i RE\+/\EEERETERE R

Tackling Uncertainty in A Cognitive Framework for
Source Code Understanding

Yang Li and Hongji Yang William Chu K. 5. Liu
De Montfort University TungHai University Department of Information Science
England Taiwan Feng Chia University
yangli, hyang@strl.dmu.ac.uk chu@cis.thu.edu.tw Taiwan

Abstract

Source code understanding plays an important
role in software maintenance. Although ezisting
knowledge-based program understanding techniques
distinguish themselves from structural/syntaz-based
program analysis methods for acquiring high-
abstraction-level oriented result, they all fail to ad-
dress uncertainty issues inherited in program com-
prehension process. The lost benefit from tack-
ling huge amount of uncertainty information ren-
ders those knowledge-base methods both ineffective
and inefficient; in most cases, they simply provide
a framework where the linking among different in-
formation sources is manually carried out by pro-
grammers. In this paper, we devote ourselves to ad-
dressing the uncertainty issues in a cognitive frame-
work proposed in previous work for code understand-
ing [12]. An ezample is given to illustrates this ap-
proach.

Keywords : Program Comprehension, Uncer-
tainty Reasoning, Possibility Theory, Natural Lan-
guage Understanding, Artificial Intelligence

1 Introduction

Program understanding plays an important role
in nearly all software related tasks, especially soft-
ware maintenance. Studies of the software main-
tenance process indicate that software maintainers,
on the average, spend approximately half of their
time developing an understanding to software [16].
One of the primary reasons for this is that the doc-
umentation and other formal descriptions of large
systems are often inadequate and unreliable. As a
result, software maintainers typically rely on source
code as the only completely reliable source of infor-
mation on the software. The process of trying to
develop an understanding of the software by manu-
ally navigating through the code is extremely time
consuming and error prone. This situation has cre-
ated a need for technologies and tools supporting in
this activity.

Although a number of tools [6, 20, 3, 19] were
developed for the purpose of program comprehen-
sion, their focusing on syntactic rather than seman-
tic analysis seperates them from the users’ satisfac-
tion. Inspired by the cognitive studies [13, 4, 10, 14]
which suggest that the understanding process is one
in which programmers make use of stereotyped so-
lutions to problems in making sophisticated high-
level decisions about a program, several studies
[15, 18, 9, 8] were undertaken to develop knowledge-
based approaches for program understanding.

On one hand, most of the existing knowledge-
based approaches rely heavily on real-time user-
supplied information that might not be available at
all times. For instance, goals that a program are
supposed to achieve or transformation rules that
are appropriate for analysing a specific code frag-
ment are not always clear to the user. On the other
hand, program transformation which attempts to
screen out the noise in source code representation
and provide maintenance programmers with a more
abstract view of the system seems to step into the
world of NP-hard problems and got “lost” in low
level details.

To address the above-mentioned drawbacks, we
must rethink the strategies by which we are dealing
with program understanding, more specifically, the
following questions should be pondered on:

e What is the “understanding” of a program in
general sense?

e What is lost during specification to code
stages? Need/can we recover every detail?

o Is compromise allowed between high accuracy
(demanding large resource) and low accuracy
(need only low cost) for program understand-
ing, i.e., can we tolerate uncertainty in the
understanding process?

In [11], the retrospect of the history of Artificial
Intelligence (AI) was given and the impact of Al on
software reverse engineering was analysed. During

A-139

50 years of AT history, the early attempt of design-
ing a general-purpose theorem prover which can ad-
dress all the issues in the world was finally found
impracticable and gave way to the later-prevalent
techniques known as knowledge engineering and ex-
pert system. The reason behind this shift is due to
the high complexity of real world problems which
usually lead to combinaiorial ezplosion in comput-
ing and thus a significant reduction of the complex-
ity of problems is needed. Expert system is aimed
to capture only necessary fraction of human knowl-
edge which is small in quantity and effective to use.
In this case, uncertainty will inevitably arise on the
way to approximate the real world.

Program understanding is also an intelligence be-
haviour. It should to some extent comply with AI
principles. In [12], an expert system which aims to
elevate source code to domain level was introduced.
The heart of this system is a cognitive framework
which can integrate information from different in-
formation sources. The acquisition of knowledge
from single information source can itself be achieved
by an expert system (Variable names, mathemati-
cal model, etc.). Due to complexity of uncertainty
issues inherited in the understanding process (am-
biguity of names, imprecise evidence, incomplete
knowledge, unreliable information sources, etc.), in
this paper, we will introduce how we tackle the un-
certainty issues in our source code understanding
system. Both the cognitive model we devised and
the uncertainty processing addressed here were not
found in existing work. We hope through this pa-
per, uncertainty knowledge in program understand-
ing can be given enough attention it deserves.

