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Abstract

The F-COMA system is designed to reduce
memory access latencies of the NUMA systems
while program working sets exceed the size of
its cache. However, there are still many memory
access overheads in it. We proposed several
effective mechanisms to reduce these overheads.
Two migratory sharing optimization mechanisms
are presented to decrease the superfluous

memory requests incurred by migratory accesses.

We also use invalidation cache to omit the
unnecessary AM accesses. On the other hand,
we use cluster-base F-COMA to increase AM
utilization and reduce memory access misses.
Finally, we combine these methods to improve
the performance of F-COMA. Based on our
evaluation results, our combined methods
speedup the total performance about 39% in
average under SPLASH benchmarks.

1. Introduction

Scalable shared-memory multiprocessors

are emerging as attractive platforms for
application with high performance demands [1].
Recently, the main  architectures  in
shared-memory multiprocessor are

cache-coherence non-uniform memory access
(CC-NUMA) [2] and cache only memory
architecture (COMA) [3]. However, if the
quantity of data that a processor is actively
accessing exceeds the size of its cache in
CC-NUMA, data loaded into the cache will be
displaced and sent back to main memory before
it is accessed again. In this case, the cache
become ineffective and system performance will
be decreased. The disadvantage of COMA is
large remote memory access penalty due to the
hierarchical directory structure and network. In
order to improve both disadvantage of
CC-NUMA and COMA, the F-COMA
architecture was proposed [4].

Nevertheless, there are still many memory
access overheads in the F-COMA architecture.
At first, migratory sharing in the F-COMA
architecture will induce unnecessary remote
memory access request and thus decrease the
performance of F-COMA architecture [5].
Second, there are unnecessary AM (Attraction
Memory) accesses in the F-COMA architecture
[6]. Then, AM utilization will influence overall
system performance in some degree. In this
paper, we will explore some design issues and
propose effective mechanisms to reduce the
above overhead. At first, we design migratory
sharing optimization mechanisms named MOR
(Migratory sharing Optimization and Return to
exclusive) and EMOR (Enhance Migratory
sharing Optimization and Return to exclusive) to
reduce the accesses request. Then, We use the
IVC (Invalidation Cache) in the F-COMA to
bypass unnecessary AM accesses. Furthermore,
we also propose a new cluster-based F-COMA
architecture to increase AM utilization and
decrease remote memory accesses. Finally, we
combine all of optimization schemes in the
F-COMA design to improve the total system
performance dramatically.

The remainder of this paper is organized as
follows. In Section 2, some background will be
surveyed briefly, including CC-NUMA and
F-COMA architecture. We propose some
methods to reduce the memory access overhead
in Section 3. System architecture parameters and
benchmarks will be discussed in Section 4.
Related performance evaluations will be shown
and analyzed in detail in Section 5 based on our
SEECOM. Finally, concluding remarks will be
given in Section 6.

2.Fundamental Background

In this section, we survey the main features
of the CC-NUMA, COMA and F-COMA



briefly.
2.1. CC-NUMA Architecture

CC-NUMA  architecture  provides a
coherence single global address space to all
processing nodes in the system. Each processing
node in CC-NUMA architecture consists of one
or more high performance processors, associated
caches, a directory, and a portion of the global
shared memory, as shown in Figure 1.
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Figure 1. CC-NUMA Architecture.

Most of CC-NUMA architectures use a
non-hierarchical directory scheme to maintain
coherence protocol. In the scheme, the directory
is distributed to each processing node correlated
with the local memory, and each directory entry
corresponds to a memory block is used to record
the state of it. The detailed cache coherence
operations are described in [7]. When the size of
second level cache is smaller than that of the
program data working set in CC-NUMA
architecture, it will induce many capacity misses
[8]. This capacity misses will increase the
memory access latency, thus lengthen the
execution time seriously. Another shortcoming
of the CC-NUMA architecture is that data blocks
at the main memory level cannot migrate or
replicate without the aid of the operating system
[2]. The data allocation in CC-NUMA will affect
the system performance.

