MACE have
also being thoroughly studied. Security threats, arising
from mobile agent’s migration, execution, and commu-
nication, were identified and classified. In general, they
fall into three categories, i.e. threats from agent execu-
tion environments or agent interpreters, from agents
themselves, and from transportation media. What
have also been investigated in MACE to solve these
problems are:

e How and what the identity should be carried in a
mobile agent for authentication performed at all
the service station,

e How the mobile agents should be encrypted and
decrypted before and after migration, and

Agent Execution Environment

Execution Space - Waiting @ Agent Transport

agenti)@ © @ ent k

@ 9 l— Lounge
@ Agent

* * T l Authentication
Yy .
Resource Agent ID —— || o (RzemurlceAcoemng
Accessing Authentication ||| Reception ontrol

Control @ Other Security
Desk (3) |ssues

@ Agent Integrity

Security Control
m\ El Module
\

[
Resour ces of the
host Communication Network

&

Figure 7: Extra Modules For Security Control

e How the public keys and private keys should be
transferred through secret channel between service
stations?

Several security management modules have been added
to the Agent Server Module to answer these questions.
These modules are shown in figure 7. They perform
several security controls, three important ones of them
are:

e Reception Desk Integrity Test: This in-
tegrity test is an additional task of the Reception
Desk. It detects transmission errors that occurs
in agent’s transportation. A complete set of rules
were made for this module to detect whether the
identity, the service items, and the collected data
of an agent were modified or even completely re-
placed by a cloned agent at a previous service sta-
tion.

e Agent Identity and Content Security Con-
trol: This is done by the Security Control
Module. The first is to authenticate the identity
of a mobile agent and to assign different service
rights to the agent according to the privilege of the
agent’s owner, i.e. its creator or legal user. The
second is to encrypt and decrypt an agent when
it comes and goes, and to exchange proper keys
with other service stations involved in the agent’s
mission.

e Resource Access Control: This control gives
an agent the proper right to access to resources of
the execution host.

5 Application Notes

A prototype of MACE has been operational. It
has been used to build a simple information retriev-
ing system, in which mobile agents autonomously
roam through a network (ultimately the Internet) to

find information resources and collect desired infor-
mation. Another going on project is to build a dis-
tributed database system, using MACE as its infras-
tructure. Agents carrying SQL queries migrate among
distributed database sites to consult tables and to per-
form on these tables operations such as projection, pro-
duction, and more. Database operations might result
in large quantity of intermediate data that is not suit-
able for agents to carry while traveling. This project
thus initiates the design of a logistics and delivery sys-
tem.

In Recent years, mobile information systems have been
attracting more and more researchers as they discover
the benefits of being able to connect to distributed in-
formation resources without any spatial and temporal
constrain [Grl]. However, mobile information retriev-
ers such as PDAs or laptops also raise new issues in the
context, of communication. Drawbacks like low band-
width and high latency of a present wireless network
make it preferable to connect a mobile platform to
a wireless network for a period as short as possible.
Another well-marked problem is that a mobile plat-
form may get different network address assignments
in different connections to a wireless network. This
makes a mobile platform more appropriate as an in-
formation sender than as a receiver if it keeps moving.
These mobility-related difficulties are yet to be elimi-
nated and autonomous mobile agent seems to be one
of the promising technologies to respond to these ques-
tions. A planed project is to use MACE to support
mobile information retrieval. MACE in itself is effec-
tive enough to be the infrastructure of a distributed
information system. To support effective on-the-go in-
formation access, a component that interacts with the
local information processing system such as the DBMS
will be added; another addition will be a staging post
that serves as a temporary stopping place for mobile
agents with retrieved data. The former can be simply
built as a Serverlet, and the latter is adapted from a
docking host. The resulting framework can easily sup-
port diverse plugged-in value-added services too.

Finally, unlike other mobile agent systems, there is not
yet a mechanism designed for the communication be-
tween agents in MACE. The primary reason for not de-
signing such a mechanism is as simple as to cut down
the messages to prevent them from being intercepted.
Nevertheless, it is observed that communication be-
tween agents is not quite necessary in most MACE
prototype applications, as it might seem to be.

6 Other Related Works

Several prototype or commercialized systems have been
proposed and developed in recent years. A well-known
mobile agent system is Telescript developed at Gen-
eral Magic [Wh1]. Telescript uses a proprietary script
language to create agents. It also supports mobile plat-

forms and has been successfully used on Personal Dig-
ital Assistants (PDA). However, neither the detail of
how mobile agents jumping between mobile platforms
nor the handling techniques of disconnected operation
is released. Security issues have been studied, though
[TV1]. Another script-based mobile agent system is
Agent TCL [Grl], [KGN+1], developed at Dartmouth
College. A set of special commands was added to an
existing high-level scripting language Tcl, developed in
1987, to create Agent Tcl. An agent uses these com-
mands to migrate from host to host and to commu-
nicate with other agents. Security issues have been
studied and implemented, too.

Like MACE, these two systems use a proprietary script
language to create passive agents. But, unlike MACE,
users of these systems have to create these agents by
themselves.