The rest of paper is organised as follows. In Sec-
tion 2, we will refresh our memory of the cogni-
tive framework introduced in [12]. In Section 3, a
rough description of uncertainty processing in dif-
ferent components of the framework and how they
are integrated is given. An example is used to illus-
trate this approach in Section 4 and finally we reach
our conclusion and propose future work. =

2 Our Cognitive Model for Source
Code Understanding

When analysing source code, programmers are
willing to look for mathematical models or algo-
rithms embedded in the code. These kinds of infor-
mation gathered can act as a strong evidence sup-
porting what the function of program section anal-
ysed is. We term this group of information as formal
knowledge sources which, once recovered, can render
programmers high confidence. Beside this, informal
information sources, such as names of variables and
procedures, program comments can, to a large de-
gree, inspire the imagination of programmers about
the program being analysed. After all, the software

implement the function of domain and setting link
between source code and domain model can make
the consequent analysis of source code much eas-
ier. Informal information sources can help elevate
mathematical /structure-oriented model to the level
of domain/semantic-oriented model. The latter is
what is highly appreciated by different kinds of staff,
from program re-engineers, through software design-
ers, to management executives.

Based on this psychological necessity discussed
above, we present a cognitive model for source code
understanding in Figure 1 [12]. This approach is
devised under the principle of Al engineering. In
common with most Al applications, it also employs
a knowledge base and knowledge engineering tech-
niques. Moreover, it integrates formal and infor-
mal information processing techniques into a sin-
gle framework. In Figure 1, source code is first
dispatched into a formal information analysis mod-
ule (1) and an informal information analysis mod-
ule (2). In (1), formal knowledge bases are used to
extract formal knowledge models hidden in source
code; while in (2), informal information extraction
rules are employed to acquire key concepts from the
names of variables, procedures and program com-
ments precede to construct the domain level context
of the program being analysed. Next, we combine
the output of (1) and (2) in (3) to provide better
cognitive result. This semantic result can be fur-
ther abstracted and augmented under the aid of the
knowledge base and provide heuristics for the anal-
ysis of other program sections.

3 Dealing with Uncertainty

Uncertainty is common phenomenon in identifi-
cation, recognition, comprehension, and other un-
derstanding activities [5]. More often than not, we
have to reason in a world of uncertainty, because
observation is incomplete, unbelievable, or even the
rule itself is not 100% certain or reliable. If we con-
fine ourselves to certainty reasoning, we will miss the
potential of tremendous information treasure which
can be acquired from either valuable expertise or the
weakly but still connected linkages among entities
which certainty reasoning can’t tackle. The same
principle applies to program understanding. Many
methods for dealing with uncertainty exist in the
literature. Among them the most classical methods
are Bayesian method, Fuzzy Set, Possibility theory,
and Demster-Shafter Evidence theory (7, 1, 2]. We
choose Possibility Theory [2] as uncertainty reason-
ing model for the purpose of preliminary evaluation.
A collection of rules for different component of our
system and the uncertainty characteristics of these
rules will be roughly introduced in the rest of this
section. More vivid illustration of the application of
these rules can be found in Section 4.

A-140

ic Net,

‘Basic Mathematics Concept,
‘Construction Rules, Algorithm, cic.

(&

Hame, Sermniie Net,
Result Synthesis Rules,

Figure 1: Framework of Source Code Understanding Using Combined Formal/Informal Information Process-

ing

3.1 Formal Information

Formal information is embedded in variable
type, program construct, control flow, data flow,
etc. They have the characteristics of unam-
biguous, easy-to-processing, etc. Many pro-
gram analysis techniques [17] exist around this
topic. For clarity, we have given a taxon-
omy of rules for discovering formal knowledge:
mathmatics-sensitive rules, protocol-sensitive rules
and algorithm-sensitive rules. In our preliminary
evaluation, we give the highest authority weight to
formal knowledge.

3.2 Informal Information

Informal information exists in: naming of vari-
ables and procedures, program comments, etc. We
have developed a set of rules for discovering them.

