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Abstract

The F-COMA architecture provides the
benefits of data replication and migration. Thus,
the requested data block by every processor can
be accessed directly in the local node. However,
frequently coherence misses will drop down its
performance. Because remote accesses caused
by these misses induce critical latencies in it. It
is important to reduce unnecessary coherence
misses especially the false sharing misses in the
F-COMA architecture. On the other hand,
because there is only cache system in the
F-COMA, we have to reserve the last valid
memory block in the cache system while it is
replaced. In this paper, we use an effective
sub-block mechanism to reduce the impact of
false sharing accesses, and three replacement
techniques to decrease replacement stall time.
According to our evaluation results, these two
methods speedup the total system performance
about 5% in average under SPLASH
benchmarks. The sub-block mechanism could
decrease the false sharing miss ratio and miss
stall time. The replacement techniques could
decrease the replacement stall time.

Keywords: F-COMA, False sharing,
Sub-block mechanism, Replacement stall.

1. Introduction

F-COMA [1] is a multiprocessor
architecture originated from COMA [2]. It uses
AM (Attraction Memory) that is a cache
structure instead of the shared memory to
provide data replication and migration. Hence, it
generally has higher local hit rate than the
CC-NUMA architecture [1,2]. It also flattens the
hierarchical tree structure in COMA to an
interconnection network structure. Thus, it can
effectively reduce the communication latency of
traversing the hierarchical tree. However there
are still some drawbacks in the F-COMA
architecture. Such as false sharing misses and
replacement overheads [3,4]. The penalty of

false sharing misses in the F-COMA architecture
is larger than that of the CC-NUMA architecture,
because remote accesses should query the
directory about the location of the master block.
Stemming from there is no memory in the
F-COMA architecture, and it is necessary for
every replaced block to find another processor to
it while it is the last valid one. Hence,
replacement technique is also an important issue
in the F-COMA architecture.

In this paper, we propose a sub-block
mechanism [5,6] to reduce the penalty of false
sharing misses and three replacement techniques
to reduce the overhead of replacement. In order
to evaluate our mechanisms, we constructed a
simulation environment called SEECOM
(Simulation and Evaluation Environment for
Cache Only Memory Architecture). By
advancing sub-block degrees the number of false
sharing misses can be reduced. However,
sub-block degree of 2 is sufficient to reduce the
penalty of false sharing misses. It can improve
the system performance about 1% in average due
to the limit amount of false sharing misses
existed in SPLASH benchmarks. On the other
hand, F-COMA with the swap replacement
technique improves the system performance
about 2% in average. It can be enhanced about
4.5% in average for the buffer replacement
technique. With the sub-block mechanism and
the buffer replacement technique, F-COMA can
be promoted about 5% in average.

In Section 2, we will illustrate when the
false sharing misses and replacement will
happen in the F-COMA architecture. Section 3
introduces how to implement the sub-block
mechanism and three replacement techniques.
Our SEECOM and simulation results in it will
be described in Section 4. Finally, we will give
the concluding remarks in Section 5.

2. Related Work

In multiprocessor systems, there are
probably more than two objects co-locating in



the same block, and it will produce undesirable
side effects. For example, we assume a data
block contains two words: ‘A’ and ‘B’, and
processor P1 and P2 access the same data block.
If P1 and P2 write the word ‘A’ and the word ‘B’
exclusively, a series of access misses will occur.

Such misses are called false sharing misses [3,4].

Actually, if we use one word as a data block,
these misses will disappear. However, reducing
of block sizes will decrease the data locality and
increase the number of accesses. Therefore, we
use the sub-block mechanism to reduce the
penalty of false sharing misses and reserve the
data locality in the same time. False sharing
misses have more influences in the F-COMA
than in CC-NUMA due to the following reasons
1). Cache coherence protocol is built in AM in
the F-COMA, but it is built in SLC in
CC-NUMA. Thus, it is necessary to access AM
before remote accesses in the F-COMA. 2). It
always checks the directory to see where its
target processor is in the F-COMA. Hence, its
remote access operation is always a 3-hops one,
but it maybe 2-hop or 3-hop one in CC-NUMA.
3). There are more false sharing misses in the
F-COMA as shown in Fig. 1. It results from
there are more shared blocks in the F-COMA
since it provides data replication. Thus, reducing
the penalty of false sharing in F-COMA is more
important than that in CC-NUMA.
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Because there is no memory in F-COMA, it
must reserve the last valid copy of the block in
AM. In F-COMA, there is an exclusive
operation called relocation. Relocation is meant
when the replaced block is the last valid block in
F-COMA, and it must find another processor to
reserve  itself. Unlike CC-NUMA, its
replacement has to write back the data block to
the shared memory. Furthermore, when
relocation occurs, F-COMA has to move
replaced block from an AM to another AM in
other processor. Hence, the overhead of

replacements in F-COMA is higher than that in
CC-NUMA. In the next section, we will explain
how we implement our sub-block mechanism
and replacement techniques.

