Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Reusable Component Identification by Code Understanding
through Program Transformation in RRRA

Hongji Yang

William C. Chu

- Computer Science Department Department of Information Engineering

De Montfort University
England
Email: hjy@dmu.ac.uk

Abstract

Code understanding is almost the most
essential step in all the post-delivery soft-
ware activities such as software main-
tenance, re-engineering and reuse. In
Reverse-engineering Reuse Re-engineering
Assistant(RRRA), a tool aiming at providing
. an overall approach for all the post-delivery
software activities, code understanding was
addressed by reverse engineering through pro-
gram transformation. The paper proposes a
method to deal with this problem and dis-
cusses in detail how program transforma-
tion techniques, program comprehension tech-
niques and the role of human knowledge are
integrated into RRRA, i.e., how they are used
by reverse engineering to recognise reusable
components and how they are used by se-
" mantic interface analysis to formally repre-
sent reusable components. The ezperiments
strongly suggest the proposed method is a

practical approach to software reuse.

1 Introduction

Code understanding is a question that has to be answered
when responding software evolution challenge such as software
maintenance, re-engineering and reuse. An obvious reason is

that one can not maintain or reuse a piece of software before .

being absolutely sure about the functionality of the software.
For legacy systems, large legacy systems in particular, code un-
derstanding is a very difficult task. The only helpful source of
information about a legacy system is perhaps the documenta-
tion, which is almost certainly missing or incomplete (therefore
unreliable) after continuous maintenance of many years. If it

is the case, considerable effort is essential in understanding a -

multi-million line program.)

A basic activity to understand existing code is to gather
information. When the documentation of a software system
became unreliable, the sole source of information from the soft-
ware is the code itself. This means that code understanding is
typically a code activity. Apart from the information directly
from the software, other sources of information can also help
with code understanding. These sources are domain knowl-
edge of the application, software development and program-
ming knowledge. : i

339

Feng Chia University
Tailwan
Email: chu@fcu.edu.tw

One way of understanding code is through reverse engineer-
ing, i.c., to reverse code in low level of abstraction to a high-
level presentation. Code understandingis eventually a human-
centred activities and cognitive research into expert/novice per-
formance differences has indicated that human performance in
cognition tasks are significantly better if higher-level abstrac-
tions of a problem representation can be exploited.

Program transformation is powerful tool for reverse engi-
neering and it will bring several advantages to code understand-
ing, e.g.: i

* Data structures and the implementation of abstract data
types can be changed easily.

* Code restructuring changes can be made to the program
with the confidence that the functionality is unchanged.)

* Formal links between high-level representation (specifica-
tion or design) of the code and code can be maintained.

* Understanding of code can be carried out at the higher
abstraction level.

* Use of code can be incrementally improved — instead of
being incrementally degraded.

Code understanding can provide a great help to software
reuse, in particular identifying reusable software components.
Only a potentially reusable component is understood thor-
oughly, can the component be confidently reused. In RRRA, a
tool aiming at providing an overall approach for all the post-
delivery software activities, program understanding was ad-
dressed by reverse engineering through program’ transforma-
tion. The approach used by RRRA works like this: a potential
reusable code component is reversed into its high-level represen-
tation through program transformation; the component is “un-
derstood” and identified by being assigned with pre-conditions,
post-conditions and obligations; the component will be stored
in a reuse library if identified reusable; and finally the compo-
nent can be reused when its properties will meet the require-
ments predicates proposed. ’

There are two basic technical approaches to' reuse: parts-’
based and formal language-based. The parts-based approach
assumes a human programmer integrating software parts into
an application by hand. In the formal language-based ap-
proach, domain knowledge is encoded into an application gen-
erator or a programming language. Our study focus on the
parts-based approach. In parts-based approach, components
are required to be found and understood, and then incorpo-
rated into the designed system. . ’

This paper will first briefly review relevant program under-
‘standing approaches, Then the environmient of RRRA will be
described. Thirdly, the approach of identification of reusable

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

component by reverse cngineering through program transfor-
mation will be discussed. And finally conclusions will be given
to summarise our study.

2 Problems of Code Understanding
Related to Our Study

The study described in this Paper used a program transfor-
mation approach to reverse engineer éxisting code in order to
Tecognise reusable components in the program transformation
environment. In this section, previous work that influences our
study is discussed briefly and then the working environment is
introduced.

2.1 Code Understanding Theory

To obtain a model of acquiring a high-level abstract repre-
sentation from code, program understanchng techniques, cog-
nitive models and personal experience are decisive factors.

Approaches to program comprehension are summarised by
[11], in which three program comprehensxon problems are dis-
cusscd .