3.2.1 Variable and Procedure Names

Rules of the naming of variables and procedures are
gathered. The applicability of naming rules to the
analysis of the names in source code lies in:

e Only a small number of names are generally
used in one program. They are confined by
the context of domain.

e Only a small number of naming rules are used
by the programmers.

e The finite combination of the numbers of
names and rules make it possible for comput-
ers to reason out the possibly correct name
within acceptable time boundary.

In our system, the component of name extraction
is among the key components prior to constructing

a semantic network which reflects the domain con-
text of the program. The quality of the result in
this stage will greatly affect the efficiency and qual-
ity of that in later stages. Because for the moment
we needn’t integrate names with other information
source, we don’t assign the authority weight to this
component. However, we do set a high threshold
to the output of this component and only the re-
sult with high precision can be filtered through and
forwarded to subsequent stages. In this way, the
fruitless and time-consuming processing in the sys-
tem can be significantly avoided. As an important
control parameter, the adjustment of threshold can
also significantly affect the performance of the sys-
tem.

3.2.2 Program Comments

During forward engineering most programimers
write down program comments in natural languages
along side source code for later reference. These
kinds of information source are scattered around
source code and play a vital role for program un-
derstanding.

It was established that a complete syntactic and
semantic analysis of text was not feasible, given the
current state of the art of in computational linguis-
tics and the quantities of documentation that have
to be processed in source code. Short-cuts which
retain a degree of understanding have to be nsed in
the analysis process to locate the key concepts and
events.

Program comments analysis share the same role
with extracting names of variables and procedures
mentioned in Section 3.2.1 and the same considera-
tions of uncertainty constraint are given to it. The
high threshold is also set on the output of this com-
ponent.

A-141

A sy ook e sie s kool o ae o

Atom Naming Rules
sk el deok ok

Rule - Operation Rule Strength
Complete full word is written for a particular name (1.0)
Head3 Write the first 3 characters (0.2)
Head2+Taill Write the first two characters and the last characters (0.3)

Script 1

1"!"_....1"!.» A comnects to B undes condition C
c

(Minute=0)
=
(Hour++)

Bisafeaturcof A

(Day mod 7=0)
=

' Sunday

="
(Week++)

Figure 2: Semantic Network of a Clock

3.3 Generating Semantic Network

The extracted key concepts in Section 3.2.1 and
Section 3.2.2 are used to construct the context of
program section in the level of application domain,
which can help elevating source code to a higher
level. In our system, there are predefined name-
context mapping table called Name Dictionary and
semantic-network base. The former is used to decide
the possible context in which the given concept re-
sides; while the latter holds a list of typical context
where detailed description of each context is given
in the representation of semantic network. Script
2 shows the structure of Name Dictionary. An ex-
emple of semantic network can be found in Figure
2.

Aot e kol
Name Dictionary
sl e ok s
Name Morphological Semantic Netsl Semantic Nets?2
Feature

Second Noun

Hinute Noun Clock-Net (1.0)

Seript 2

Clock-Net (0.8) Ordinal-net (0.8) ...

We can see that one single key concept can ap-
pear in more than one context. In each context, the
bracketed real number following the name of the se-
mantic net gives the strength of that rule. To con-
struct a united semantic network which reflects the
context of a procedure, we simply connect all the
candidate semantic sub-networks obtained in previ-
ous stages. Each sub-net retains its own possibility
degree.

3.4 Combining Formal and Informal
Knowledge and Further Inference

Although rigorous, formal knowledge especially
mathematical knowledge alone can hardly leap to
the level of domain without the help of informal in-
formation described in the natural language. In the
mean time, although easier to understand by pro-
grammers, informal knowledge can not be elicited
directly as a domain-level explanation of program
section without the strong support and proof from
the formal information. This situation forced us to
come up with a suitable way of combining formal
and informal information which can take both ad-
vantages from them. In our system, we use model
matching techniques to combine formal and infor-
mal information. Once acceptably matched, for-
mal knowledge and informal knowledge are strongly
linked.

A-142

After successfully elevating mathematical/ al-
gorithmic/ structural-oriented model into domain
model, we can further apply expert rules which are
closely connected with the domain context. This
can in turn contribute a lot of heuristic hints to
other uninterpretable program sections.

4 An Example

4.1 A Program Section

A “clock program” is shown in Script 3 as an
example.