3.  Sub-block Mechanism and Replacement
Techniques

3.1. Sub-block Mechanism

The organization of our sub-block
mechanism is shown in Fig. 2. The first row
shows the organization of each data block. Every
data block has a data block state field, a data
block tag field and a data block content. Each
data block content contains several sub-blocks.
We assume a data block is divided into four
sub-blocks here. The second row shows four
sub-blocks, and the third row shows each field in
a sub-block.
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Figure 2. The Organization of Our Sub-block

Mechanism

Because the sub-block mechanism changes
the cache organization, we need to modify the
cache coherence protocol to operate on it. At
first, we define the data block states and
sub-block states. Then we present the state
diagram of our sub-block mechanism. Finally,
we give a scenario to explain how the protocol
works. We use italic characters to present state
words.

We define four states of the sub-block as
below, and the first character is lowercase: (1)
exclusive: the only valid sub-block in system; (2)
master: the block has the ownership, but there
are other processors share the data block; (3)
shared: the block does not have ownership, and
it just shares the data block; (4) invalid: the
block is not a valid block; We also define four
states of the data block as below; the first
character is uppercase: (1) Exclusive: the data
block has at least one sub-block with exclusive
state; (2) Master: the data block has at least one
sub-block with master state and no sub-block
with exclusive state; (3) Shared: the data block
only contains sub-blocks with shared or invalid
states; (4) Invalid: the data block only contains
sub-blocks with invalid state.
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Figure 3. The stat transition diagram of our
sub-block mechanism
The state transition diagram of our

sub-block mechanism is shown in Fig. 3. We
introduce the purpose of defining these
sub-block states in the following. (1) Because
the last valid block could not be replaced
without storing it, we need exclusive state to
express that the sub-block is the last valid copy
in F-COMA. When it is replaced, it has to do
relocation. Moreover, when an exclusive state
sub-block is written, it is hit and does not need to
invalidate other shared blocks. (2) When a
processor reads some block, it should know
which processor has the ownership of the
sub-block. Hence, we use master state to make
clear which processor has the ownership of the
sub-block. Then, requesting processor can read
data block from the processor. When it is
replaced, it needs to transfer its ownership to
another processor. (3) The shared state means
that the sub-block is only a copy of the block.
Other processors would not read the sub-block.
When it is replaced, it just has to tell the
directory to update the information about its
processor number from the shared list.

Data block state is decided by the state its
sub-block. We define the data block state in
order to eliminate the checking time of all
sub-block states when a data block is replaced. If
a block with Exclusive state is replaced, it will
change its ownership and transmit data to
another processor. If a block with Master state is
replaced, it will change its ownership to another
processor. If a block with Shared state is
replaced, it will tell the directory to update the
information about its processor from the shared
list.

Now we give a scenario to show how the
sub-block mechanism works. Initially, all
sub-blocks in F-COMA are invalid states. We
divide a data block to four sub-blocks that are
referred to as a through a+3. We assume all
processors access the same data block in the
scenario. We use the accessing flow as P1 reads
sub-block a+2, P2 writes sub-block a+1, P3
reads sub-block a, P1 writes sub-block a+3, and

P1 replaces the data block at last. Each step has a
data block state and its sub-blocks states are
described below. The leftmost part of the data
block picture is data block state, and other four
regions are sub-block states.

1. Processor P1 reads sub-block a+2.
The state of data block is Exclusive, and the
states of all sub-blocks are also exclusive
because only processor P1 has the data block.

P1
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2. Processor P2 writes sub-block a+1.
The state of sub-block a+/ is exclusive and the
states of other sub-blocks are invalid at
processor P2. Consequently, the state of data
block is Exclusive at processor P2. The
sub-block a+2 in processor P1 changes its state
to be invalid since processor P2 invalidates it. In
the same time, the state of data block does not
need to be changed at processor P1.