2.2. COMA Architecture [3]

COMA architecture is motivated by the
idea that data blocks can dynamically migrate
and replicate at the main memory level directly
just as it does at the cache level in CC-NUMA
architecture. To support data migrating and
replicating, the organization of the local memory
in each processing node, called attraction
memory (AM), is the same as the cache in the
CC-NUMA architecture. A portion of memory
blocks in AM is left to store the migrated and
replicated memory blocks. If there is sufficient
locality of memory accesses in AM, we can
reduce the number of remote memory accesses.
Figure 2 shows a simple block diagram of the
COMA architecture.

In COMA architecture, the cache coherence

scheme is based on a hierarchical directory and a
hierarchical interconnection network. The
primary disadvantage of COMA architecture is
the increased remote access penalty. It is caused
by the hierarchical directory structure and the
complex search path for the memory block
because each memory block may be migrated to
other processing node.

Figure 2. COMA Architecture.

2.3. F-COMA Architecture

F-COMA architecture provides the both
benefits of CC-NUMA and COMA, as shown in
Figure 3. This attraction memory permits the
caching of frequently accessed memory blocks,
increasing the local hit rate for memory

references. The detail cache coherence
operations described in [4].
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Figure 3. F-COMA Architecture.

There are still many overheads in F-COMA
architecture. For example, migratory sharing
pattern in CC-NUMA architecture will increase
the memory access overhead [5]. The remote

memory access latencies in F-COMA
architecture are longer than that of the
CC-NUMA architecture. Thus, migratory

sharing patterns in F-COMA architecture will
induce more memory access cost than in
CC-NUMA architecture. When a second level
cache miss occurs in F-COMA architecture, we
must search the AM to make sure whether the
memory block is in the F-COMA architecture or
not. Therefore, if the memory block is not in AM,
we would like to use some mechanisms to skip
the unnecessary AM access and advance the
remote memory access. Finally, the AM



utilization will affect the number of remote
memory accesses in F-COMA. The remote
memory accesses in F-COMA will reduce the
total system performance. Hence, we want to
increase the AM utilization in F-COMA.

3. Techniques to Reduce Memory Access
Penalty

In this section, we will propose some
methods to reduce the overhead of memory
accesses in F-COMA architecture.

3.1. Reducing Migratory Sharing Overhead

Gupta and Weber have classified data
structure based on the invalidation patterns they
exhibit [9]. According to their definition, data
structures manipulated by many processors but
only a single processor at any time are called the
migratory sharing object. In parallel programs,
data structures which are modified within a
critical section and high-level language
statements such as I=I+1 exhibit migratory
sharing patterns. A way of formally defining of
migratory is as a sequence of read-modify-write
operations by alternating processors on a data
object. P. Stenstrom et al. [5] have formally
defined the reference pattern of migratory
memory blocks using the following regular
expression:

(RYR) (WHRIW) (RYR) (WH(RIW)"... (1)

In the expression above R;and W, represent
a read access and a write access, respectively, by
processor i, ‘*’ denotes zero or more
occurrences of the preceding string, and ‘|’
denotes the logical OR operation. In the
sequence, there is at least one R; followed by at
least one W, by the same processor, i, before the
next processor, j, starts accessing the block in the
same way. If we can detect the migratory sharing
block, we can merge the read request and write
request to a read-exclusive request that can
reduce network traffic by all write request are
removed. Most mechanisms always use the same
idea to detect the migratory sharing patterns. For
example, P. Stenstrom et al. have proposed a
mechanism to reduce the overhead of migratory
sharing patterns for centralized-directory cache
coherence protocols in CC-NUMA architecture
[5] and Pean et al. have proposed a mechanism
to reduce the overhead of migratory sharing
patterns for linked-based cache coherence
protocols in CC-NUMA architecture [10].
According to the idea of detecting migratory
sharing patterns described in the above

subsection, we can build the migratory sharing
optimization mechanism in the directory of the
home node in the F-COMA architecture. If the
home node detects the migratory access
sequence, then it marks this memory block to be
migratory sharing block. For a migratory sharing
block, the home node converts a read request to
a read-exclusive ones, as shown in Figure 4.
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Figure 4. Read-Exclusive Request.