"~ o Theories of program comprehension:

1. examining of the entire program and working out
the interactions between various modules,

2. understanding the program by syntactic and se-
mantic knowledge,

3. setting a hypothesis of a mapping between the
problem domain and the programming domain,

4. using both top-down and bottom-up strategzes at
the same time.

e Code reading: The crudest method of understanding
program is code reading. Factors affecting code read-
ing are:

1. the design method employed in the implementa-
tion of the program,

2. the style of writing the program, for example, us-
ing meaningful variable names, indentations, com-
ments, etc.

¢ Program analysis: Static and dyné.mic analysis — to ob-
tain useful information, such as cross reference listings,
call graphs, slicing, and symbolic execution, etc.

Soloway and Eirlich claim [13] that-expert programmers
have and use two types of programming knowledge: program-
ming plans, which are generic program fragments that repre-
sent stereotypic action sequences in programming, and rules
of programming discourse, which capture the conventions
in programming and govern the composition of the plans into
programs.

Programming knowledge will also play a powerful role in
program comprehension [8]. Usually, advanced programmers
have strong expectations of what programs should look like
and programming knowledge is the base of a pro’grammcr’s ex-
pectation.

2.2 Code Understanding and Tools .

Code understanding process is heavily dependent on both
individuals and their specific cognitive abilities, and.on the set
of facilities provided by code understanding (14].- This suggests
that tools are one crucial factor to help human to understand
code. Though any successful practice of code understanding

. and software reuse does not require a tool, tools can simplify
some tasks especially when tackling a large system. Tools can

340

also be used to locate and identify reusable code, components,
and class libraries [15].

It is well acccptcd that code understanding can be enhanced
usmg reverse engineering technologies. Therefore a reverse en-
gineering tool can be seen as a necessary part in a code un-
derstanding system. Also, if one can learn more about how
programmers understand code successfully, one can build bet-
ter tools to support the understanding process [10].

2.3 Data-centred versus Control-centred
Code Understanding

People trying to tackle software evolution challenges use
a variety. of techniques and represéntations for understanding
programs. Most of these representations first focus on the con-
trol structure of a program such as call graphs, control flow
graphs and paths. This is called control-centred code under-
standing.

Data centred code understanding is another approach [9] for
program understanding ~ it first focuses on data and data rela~
tionships. Whereas the control-based approach | gives the con-
trol flow model directly and allows the data flow model to be de-
rived, the data-centred approach gives the data flow model di-
rectly and allows the control flow model to be derived. In data-
centred understanding, people usually first identify and classify
important variables in a program, then find the dependence re-
lationships among these variables by tracing the computation
done between specific locations in the programm. For example,
programmers can gain an understanding of a program’s vari-
able simply by the names of the variables, e.g., account-name,
account-number, etc. ‘This way of program understanding can
be supported by automatic variable classification, dependence
analysis and program and variable slicing. In business applica-
tions, data and variables play a dominant role and the ability
to quickly find dependence among variables without having to
trace and retrace control low paths saves considerable time and
enhances program u.nderstandmg

2.4 Code Understanding and Role of Hu-

man Knowledge

Human knowledge also plays an important role throughout
the whole process of component reuse in a program transforma-
tion system (which is usually an interactive system). This fact
is both crucial to the researcher (tool builder) and customer
(tool user).

To the reverse engincering researcher, the problem of how
to accommodate the use of human knowledge in a tool has to
be solved. In fact, the use of a program transformer covers
the aspect of static program analysis. Other aspects include
presenting useful information (e.g., comments in a program),
providing the user with a facility for naming reusable compo-
nents, etc.

2.5 RRRA — A System Used for Reuse

RRRA (Reverse-enginecring Reuse Re-engineering Assis-
tant) is ‘a tool designed for covering aspects of reverse-

-engineering, resue and re-engineering, and it has addressed the

reuse aspect in some extent. The reuse aspect in RRRA has
been influenced by both authors' previous research work, se-
mantic interface analysis and reverse engineering.

2.5.1 Semantic Interface ‘Analysis and Re-
verse Engineering

Semantic interface analysis is a formal approach and it has
been used in the development of a reuse tool called the Module
Integration and Adaptation Tool for Ada Components (MI—
ATAC) where semantic attributes of software components were
described by formal notations. Since software reuse includes

areas of concern such as representation, retrieval, and adapta-
tion and integration [3] [5], MIATAC attempted to use formal
semantic interface predicatesin solving these three areas of con-
cern. In particular, MIATAC focuses on the area of integration
and adaptation.

In MIATAC, the reusable Ada components are resident in
a reuse library and contain formal semantic interface specifi-
cations consisting of precondition, postcondition, and obliga-
tion predicates represented as specialised Ada comments. An
existing reuse library system will provide the initial retrieval
mechanism for the selection of candidate reuse components. A
candidate reuse component is then inserted into the application
system. The application system may consist of both newly de-
veloped components, and previously adapted reuse components
all of which may contain formal semantic predicates. This “syn-
tactically integrated” application system is then transformed
by a parser which organises the Ada code and the annotated
comments into a Descriptive Intermediate Attributed Notation
for Ada (DIANA) Tree intermediate form [7]. The DIANA
Tree is then traversed and analysed by predicate logic routines
to determine how well the candidate component fits into the
application system.