A Clock Program

int Second, Minute, Hour, Day;

void Increase(){

Second++; /* Click a second %/
if (Second==60){
Second=0;
Minute++;
if (Minute==60){
Minute=0;
Hour++;
if (Hour==24){
Hour=0;
Day++;

¥

void Routine(){

if(Day % 7==0)
gotoChurch(Jason);

Seript 3

4.2 Extracting Groups from Source
Code

The source program in Script 3 is first trans-
formed into the Control Flow Graph. Figure 3
shows the Control Flow Graph of Procedure In-
crease() in Script 3.

We concentrate on the data flow analysis of in-
dividual variables. For example, in Figure 3, the
dotted lines represent the data flow of variable “Sec-
ond” and a mathematical analysis is given to “Sec-
ond” in order to extract its mathematical model:

“int Second”: We can easily infer from this dec-
laration that (Second,+) is a finite group, where
“Gecond” is an integer set and “+” denotes arith-
metic addition.

Dotted lines which captures the data flow of
variable “Second”: Further mathematical rules
are applied in this sub-graph and such result is
reasoned out that (Second, +) forms a finite group
where Second = {0, ...,59}, “+7 is arithmetic addi-
tion under modulo 60.

Y A

Figure 3: Control Flow Graph and Analysis of “Clock” Source Code

A-143

Variable Name Mathematics Result
“Second” a finite group (Second, 4), where Second = {0, ...,59}; “+” is arithmetic addition under modulo 60
“Minute” a finite group (Minute, +), where Minute = {0,...,59}; “+" is arithmetic addition under modulo 60
“Hour” a finite group (Hour, 4), where Hour = {0,...,23}; “+" is arithmelic addition under modulo 2J
“Day” a finite group (Day, 4), where Day={integer set}; “+" is arithmetic addition

Table 1: The Result of Applying Mathematical Analysis to the Example Program

“Second” “Minute” “Hour” “Day”
“Second” (Second == 0) — (Minute + +)
“Minute” (Minute == 0) — (Hour + +)
“Hour” (Hour == 0) =+ (Day + +)
llDay”
Table 2: Mathematics Relationships among the Variables in Table 1
Similarly, we can also get finite groups listed in the second column followed by their pos-
(Minute,+), (Hour,+), (Day,+), where sibility value in the third column. Because all the

Minute = {0,...,59}, Hour = {0,...,23} respec-
tively, Day = {IntegerSet} and “+” denotes arith-
metic addition under modulo 60, 24 and large infi-
nite integer numbers respectively.

Relationship among groups: Analysis is also
give to the relationship between two groups and
the interface between the two groups is captured.
For example, the dotted circle in Figure 3 captures
the interface between group “Second” and group
“Minute” and such relationship that (Second ==
0) — (Minute + +) is identified. The similar anal-
ysis is given to group “Minute”and “Hour”, group
“Hour” and “Day”.

The result above is summarised in Table 1 and
Table 2. In this example, we give full score, 1.0,
to the authority weight of formal knowledge and all
these results obtained are filtered through to next
stage.

Although, the names of variables such as “Sec-
ond” presented in the example are meaningful to
programmers, from the viewpoint of mathematics
or a compiler, “Second” is no more meaningful than
“V1” or “011010” and although we can make cer-
tain that there do exist four groups and three rela-
tionships among these groups, we can not make sure
that these four groups actually form a clock because
there may be other explanations for this behaviour.
We need to take the advantage of informal informa-
tion such as natural language description contained
in the source code to aid our decision-making.

4.3 Extracting Names from Source

Code

By looking up in the name dictionary (see Sec-
tion 3.3) and applying naming rules (see Section
3.2.1), we extract variable names from the program
and show them in Script 4. The extracted names are

names here present themselves in their full name in
the program, therefore, TRUE (1.0) is assigned to
their possibilities. The source in the first column
records where a name comes from. The bracked
V/P/PS follows indicates the source is a variable
name/procedure name/segment of procedure name.
The field of source is therefore playing a tracing
function. The reason we set the field of morpho-
logical feature is due to its important role in syntax
analysis and semantic reasoning. The Semantic Net
Set in the last column is used to reflect the context
of corresponding name. It is populated by Name
Dictionary shown in Script 2. There can be more
than one context for a given name. The bracketed
number follows each sub-net indicates the possibil-
ity by which the context of a procedure is associated
with that sub-net. It is determined by (1) the pos-
sibility by which the name can be infered from the
source; (2) the possibility by which the sub-net can
be supported by the name. If there is more than
one source in the procedure supporting the sub-net,
we will synthesise these results prior to constructing
a semantic net, which will be discussed in Section
4.5. We set 0.3 to the output threshold of this com-
ponent.