3.1.1. Migratory Sharing Optimization
Method

In order to discover the migratory sharing
memory block, we add a new migratory state in
the directory to mark the migratory sharing
memory block. The memory block is classified
as migratory sharing when the following two
requirements are fulfilled [11]:

1. i # LW; the processor that issues the write
request is not the same as the processor
that most recently issued a write request to the
memory block.

2. The number of memory block copies is
exactly two.

Furthermore, we must change the original
directory state transition to migratory sharing
optimization directory state transition to detect
the migratory sharing block, as shown in Figure
5. If home node finds the request satisfied the
above conditions, it will mark this memory
block as a migratory sharing block. When a
memory block is marked as the migratory
sharing block, a write request issued by other
processors without issuing a read request in
advance will violate the migratory sharing
pattern sequence that is indicated in (1). In this
situation, its state will return to the exclusive.

Llnvalid stste
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Figure 5. Migratory Sharing Optimization
Directory State Transition Diagram.



3.1.2. Enhanced Migratory Sharing
Optimization Method

In applications with false sharing patterns
[12], the read misses will occur in our migratory
sharing optimization method if two processors
are involved. If we do not use migratory sharing
detection method in the F-COMA architecture,
these memory accesses will be read hits. In order
to avoid increasing the number of read misses,
we need to modify our method described above
to an enhanced migratory sharing optimization
method. In the enhanced method, we use a LW
pointer and a new last-last-writer (LLW) pointer
to record the last two processors that have
written this memory block. When the LW
pointer is updated with a new value, the old
value of LW is replaced to the LLW pointer.
Now, the memory block is marked to migratory
sharing state when the following two new
requirements are fulfilled:

1. i # LW and i # LLW; the processor to
issue the write request must not be any of the

last two processors wrote the memory block.

2. The number of memory block copies is
exactly two.

These conditions not only let the memory
block satisfy the migratory sharing pattern
sequence, but also avoid marking false sharing
patterns to be migratory sharing patterns. Thus,
it can reduce the number of read misses in
migratory sharing optimization method for
application with false sharing patterns. Moreover,
we must change the original directory state
transition to enhance migratory sharing
optimization directory state transition to avoid
marking the false sharing patterns as migratory
ones. The enhanced migratory sharing
optimization directory state transition diagram is

shown in Figure 6.
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Figure 6. Enhanced Migratory Sharing
Optimization Directory State Transaction
Diagram.

3.2. Eliminate Unnecessary Attraction
Memory Accesses

In CC-NUMA architecture, a second level
cache miss triggers a message to the
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corresponding directory, which may be in a
remote node or in the local node. The directory
contains the message where the cache block is
located. In F-COMA architecture, unlike in
CC-NUMA architecture, a second level cache
miss is always followed by a time consuming
search in the local AM [4].

In F-COMA architecture, the AM access
followed by a SLC (Second Level Cache) miss
is possible unnecessary and it will delay remote
memory access. Hence, we want to skip the
unnecessary AM accesses. To avoid unnecessary
accesses to AM, we add the Invalidation Cache
(IVC) in F-COMA architecture [6], as shown in
Figure 7. The IVC is a small direct-mapped
cache that contains some addresses of the
memory blocks that are not in the local AM. It
will be accessed at the same time as the access to
the second level cache. When the second level
cache miss occurs, the IVC determines whether
it contains the address of the memory block or
not. If the IVC contains the address, the AM
access will be skipped since the memory block is
not in the local AM.

FLC: First Level Cache

1vC
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IVC: InValidation Cache
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Memory

Figure 7. F-COMA architecture with IVC.
3.3. Decrease Remote Memory Accesses

In order to improve the total performance of
F-COMA, we design our cluster-based F-COMA
architecture as shown in Figure 8.
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Figure 8. Cluster-based F-COMA
Architecture.