P1 P2
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3. Processor P3 reads sub-block a.
Because processor P1 has the ownership of
sub-block a, processor P3 reads the data block
from processor P1. After the read operation is
processed, the sub-blocks a, a+/ and a+3 are in
shared states at processor P3, and the data block
state is Shared. At processor P1, the states of
sub-blocks a, a+2 and a+3 are changed to be
master since processor P3 reads these sub-blocks.
Thus, the data block state is also changed to be

Master state.
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4, Processor P1 writes sub-block a+3.

The state of sub-block a+3 is changed to be
exclusive at processor P1. The state of sub-block
a+3 changes to be invalid at processor P3
because processor P1 invalidates it. The states of
data blocks do not change at processor P1 and
processor P3 since the ownership of all
sub-blocks are not changed.
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5. Processor P1 replaces the data block.
The target processor is selected in turn here.
Thus, the target processor is the next processor
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P2. After replacing the data block from
processor Pl to processor P2, the state of
sub-block @ and a+2 are changed to be master
since the states of two sub-blocks are master at
processor P1 before. The states of sub-block a+/
and a+3 are exclusive at processor P2 because
the states of two sub-blocks are exclusive at
processor P1 before.

P1 P2 P3
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We have constructed the sub-block

organization and presented the modified cache
coherence  protocol. The  performance
evaluations of our sub-block mechanism will be
given later.

3-2. Replacement Techniques

In F-COMA, the replacement target
processor is selected in turn. This technique has
three drawbacks. First, if the target processor
does not have space to store the replaced block,
the target processor needs to replace another
block or check the next processor for free
location. Second, the target processor may reuse
the latter replaced block, but an unnecessary
miss occurs. Third, the target processor may not
use the replaced block before another processor
uses it, and another replacement occurs. Hence,
we will propose three new replacement
techniques, named locality, swap and buffer, to
improve the total system performance. As for the
first replacement technique, after every access
the directory records the id of the processor that
accesses the data block recently. When
relocation occurs, the replaced block is stored to
the processor. Because the processor accesses
the data block recently, it may access the data
block again due to temporal locality. The
overhead of this technique is that the directory
must have enough space to record the id of the
processor.
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3. Because P2 has block A, P1 gets block
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4. After swap, P2 holds block B. P1 holds
block A, and serves the requesting read.

Figure 4. The step of swap replacement

technique

The second replacement technique is called
swap. When an Exclusive data block is replaced,
it is replaced to the processor that has the data
block which the requesting processor wants to
read or write. For example, processor P1 holds
block B and processor P2 holds block A as
shown in Fig. 4. We assume block A and B have
the same index. At first, processor P1 reads
block A, however, there is no space to serve the
read request. Hence, block B needs to be
replaced. We swap the block B and A between
processor P1 and P2. After swapping, processor
P2 gets the block B. In the same time, processor
P1 not only replaces block B but also reads hit
since it gets block A from processor P2. The
advantage of the swap replacement technique is
that it always needs only one replacement and its
swap time is less than replacement stall time
plus the consequent access miss time.

The last technique is called buffer.
Intuitively, we add a one-entry buffer for each
processor to store the replaced block. Whether
the states of replaced blocks are Shared, Master
or Exclusive, it is buffered in the buffer of the
processor in order to implement replacement.
Therefore, the consequent access continues
without suspending. The replaced target
processor is also selected in turn. The advantage
of the buffer replacement technique is that there
is no replacement stall time as long as the buffer
is empty. The overhead of the buffer replacement
technique is the cost of replacement buffer. The
performance evaluations of these replacement
techniques will be given in the next section.

4.  Preliminary Performance Evaluations

We have introduced sub-block mechanism
and replacement techniques in the preceding
section. In order to evaluate them in some detail,
it is necessary to build a simulation environment
[7,8]. Our simulation environment is a
program-driven simulator environment that has
two main parts: memory reference generator
(Front-end) and memory subsystem (Back-end)
simulator. MINT [9] is the front-end of our
simulation environment, and our F-COMA is the
back-end. Because our simulation environment
is used to evaluate issues in F-COMA, we call it
SEECOM (Simulation and Evaluation
Environment for Cache Only Memory
Architecture) [10]. Our F-COMA architecture is
a cluster-based F-COMA, and a cluster node
contains four processor elements, an AM, a
directory controller and a network controller, as
shown in Fig. 5. Each processor element
contains a FLC, FLWB, SLC and SLWB
respectively as shown in Fig. 6.
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Figure. 6. Organization of a Processor Element