The development of JAVA accelerated the design and
implementation of several mobile agent systems. Most
of these systems depend heavily on JAVA Virtual Ma-
chine, JAVA class loading model, and other features,
such as serialization, remote method invocation (RMI),
multi-threading, and reflection. The greatest advan-
tage of using JAVA to develop a mobile agent sys-
tem is its ability to operate in heterogeneous plat-
forms. Among these JAVA-based systems, Aglets
[LO1], [Agl], developed at IBM’s Tokyo Research Lab-
oratory, has been very popular for some time. It is
praised for its GUI that makes the world of agents ac-
cessible to the JAVA novice. A distinguished feature is
to provide the security preference that allows the owner
to specify the degree of trust of aglets. Another JAVA-
based mobile agent system is Odyssey [Gel], also by
General Magic. Though implemented purely in JAVA,
it still incorporates some of the concepts previously
developed for Telescript. One unique feature of the
Odyssey system is its audit trail mechanism to help
programmers debugging their agents.

Unlike MACE, theses systems offer an integrated envi-
ronment for agent programming, transportation, com-
munication, execution, and more. In spite of offering a
total solution, they may not be appropriate for an ap-
plication such as the service-on-demand. MACE will
compensate this by using its unique Service Frame-
work.

7 Conclusion and Future Work

This paper has presented the design and the implemen-
tation of a Mobile Agent Carrier Environment-MACE
for distributed service-on-demand applications. A sim-
ple yet powerful Service Framework is described, which
makes service providers free from being confined to a
specific developing environment. Owing to it flexibil-
ity, one can also use MACE to develop an entire dis-
tributed system. For the time being, an agent tracking

mechanism is being planned. It will be used to trace
the existence and the location of all previously created
mobile agents in order to direct the dangling agents to
the right places. A logistics and delivery system, as
mentioned before, is also critical to the practicality of
MACE. It will make MACE suitable for more applica-
tion fields. In the long run, a coordinator, which mas-
terminds the cooperation between agents, will be in-
vestigated. Hopefully, it will include a GUI for MACE
users to precisely specify the relationship between ser-
vice items and between agents. Other issues such as re-
source discovery tools and a better navigation system
are also important. They all are also the important
subjects of future researches.

References

[Agl] Aglets: Mobile Java Agents, IBM Tokyo
Research Lab, URL = http://www.ibm.
co.jp/trl/projects/aglets

[CTB1] S. Covaci,; Zhang Tianning; 1. Busse,
”Java-based intelligent mobile agents for
open system management” , In Proceedings
of Ninth IEEE International Conference on
Tools with Artificial Intelligence, Page(s):
492 -501, 1997.

[FGSI) W.M. Farmer, J.D. Guttman and V.
Swarup, Security for Mobile Agents:
Issues and Requirements, ”. Proceed-
ings 19th National System Security Conf.
(NISSC 96), 1996, pp.591-597.1997.
[GKN+] Robert Gray, David Kotz, Saurab Nog,
Daniela Rus and Geoge Cybenko. ”Mo-
bile Agents for mobile computing.”, Tech-
nical Report PCS-TR96-285, Department
of Computer Science, Dartmouth College,
May 1996.

[Grl] R.S. Gray. ”Agent Tcl: A Flexible and
Secure Mobile-Agent System,” in Proc.
Fourth Annual Tcl/Tk Workshop (TCL
96), 1996.

[Gel] General Magic, ”Agent Technology: Gen-
eral

Magic’s Odyssey”, http://www.genmagic.
com/html/agent_overview.html, 1997.
[KLO1] G. Karjoth; D. B. Lange; M. Oshima, ”A
security model for Aglets”, IEEE Internet
Computing, Volume: 1 4 , Page(s): 68 -77,
July-Aug. 1997.

[KK1] Keith D. Kotay and David Kotz, ” Trans-
portable Agents ”. In Proceedings of the

[KGN-+1]

[LO1]

[Or1]

[PTV1]

[TV1]

[TFMI]

[Whi]

CIKM Workshop on Intelligent Informa-
tion Agents, Third International Confer-
ence on Information and Knowledge Man-
agement, Gaithersburg, Maryland, Decem-
ber 1994

D. Kotz; R. Gray; S. Nog; D. Rus; S.
Chawla; G. Cybenko, ”AGENT TCL: tar-
geting the needs of mobile computers”,
IEEE Internet Computing Volume: 1 4 |
Page(s): 58 -67, 1997.

D.B. Lange and M. Oshima, Java Agent
API: Programming and Deploying Aglets
with Java, published by Addison-Wesley,
Fall 1997

J.J. Ordille, ”When Agents Roam, Who
Can You Trust?” Proc. Fitst Conf. on
Emerging Technologies and Applications in
Communications(etaCOM), May 1996.

A. Puliafito; O. Tomarchio; L. Vita,
"MAP: Design and implementation of a
mobile agents’ platform”, In Journal Of
Systems Architecture, Vol 46, Issue: 2, pp.
145-162, 2000

J. Tardo and L. Valente. ” Mobile Agent Se-
curity and Telescript,” Proc. IEEE Comp-
Con 96, IEEE Computer Society Press, Los
Alamitos, Calif., 1996

C. Thirunavukkarasu, T. Finin, and J.
Mayfield. ”Secret agent: A Security Archi-
tecture for the KQML Agent Communica-
tion Language,” Proc. Intelligent Informa-
tion Agents Workshop held in conjunction
with Fourth Int’l Conf. Information and
Knowledge Management CIKM 95, Balti-
more, Dec. 1995.

J. E. White, ”Telescript technology: The
foundation for the electronic marketplace.”
General Magic White Paper, 1994.