The performance of the F-COMA
architecture greatly depends on the efficiency of
the AM. Clustering makes data be shared within



the cluster more efficient than in a non-clustered
architecture. Data that is shared within the
cluster will only need one copy and therefore use
the AM efficiently. Hence, Cluster-based
F-COMA can increase AM utilization and
decrease remote memory accesses.

4. Simulation Environment and Benchmarks

Our simulation environment is a
program-driven simulator named SEECOM (A
Simulation and Evaluation Environment for
cluster-based  flat-Cache = Only = memory
architecture) [13] and constructed based on the
MINT [14] package. Our simulation system
architecture is shown in Figure 8. The
organization of the processor environment
contains a CPU and a two-level cache, as shown
in Figure 9.
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Figure 9. Processor Environment.

Our system architecture assumptions are
summarized in Tablel. The global
interconnection network is a k-ary, n-cube
network. We use several benchmark programs
from the SPLASH and SPLASH?2 suites [15,16]
in our experimental evaluation. We list them in
Table 2 along with the data sets being used.

Table 1. Simulation System Architecture
Parameters.

Architecture Parameters

Parameter Value

Number of Processing Nodes 64

Size of FLC 32Kbytes
Size of SLC 256Kbytes
Block size of FLC and SLC 64bytes

Number of entries in FLWB 8

Number of entries in SLWB 16

Table 2. Benchmark Programs.

Benchmark  Description Data sets

FFT Blocked 1-D FFT 64k complex points

MP3D Particle-based wind-tunnel simulator 5K particles, 10 time steps
RADIX Integer Radix sort algorithm 1M integers, Radix 1024
WATER ‘Water molecule dynamics simulation 343 molecules
CHOLESKY Cholesky factorization beestk14

OCEAN Simulate eddy currents in an ocean basin 128x128 grid, tolerance 107

5. Performance Evaluations and Results
Analysis

As described in Section 3, we have
designed the following four migratory sharing
detection methods.

(1) MOR: migratory sharing optimization
method with returning to exclusive state while
the pattern of memory access violates
migratory sharing sequence.

(2) MONR: migratory sharing optimization
method without returning to exclusive state
while the pattern of memory access violates
migratory sharing sequence.

(3 EMOR: enhanced migratory sharing
optimization method with returning to
exclusive state while the pattern of memory
access violates migratory sharing sequence.

(4) EMONR: enhanced migratory sharing
optimization method without returning to
exclusive state while the pattern of memory
access violates migratory sharing sequence.

In Figure 10, we observe that the F-COMA
with EMOR performs consistently better than
the F-COMA without EMOR. The reason is that
EMOR effectively detects migratory sharing
memory blocks and reduces unnecessary write
requests. However, the read miss stall time
increase in MP3D, because there are some false
sharing patterns such as false sharing data is
shared over two processors in MP3D that EMOR
cannot detect. The read accesses in the false
sharing patterns will incur access misses that
will increase the read miss stall time. We
observe that using EMOR can also reduce the
acquire stall time in F-COMA architecture
because EMOR mechanism can reduce
unnecessary memory access requests. Thus,
acquire accesses can be performed early. In
summary, the EMOR mechanism can
substantially improve the performance of the
system about 10% in average. We observe that
the EMOR perform well than that of MOR for
MP3D because the EMOR can eliminate the
overhead of false sharing patterns involve with
exactly two processors that are marked to be
migratory sharing patterns. Hence, the EMOR
mechanism can reduce the number of read
misses more than that of the MDR mechanism.
We also observe that the EMOR is performed
better than that of the EMONR in all the
benchmark programs. When the memory access
patterns of the memory block violate the
migratory sharing sequence, it will not be a



migratory sharing block in the future accesses. If
we do not change the state of the memory block,
the succeed read accesses will produce
unnecessary invalidation to the same memory
block in other AMs. It will increase the number
of read misses. Hence, our migratory sharing
optimization method needs the directory state of
the memory block to be returned to exclusive
state while memory access patterns violate the
migratory sharing sequence.