The parameters of our simulation
environment are shown in Table 1 and access
times of resources are shown in Table 2. Because
the size of the AM is large, it is always
constructed by DRAM other than SRAM for the
purpose of cost-effectiveness. Thus, the latency
of AM is much larger than that of the FLC and
SLC. We evaluate six benchmarks in SPLASH
and SPLASH2 benchmark suite developed by
Stanford University [11,12]. They are MP3D,
WATER, FFT, CHOLESKY, RADIX and

OCEAN as shown in Table 3.
Table 1. Important Parameters of Our
Simulation Environment
Parameters Value
Processor No 64
FLC Size 32 Kbytes
SLC Size 128 Kbytes
AM Size 1 Mbvtes
Block Size 128 bytes
FLWB Entry No. 8
SLWB Entry No. 16
Table 2. The Access Time of Each
Resource
Description Access Time
Fill from FI1.CC 1
Fill from SLC 8
Fill from AM 36
Network Service Time 3
Network Transfer Time (per FLIT) 2

Table 3. Characteristics of Benchmarks

in SPLASH and SPLASH2
Benchmark Characteristic Program
Size
FEFT Fast Fourier 64K
Transform complex
(High-radix) points
MP3D High network traffic. [ 50000
True sharing. particles
CHOLESKY [High computation Bcesstk14
and communication.
RADIX Communicate 2720
through write items
OCEAN Computation between 130-by-130
grids regularly grids
WATER Local computation 343
molecules

4-1. Evaluations
Sub-block Mechanism

Miss rate decreases as the sub-block degree
advances as shown in Fig. 7. It indicates that
false sharing effect can be reduced according to
the advancement of the sub-block degree
advances. Indeed, we can realize that there are
little false sharing misses in the FFT,
CHOLESKY and OCEAN benchmarks. Hence,
the total miss rates do not reduce mostly when
sub-block degree advances. The WATER, MP3D
and RADIX benchmarks have more false
sharing misses within local misses. Thus, their
local miss rates could be reduced apparently.

and Analysis of
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Figure. 7. Miss Rate with Sub-block
Mechanism

The execution times and network traffic of
those benchmarks are shown in Fig. 8. The FFT,
CHOLESKY and OCEAN benchmarks cannot
improve the performance while sub-block degree
advances because they have little false sharing
misses can be reduced However, the WATER
and MP3D benchmarks have the better
performance only when sub-block degree is 2.
The RADIX benchmark can get better
performance when sub-block degree advances.
We can realize why the execution time cannot be
reduced when sub-block degree advances from
network traffic of these benchmarks. The



network traffic of FFT, CHOLESKY and
OCEAN benchmarks will increase while
sub-block degree advances and other three
benchmarks have less network traffic only when
sub-block degree is 2. Hence, we can realize that
advancing the sub-block degree can reduce read
miss stall time, but higher network traffic
increases the acquire stall time in the same time.
If read miss stall time is thus less than the
acquire stall time, the reduced miss stall time is
less than the increased acquire stall time. The
execution time could not be reduced while
sub-block degree advances. Hence, only the
RADIX benchmark can reduce execution time
about 1.5% and the MP3D and OCEAN
benchmarks could not because their acquire stall
times are longer than read miss stall times.
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Execution Time and Network Traffic
with Sub-block Mechanism

In summary, sub-block mechanism cannot
reduce the execution time of most benchmarks
except the RADIX because their false sharing
misses are too less to affect the performance of
F-COMA. The main function of the sub-block
mechanism is to reduce read miss stall time, but
acquire stall time may increases since network
traffic grows up. If the acquire stall time is
longer than the read miss stall time, advancing
the sub-block degree will result in side effects.
As illustrated in above figures, we know that
network traffic is small while sub-block degree
is 2, and network traffic is higher while
sub-block degree is bigger than 2. In addition,
advancing one sub-block degree is expensive.
Therefore, we conclude that it is cost effective to
divide 128 Kbytes block into two coherence
blocks.

Figure.8.

