T RE N\ R R e

FReHERRERERTEERE
Using Automatic Error Handling in Rapid Application Development

Frg
BapisFEREAERENRT A
8805 2T A 423005

Email: pcwu@computer.or

%

SBHAZAHRERASRBTLAERAEHYE
BPAT - A BAEEZR-BEREREN G X4
MEHBANEZREHER M2 A5 H A RS
BRBEREXOEN > AsBEAToRBOHES
RoBERAENTAEFLRBERGIE - K &
MEAHBRVRABTEERESNE A B30
WHEUER - AXRBAMNAAHBRETNRRE
BRRRAZKO T LR B AL A BREAESH
BB DMEMER DBEEPFT - MG E

VE3% R B 89 Visual Basic sl B 483 R 2 2248 - k.
TR ERMBE R 8 — gy

MisEF @ ARRE - 2M AR BY - THE -
HHERE -

Abstract

Many recent data processing applications have
been designed for client-server computing
environments. The client program is mainly a
graphical user interface; and the server program is
usually a database with related procedures. By
applying rapid application development (RAD)
technique, the client side of data processing
applications can be crafted quickly. Potential users can
then involve in the development process as soon as
possible. However, early releases of prototypes tend t
contain bugs that make the prototypes difficult to use.
This paper presents our experience in using automatic
error handling for RAD. We define automatic error
handling as two steps: (1) report emors and (2)
continue execution. Our implementation uses
Microsoft Visual Basic and its error handling
constructs. Preliminary experience on the
implementation is also reported.

Keywords: data processing, client-server, prototypes,
databases, error handling.

1. INTRODUCTION

Many recent data processing applications have
been designed for client-server computing
environments. The client side consists of a number o
graphical workstations; the server side is usually a
powerful data processing engine. The client program is
mainly a graphical user interface; and the server
program is usually a data store with related procedures.
This allocation of tasks simplifies the development of
client-server data processing applications for the
following reasons: 1) Most servers now support
Structured Query Language (SQL) [2], which provides
a uniform way to process data stored in relational
tables. 2) The client side is usually well decomposed
into the following tasks: user interaction, query
composition, query results display, report generation,
etc. Many vendors provide an environment to integrat
a set of tools for these tasks. Using such an
environment needs to deal with a set of tools and
practices and is so called rapid application
development (RAD) [4, p.516].

By applying RAD technique, the client side of
data processing applications can be crafied quickly
Potential users can then actively involve in the
development process when the first prototype is
available. This can help to find what users really need
and what they dislike in the early stage of a project.
However, early releases of prototypes tend to contain
bugs that make prototypes difficult to use. For example
input forms or menus may not be successfully invoked
due to unexpecied errors, such as null values, improper
input data, memory leaks, disconnected network lines,
etc. Sometimes, a prototype hangs with a message that
says nothing.

Reporting these errors to developers in details is
not users’ duties and interests. This occasion is even
worse when the development team has no dedicated
software testing professionals to help to find errors.

A-116

Recent RAD environments provide not much help to
this problem. A transaction failure in a database will
be recorded in the database log; however, an error in a
client program is usually ignored when the erroneous
program terminates.

Another approach to this problem is by using
in-depth analysis tools to detect errors in a program.
There are many commercial tools (especially for
C/C++ [3, 1]) that can detect errors such as memor
leaks and uninitialized va iables. These tools are
helpful to improve the quality of a program; however,
even a carefully analyzed program may still caus
unexpected run-time errors. In addition, these analysis
tools are usually language-specific and may b
unavailable to the programming language of the RAD
environment.

This paper presents our experience in usin
automatic error handling for RAD. We define
automatic error handling as two steps: (1) report errors
and (2) continue execution. Our design is based on
programming languages with structured error handling,
and the implementation is on Microsoft Visual Basic.
The implementation has been used for months by the
systems currently developed in ROC Airforce. Our
preliminary experience shows that this technique is
useful to identify bugs in the prototypes of the systems.

2. REQUIREMENTS OF AUTOMATIC ERROR
HANDLING

In a client-server application, simply promptin
a message like “a general error occurred” or “general
protection fault” is not good enough, because users
may first bypass this message and then be unable t
describe their operations in details. To be specific, w
define automatic error handling as two steps: (1) report
errors and (2) continue execution.

The best place to record error messages isin the
server side. Other related program information (call
stacks, values of variables, etc.) can also be recorded t
help developers understand what happened then. For
data processing applications, the SQL statement
recently sending to the server may be interestin too.
Recording who was using the system is also useful if
developers can contact that user for additional
information.

Continuous execution is required to keep users

patient when they are using early releases of prototypes.

Continuous execution should be guaranteed any time
except that fatal errors occur in operating systems or

computer hardware. One way torecover a program
from an erroneous state to a safe state is by structured
error handling: errors that cannot be handled in the
local context are propagated to the outer (larger)
program structure until a safe state is found.