4.4 Dealing with Program Comments

By collecting program comments in Script 3 we
got:

Click a second

From the semantics of “click a second”, we can
reduce the candidate semantic nets in Procedure In-
crease() to two, say, clock-net and financial-net by
removing ordinal-net which has nothing to do with
“click a second”. This simplifies the context of pro-
cedure Increase().

A-144

Clock-Net (1.

0) | Financial-Net (0.8)

Matching Resultl 1.0

0.2

Table 3: Matching Degree for Mathematics and Informal Information

Clock-Net | Financial-Net

Matching Result2 0.85

0.17

Table 4: The Result after Combining Mathematics and Informal Information

s ma S e e o
Name Extraction Result
bbb bbb bbb bbb

Source Name Possibility Morphological Semantic Net Set
Feature
Increase (P) Increase (1.0) Verb Clock-Net (0.8), Financial-Net (0.8}, ...
Second (V) Second (1.0) Noun Clock-Net (0.8), Ordinal-Net (0.8), ...
Minute (V) Minute (1.0) Noun Clock-Net (1.0), ...
Hour (V) Hour (1.0) Noun Clock-Net (1.0), ...
Day (V) Day (1.0 Noun Clock-Net (1.0), ...
Routine (P) Routine (1.0) Noun Christian-Net (0.3), Sanitation-Net (0.3), ...
Goto (PS) Goto 1.0 Verb Christian-Net (0.3), Sanitation-Net (0.3), Shopping-Net (0.3), ...
Church (PS) Church (1.0) Noun Christian-Net (1.0), Sanitation-Net (0.4), Architecture-Net (0.6), ...
Script 4

4.5 Constructing Semantic Network

Let’s take procedure Increase() for example.
There are more than five sources, i.e., increase, sec-
ond, minute, hour, day, give support to clock-net;
on the contrary, relatively few source, e.g., increase,
contributes credit to financial-net. Here, we give full
authority weight to each source. After computing,
we got the possibility of clock-net and financial-net
10 be 1.0, 0.8 respectively.

4.6 Guess the Clock

So far, we have obtained the mathematical result
in Section 4.2 and informal hypothesis in Section
4.5. By comparing candidate sub-nets like Clock-
Net, Financial-Net with mathematical results in Ta-
ble 1 and Table 2 we found that Clock-Net can best
match with the mathematical results. The match-
ing result is shown in Table 3. The calculation
for “matching degree” is determined by two factors:
similarity of network topology and network connec-
tive condition.

Taking also the possibility of each semantic sub-
net as the context of the procedure , the authority
weights of formal information weight and informal
information (We give 1.0 and 0.85 to the weights
of the two information sources. All of them is ad-
justable according to the quality of corresponding
information source) into consideration, we finally
got the result of synthesis of formal and informal in-

formation for procedure Increase() as shown in Table

To provide later reasoning phases a more mean-
ingful input, here, we set acceptable threshold to be
0.60 and therefore Financial-Net (0.14) is blocked
while Clock-Net (0.8) can be filtered through. Based
on this result, we can guess that the program section
is actually implementing the function of & “Clock”.

Here we can see how program code is elevated to
domain level and the link between concept and code
is set up. Most important, a linkage strength, say
0.85 is attached to this link and quantifies such a
coupling.

4.7 Inference: Jdson Goes to Church
every Sunday

We now analyse procedure Routine(). By using
the context of Clock shown in Figure 2, we can in-
fer “Day==Sunday” (0.85) from “if (Day % 7 =0)".
Here again, 0.85 which follows “Day==>Sunday” is
the possibility of such conclusion. It is incurred
by the uncertainty of “day” as “day” is a compo-
nent of clock and clock has the possibility value of
0.85. Based on this, procedure Routine() can be ab-
stracted to “Jason goes to Church every Sunday”
(0.85).

A-145

4.8 Further Inference: Jason Is a Chris-
tian Or a Cleaner

If our knowledge base contains sufficient knowl-
edge, further inference can be evoked to give more
abstract result. For instance, Christian-Net and
Sanitation-Net in this case will be resorted to and
provide the results like “Jason is a Christian” or
“Jason is a cleaner”. We will not discuss this situa-
tion furthermore in this paper.