BBusy Time DRead Miss Stall Time B Write Stall Time B Acquire Stall Time

Figure 10. The Performance of Migratory
Sharing optimization.
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In Figure 11, we observe that using IVC
can effectively reduce the normalized execution
time because it can skip the unnecessary AM
accesses. We find that the performance of
F-COMA with 4k entries IVC is closed to that of
F-COMA with 16k entries IVC. Thus, 4k entries
IVC is enough to reduce the unnecessary AM
accesses. The performance of IVC depends on
the number of invalidations and replacements
that benchmark program contains. In summary,
the F-COMA with IVC can improve the
performance of the system about 5% in average.

F-COMA with IVC

BBusy Time  DMRead Miss Stall Time ~ EWrite Stall Time Bl Acquire Stall Time

Normalized Execution Time
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Figure 11. The Performance of F-COMA
with IVC.

Cluster-Based F-COMA
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Figure 12. The Performance of
Cluster-based F-COMA

Figure 12 shows the normalized execution
time of the cluster-based F-COMA for different
number of processors in each cluster node.
Basically, clustering several processors in a node
can increase the utilization of AMs. Thus, if
there are more processors in the same cluster
node, the performance will improve more.
However, when the number of processors in the
cluster nodes is more than 8 processors, the
performance will decrease for FFT, MP3D,
RADIX, CHOLESKY, and OCEAN benchmarks
because it causes more resource contentions. In
words, the processors in the same cluster node
must wait for the resource until other processors
in the cluster release it. The waiting time of
processors will increase the memory access stall
time. Another reason reduced the performance is
the destructive interference [17,18]. When one
of the processors in the cluster node replaces the
memory block in the AM that another processor
in the same cluster node needs to access, the
number of memory access misses will increase.
Furthermore, memory access misses will
decrease the advantage of clustering. In
summary, 4 or 8 processors in a cluster node is
suitable for the cluster-based F-COMA
architecture.

So far, we know that the migratory sharing
optimization mechanism, F-COMA with IVC,
and cluster-based F-COMA can improve the
performance of F-COMA architecture in some
degree. Now, we will evaluate the performance
improvement by combining these effective
mechanisms. In Figure 13, we find that the
combined mechanism improves the system
performance about 39% in average than that of
F-COMA without using those optimizations.
Hence, F-COMA with the combined mechanism
can indeed speedup the total system performance
of the F-COMA architecture in some degree.



F-COMA vs. F-COMA with combined mechanism
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Figure 13. The Performance of F-COMA with
COMB.

6. Concluding Remarks

In this paper, we have proposed several
effective mechanisms to reduce memory access
latencies, including migratory sharing patterns

optimization method, invalidation cache,
cluster-based F-COMA  architecture, and
combined methods. Moreover, we have

constructed a simulation environment called
SEECOM, a software platform used to evaluate
our F-COMA performance.

The F-COMA with EEMOR can increase
the performance about 10% in average, since our
migratory sharing optimization methods can
effectively reduce write stall time and acquire
stall time. The IVC in the F-COMA can improve
the system performance about 5% due to the
elimination of unnecessary AM accesses.

On the other hand, the cluster-based
F-COMA architecture is effective to increase
utilization of AMs and speedup the system
performance. It 1is appropriate for the
cluster-based F-COMA architecture with 8
processors in a cluster node. The F-COMA with
combined mechanism can speedup the total
system performance of F-COMA architecture
about 39% in average and it spends reasonable
cost. Thus, it is an efficient and cost effective
integrated method to improve the performance
of the F-COMA architecture.

When a processor issues the read request to
the remote AM, the processor must stall until the
memory block is available. In the future, we can
use multithread technique to promote the
predicament. When a processor is stalled by the
read request, it can switch to another thread and
still keep running. It can effectively hide the read
stall latencies. On the other hand, we can use

extra memory area called the unallocated
memory to store remote migrated and replicated
memory blocks in CC-NUMA architecture. The
unallocated memory has the ability as AM in the
F-COMA architecture. This architecture has the
advantage of reducing the design complexity of
F-COMA architecture.
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