Most recent windo -like graphical user
interfaces are developed using the event -driven
programming technique. When the processing of an
event causes an error, it is usually safe to rollback all
database transactions and to terminate the processing
directly. Because it is costly to undone all of the
processing in the client side, we only require that the
display screen remains in a normal state for user input.
This can usually be achieved by simply setting the
mouse pointer to a normal state.

For efficiency and simplicity, som
programming languages (e.g., the C language [3]) do
not provide structured error handling. Developin
automatic error handling for these languages is thus
more difficult than that with error handling constructs.
Structured error handling does take space and time
overhead: every statement and expression needs to b
checked for potential errors. However, from the
viewpoint of composition ofs fiware components,
such overhead can usually beignored. Data processing
applications developed by RAD technique usuall

~ reuse many (de facto) standard software components.

A software component such as a list box may contain
thousands lines of codes. The overhead in structured
error handling across component boundaries is thus
very small in proportional to the size of components.

3. DESIGN AND IMPLEMENTATION

Our design is based on programming languages
with structured error handling andcl ient-server
computing environments. The implementation is on
Microsoft Visual Basic 4.0 [5] (16-bit version), which
contains a rich set of error handling constructs such as
“on error goto label” and “raise error”. Ou
implementation consists of three parts: 1) a general
error handler subrouiine called GENERAL_ERROR, 2)
a code translaior called 1ineno, and 3) an error log
viewer.

A-117

3.1 The general error handler subroutine:

GENERAI,_ERROR

When a run-time error occurred, subroutine
GENERAL_ERROR first roll backs all database
transactions and resets the mouse pointer. Subroutine
GENERAL_ERROR then records the following
information in the ERROR_LOG table: the user name,
the subsystem name, the error number, the error
message, the active form, the active control, the call
stack, and the last SQL statement. The first two can be
obtained from the program information. The rest of
data except the call stack and the last SQL statement
are available from Visual Basic’s built-in functions
and objects: Exrr (error number), Erl (error label),
Errrors (a collection of database access errors), and
Screen (the screen display). Note that all database
access errors are categorized as “ODBC —call failed”,
and the detailed information can be obtained from
object Exrrors.

The last SQL statement is obtained from the

xDatabase object used in the application program.
We assume that an application access s only one data

source, an abstract mechanism that can be mapped ini

several remote physical databases. The xDatabase
extends Visual Basic’s Database object with the
function that stores the last SQL statement sending to

the data source. The xDatabase has the same
interface as Database does, so programs that
originally access Database objects can remain
unchanged.

Private Sub mskDate_LostFocus (Inde
As Integer)
On Error GoTo GENERAL_HANDLE

If Index = 1 And date_changed Then
DoEvents
date_changed = False
Call query

End I

Exit Sub

GENERAL_HANDLER: GENERAL_ERROR
"mskDate_LostFocus", False
End Sub

0010577688
l6150010577685

g
SRR

Figur 2. A run-time error capturedby the automatic error handling routine.

A-118

The call stack is a sequence of function names
and line numbers indicating the execution path of a
program. To collect the call stack, GENERAL_ERROR
raises a special error to be handled by the outer handler,
which calls GENERAL_ERROR again. This iteration
collects each function name and line number of the call
stack step by step. The iteration terminates until an
outermost function is reached. There are two kinds of
outermost functions in Visual Basic: 1) the subroutine
Main, and 2) the event handlers of forms and controls.
All forms and controls areindependent in handling
input events, so every event handler needs an error
handler. In Visual Basic 4.0, there is no simple way to
write just one general error handler for all of the forms
in an application. Figure 1 shows howto install on
error handler in the event handler of th LostFocus:
event of mskDate control. GENERAL_ERROR takes
two arguments: sfunction, the name of
function/subroutine and trace, whether or not to g
to the outer context. Th trace flag is set False
here, because mskDate_LostFocus is an outermost
function and does not need to trace the outer context.

Figure 2 shows a run-time error captured b
GENERAL_ERROR. GENERAL_ERROR pops up a
message box with a brief description of the error
(“ODBC—call failed.”), the log ID (555) in the
ERROR_LOG table, and two options: “continue” (Yes)
and “terminate” (No). If the user choose ‘‘continue”
(by default), the program returns to the normal input
state. Otherwise, the program terminates.

3.2 The code translator lineno

The lineno translator processes the Visual
Basic source codes and installs an error handler in
every function and subroutine. The translator als
inserts a line number for each statement. This
translation process adds about 10% space overhead t
the compiled execution files. Figure 3 shows the output
of function del_nl processed by the translator. The
translator adds all the statements for automatic error
handling. The arguments passed to GENERAL_ERROR
are sfunction="del_nl" and trace=True,
because del_nl is not an outermost subroutine. Not
that the line number for the first “Case” statement (No.
6) is skipped due to the syntax restriction in Microsoft
Visual Basic

The translator is handwritten in the C languag
and contains about 500 lines of code. The translation is
not a complete parsing of Visual Basic codes. It
matches only some Visual Basic’s key words: begin,

end, private, public, sub, function, on,
error, goto, select, and case. Most statements
are simply expanded with line numbers. When a
input statement contains a line number, the translator
generates a warning message. Key words ‘“begin”
and “end” of a function/subroutine are matched to
install an error handler for each function/subroutine.
Because the statement “on error goto 07 will
disable the current error handler, it is replaced by “on
error goto GENERAL_HANDLER’. To avoid
incorrect self-recursion, the ~ statements in the
subroutine GENERAL_ERROR itself are skipped during
processing.