4.9 Summary

This example shows how a-high level semantic
knowledge comes out from our expert system when
source code is input. Particularly, it illustrates how
uncertainty is defined, processed, propagated, con-
trolled and attached in this rule-based reasoning
process. We give relatively a high authority weight
to formal information than informal information.
Moreover, we impose more constraints on informal
information especially early stages in order to re-
duce the bad effect of ambiguity of informal infor-
mation to the least. Based on the uncertainty values
of formal and informal information, their similarity
and authority weights, these two kinds of heteroge-
neous information were finally linked and the link-
age strength is also endorsed.

5 Conclusion and Future Work

Code understanding is the first step in reverse
engineering and it plays important roles in various
software engineering activities. One of the reasons
why automated program understanding failed to be
used in practice is due to the programmers’ atti-
tudes to uncertainty and ambiguity which hamper
them from benefiting from the huge amount of infor-
mation where uncertainty is a nature. In this paper,
we address the uncertainty issues arising from our
expert system for source code understanding and
show how the uncertainty in code understanding
process is defined, processed, propagated and con-
trolled. In our preliminary evaluation, we employ
Possibility Theory as uncertainty reasoning model.
The evaluation result of this uncertainty-oriented
approach show a fairly promising perspective.

The future work is to deepen the existing meth-
ods, e.g., to dig out more information sources hid-
den in the source code which can contribute to the
understanding of program and to carry out more ex-

. periment and evaluation of the existing uncertainty
processing models in a larger scale program.

References
1. A Mathematical Theory of Evidence. Princeton Uni-

versity, 1976.

Possibility Theory. Plenum, New York, 1988.

3. K. H. Bennett and M. P. Ward. Using formal trans-
formations for the reverse engineering of real-time
safety critical software. In Proc. Second Safety-
Critical Systems Symposium, pages 204-223, Birm-
ingham, 1994. Springer Verlag.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

- R. Brooks. Towards a theory of the comprehen-
sion of computer program. Internatioral Journal of
Man-Machine Studies, 18(6):543-554, 1983.

- B. J. C. Fuzzy models -~ what are they and
why? IEEE Transactions on Fuzzy Systems, 1(1):1-
6, 1993.

- P. Chan and M. Munro. Pui: A tool to support .
program understanding. In Proceedings of the In-
ternational Workshop on Program Comprehension;
WPC(C"97, Dearborn Michigan. IEEE Press, 1997.

- K. George. Probabilistic vs. possibilistic conceptu-
alization of uncertainty. In B. A. et. al, editor,
Analysis and manangement of Uncertainty, pages
13-25. Elsevier, 1992.

- M. T. Harandi and J. Q. Ning. Knowledge-based
program analysis. IEEE Software, pages 74-81, Jan
1990.

- W. L. Johnson and E. Soloway. Proust: Knowledge-
based program understanding. IEEE Trans. on
Software Engineering, 11(3):267-275, 1985.

S. Letovsky. Cognitive processes in program com-
prehension. Empirical Studies of Programmers,
pages 5879, 1986.

Y. Li and H. Yang. Will ai help software reverse
engineering? In CACUK, England, Sep 1998.

Y. Li, H. Yang, and Z. Cui. An automated,
intelligence-based approach to elevating source code
to domain model. In CACUK, England, Sep 1999.

D. C. Littman, J. Pinto, S. Letovsky, and
E. Soloway. Mental models and software mainte-
nance. Empirical Studies of Programmmers, pages
80-98, 1986.

N. PenNington. Stimulus structures and mental
representations in -expert comprehension of com-
puter programs. Cognitive Psychology, 19:295-241,
1987. :

C. Rich and L. Wills. Recognizing a program’s de-
sign: A graph-parsing approach. IEEE Software,
7(1):82-89, 1990.

R. Rock-Evans and K. Hales. Reverse engineering:
Markets, methods and tools. vol. 1, Ovum Ltd.,
1990.

A. Temin and E. Rich. Automating the desk analy-
sis of programs. In Proc. 20th Hawaii Int. Conf. on
System Sciences, pages 54-63, 1987.

L. Wills. Flexible control for program recognition.
In Proc. the Working Conf. Reverse Engineering,
Baltimore, 1993.

H. Yang, P. Luker, and W. Chu. Code understand-
ing through program trnsformation for reusable
component. In 5th International Workshop on Pro-
gram Comprehension, pages 148-157. IEEE Com-
puter Society, May 1997.

20. P. Young and M. Munro. Visualising software in

A-146

virtual reality. In Proceedings of the International
Workshop on Program Comprehension. IEEE Press,
1998.