4-2. Evaluations
Replacement Techniques

and Analysis of

Because there is no replacement in the
WATER benchmark, we do not discuss it in this
issue. The locality replacement technique is used
to explore data locality in order to reduce the
number of replacements. We assume that the
replaced block being accessed will be accessed
again by the processor, so we replace the block
to the processor. If the benchmarks do not have
the property of locality with our mechanism, the
number of replacements will increase. Hence,
their execution time is longer than original
replacement technique such as the FFT and
RADIX benchmarks as shown in Fig. 9. Other
benchmarks have shorter execution times, but
the mechanism does not reduce their execution
time apparently. The advantage of the swap
replacement technique is that its swap stall time
is less than replacement stall time plus
consequent access miss stall time despite its
distance. However, if the processor that we
replace to does not use the replaced block before
another processor accesses it, it will be replaced
again. Furthermore, if the distance between local
processor and the target processor is too long,
the swap stall time will be longer than
replacement stall time plus consequent access
miss stall time. Thus, the performance of the
swap replacement technique is not absolutely
better than original replacement technique.
Because the OCEAN benchmark has high
communication and the swap replacement
technique can get the requested block quickly,
the stall time will be reduced about 9%. About
the buffer replacement technique, if the buffer of
the replaced block is not full, the replacement
stall time will be eliminated. Hence, the buffer
replacement technique has the shortest execution
time. Because the OCEAN benchmark has
higher replacement ratio and communication and
the buffer replacement technique can free the
space of the replaced block quickly, its
replacement stall time can be reduced apparently
about 22%.
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Figure. 9.



4-3.
Scalability

We can realize that sub-block degree of 2
and the buffer replacement technique are the
better designs for our F-COMA. Now, we
compare our F-COMA with these mechanisms
with original F-COMA to evaluate their
scalabilities as shown in Fig. 10. Because our
sub-block mechanism makes more shared blocks
exist in F-COMA, there will be more
replacements. Hence, our sub-block mechanism
will get better performance with replacement
techniques. Furthermore, more processors have
more false sharing misses since access patterns
are distributed into more processors. Thus, the
effect of sub-block mechanism is more apparent.
As the same reasons above, the combined
method gets better performances in the WATER
and MP3D benchmarks when the number of
processors is 128. In other benchmarks, the
combined method has about the same
scalabilities as original.

Evaluations and Analysis of

FFT

—e—Combined Method —8—Original Method

Seedup

128 8 16 32 64 128

Number of Processors

RADIX

—e—Combined Method —8—Original Method

Specdup

Number of Processors Number of Processor

Figure. 10. Scalabilities of Different
Replacement Techniques

5.  Concluding Remarks

In this paper, we address sub-block
mechanism to reduce the penalty of false sharing
and some replacement techniques to reduce
replacement stall time. In addition to study these
two issues, we have constructed the SEECOM
simulation environment. It includes following
functions: (1) Two memory consistency models:
sequential and release models, (2) Two-level
cache hierarchy with FLWB and SLWB, (3)
Different degrees of AM set-associative, (4)
K-ary, N-cube interconnection network, (5)
Subblock mechanism, (6) Four replacement

techniques, (7) Non-cluster and cluster-based
F-COMA architecture, (8) Two migratory
sharing detection methods wuse hardware
mechanisms and (9) Invalidation cache.

After analyzing and evaluating those
simulation results, we get some conclusions as
follow: (1) sub-block degree of 2 is sufficient to
reduce the penalty of false sharing, and is
cost-effective. It can improve about 1% in
average. (2) If the benchmark has no the
property of locality with locality mechanism, the
replacement stall time may be longer than that of
the original technique. (3) In most benchmark
programs, F-COMA with the swap replacement
technique could improve the performance about
2% in average. Because the network transfer
time depends on the distance between processors,
it could not get the better performance while
requesting processor is far from target processor
in the FFT and RADIX benchmarks. (4) The
buffer replacement technique uses a one-entry

buffer and it can serve almost all the
replacements. F-COMA with it can improve the
performance about 4.5% in average. (5)

sub-block degree of 2 combined with the buffer
replacement technique is the most effective
solution for improving F-COMA performance
according to our simulation results. It could
improve the performance about 5% in average.

Because advancing sub-block degree will
increase network traffic and acquire stall time,
we want to eliminate unnecessary sub-block.
Thus, we may use parallel compiler to mark
which block need to be divided into some
sub-blocks to reduce number of false sharing
misses for future. By this way, there will be no
unnecessary network traffic and acquire stall
times due to unnecessary sub-blocks. On the
other hand, we will evaluate other classes of
computing, such as commercial database and
multiprogramming environment applications.
They have significantly different characteristics
from scientific workloads and the results
obtained here may be substantially different.
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