3.3 The error log viewer

Figure 4 shows an error logged in the server.
The top is a grid of error list. The columns of the grid
(shown in Chinese) are as follows: the log ID, the user
name, the form name, the control name, the subroutine
name, the line number, the error cod , the error
message, and the log date. Data access errors and the
call stack are shown in bottom-left; the last SQ
statement is shown in bottom-right. Clicking a row of
the grid makes the row highlighted and the related
information displayed in the bottom of the form.
Developers can view the error log easily and obtain the
detailed error report in few seconds.

4. PRELIMINARY EXPERIENCE

The implementation presented has been used
for months by the sysiems currently developed in the
author’s site. We have released to users the prototypes
with automatic error handling function and hav
collected hundreds of run -time errors. Table]
summarizes the errors collected from an installed
prototype. Some errors are unexpected in laborator
setting but occur very often in user’s site. For example,
many users are connected to the server with a lo
speed modem, and database query time-out (the error
“ODBC—remote querytimeout expired.”) occurs
when the network or the server is busy. There are als
errors dueto incorrect versions of client programs,
database schema changes (e.g., some of the “ODBC—
call failed” errors), and improper setting of client sid
environments (e.g., the error “Can't load (or register)
custom control”).

Our preliminary experience shows that this
technique is useful to identify bugs in the prototypes of
the systems. Developers can quickly identify the fanit
part of the system. Developers who are responsible fo

A-119

the bug can then take the detailed bug report from thei also find that many users do not response to developers
workstation and make the correction immediately. when they encounter bugs in the system, although they
Communication time between users and developers were recommended to do so. This fact also indicates
can be greatly reduced. In most cases, there is also no the need of automatic error handling mechanism in
need for users to write down bug reports in paper. We projects that emphasize early involvement of users.

cadConfirm_Click Line 2

Figur 3. The error log vie er.

A-120

Function del_nl{s As String) As Strin
On Error GoTo GENERAL_HANDLER

1 ‘remove newlines (CarriageReturn & LineFeed)
2 Dim i%, c$, tmp$
3 For i = 1 To Len(s)
4 c = Mid(s, i, 1)
5 Select Case c¢
Case Chr(13), Chr(10): ' removed
7 Case Else: tmp = tmp & C
8 End Select
9 Next i

10 del_nl = tmp

Exit Function

GENERAL_HANDLER: GENERAL_ERROR "del_nl%", Tru
End Functio

. Figur 4. The output of a function processed lineno translator.

[4] McConnell, S., Rapid Development: Taming

5§, CONCLUSIONS AND FUTURE WORK Wild Software Schedules, Microsoft Press, 1996.
[5]1 Microsoft, Microsoft Visual Basic Enterprise
This paper has presented our experience in Edition, Version 4.0, 1995.

using and developing automatic error handling for
RAD. Our implementation has been used for months
by the systems currently developed in the author’s site.
We have collected hundreds of run-time errors. Some
errors are unexpected in laboratory seiting but occu
very often in user’s site. Our preliminary experienc
shows that this technique is useful to identify bugs in
the prototypes of the systems. :

The translator used in our implementation is a
separate program to pre-process source codes. This
pre-processing can be integrated into RAD
environments such as Visual Basic’s integrated
development environment.

ACKNOWLEDGMENTS

The author would like to thank his coll eagues in
ROC Air Force for their cooperation in experiment of
this technique in several systems.

REFERENCES

{11 Ellis, M.A., and Stroustrup, B., The Annotated
C++ Reference Manual, Addison-Wesley, 1990.

[2). Elmasri, R., and Navathe, S. B., Fundamentals
of Database Systems, The Benjamin/Cummings
Publishing Company, 1989.

(3] Kernighan, B. W., and Ritche, D. M., The C
Programming Language, 2nd Edition, Prentic
Hall, 1988.

A-121

Table 1. Errors collected from an installed prototype.

the system

Error Description Count
ODBC--call failed. 48
Can't load (or register) custom control 19
Subscript out of rang 16
No current record. 15
Type mismatch 14
Invalid procedure call 13
ODBC—remote query timeout expired. 9
Object variable or With block variable not| 6
set

Fil notfound - 4
Item not found in this collection. 4
Object doesn't support this property of 4
method

Overflow 3
Path/File access error 2
Bad DLL calling convention 2
Object is invalid or not Set. 2
Out of memory 1
Path not found 1
Invalid use of Null 1
Invalid Column Value 1
Unable to activate object 1
Can not remove last non-fixed row 1
Can not do an Addliem in a fixed ro 1
Application-defined or object-defined| 1
error

'Height' property cannot be set withina| 1
page

Problem getting printer information from| 1

A-122