Another work which influenced the design of RRRA is
the REFORM (Reverse Engmcenng using FORmal Methods)
project [1] [2] [16]. The aim of the project was to build a proto-
type tool called the Maintainer’s Assistant (MA) which would
take existing software written in low-level procedurallanguages,
through a process of successive transformation, and turn it
into an equivalent high-level abstract specification expressed in
terms of a non-procedura.l abstract specification language (for
example, Z).

MA has both a firm theoretical foundation and a design
which. has evolved from case studies, which together provide
beneficial results when used with real programs; its method
combines analysis of data and code, and therefore it can ad-
dress maJor problems common to programs written in many
programming languages; and it only requires source code as its
input and it can be applied to heavily modified code which have
been maintained over many years.

2.5.2 < The Protbtype of RRRA

A main design philosophy of RRRA was to first build the
Browser/Interface component (See Figure 1) and use it for in-
tegrating other tool components {especially that may exist al-
ready). The overall process is as follows: -

RRRA takes the source code (in any language) and trans-
lates it into its equivalent RRRWSL (Reverse-engineering
Reuse Re-engineering Wide Spectrum Language). A user uses
the Browser Interface to control the whole tool, i.e., the Browser
calls each tool component and displays result on the interface.
The Modulariser will check the program, chop the program into
smaller programs which are of manageable size, and save it in
a database called Program Segments. Then, the user will take
a segment of code from the database to work on. The Browser
allows the user to look at and alter the code under strict con-
ditions and the user can also select transformations to apply
to the code. The Program Transformer works in an interactive
mode. Tt presents RRRWSL on screen in a pretty printed for-
mat and searches a catalogue of proven transformations to find
applicable transformations for any selected piece of code. Once
a transformation is selected it is automatically applied. The
code is then transformed to a form at a higher level of abstrac-
tion, such as Entity Relationship Diagram(ERD), Data Flow
Diagram, Structure Chart, etc. The Object Extractor will use
these high abstraction level forms to produce objects and save

341

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

them m the database named the Objects. During this process
formal links have been always kept between a segment of code
and its high level abstraction form (e.g. ERD), and between a .
segment of code and its representation of object. The Seman-
tic Interface Analyser will analyse information in. the Program
Segments, in the high' abstraction level form (e.g., ERD) and

in the Objects, give them formal attributes (i.c., they are an-

notated with predicates) and save them in the Reuse Library.
When the re-engineering process starts, the Synthesiser uses
the requirements in the New Design/Spec to make queries to
the Reuse Library. The Synthesiser will make best use of the
reusable components and invoke the Code Writer to generate
the part of code which was raquired by the new system but
was not available in the Reuse Library. The synthesised code
will be saved iri New Code but is still in RRRWSL.. Finally, this
code is translated into the target code in the required langunage.

Throughout the whole process the Knowledge Base plays
an important role. The Knowledge Base has many functions.
In this paper, we only emphasise its role for program transfor-
mations (to suggest transformations in a given situation) and
predicate annotation and propagation (to provide knowledge
information and abstraction rules).

3 Code Understanding in RRRA

3.1 A Method for Identifying Reusable
Components
After carefully studying the existing state of the art in this
field, a method was proposed for RRRA in identifying reusable
components through program understanding. The method con-
sists of the following steps:)

1. Translating a program in a source language, such as in

ADA or in COBOL, into RRRWSL..

2. Using initial tidy-up transformations to “clean up” the
target program in RRRWSL in order to reduce the re-
dundant statements introduced during the translation.

3. Looking for functionally self-contained modules. A code
module, a function or a procedure in the original soft-
ware system, are potentially self-contained modules. A
resuable component may well be obtained from one of
the above modules. A module which is riot a function
or a procedure may also be transformed into an abstract
data type, and hence also a candidate of a reusable com-
ponent.

4. Taking onie module obtained from the above process to
work on each time. Program transformations are applied
to the module to reverse the module into its high-level
representation in Entity Relationship diagrams.

5. The obtained Entisy Relationship diagrams together
with the original code are used by a Semantic Analysis
tool to generate semantic predicates and interface predi-
cates for a reusable module in terms of its pre-conditions,
post-conditions and obligations. These predicates are
used to serve as the roles of describing implicit seman-
tics, characteristics, and interface requirements of each
software component explicitly.

6. Storing a reusable module in the Reuse Library, and
maintaining a formal link between the reusable module
and its high abstraction level representation.

3.2 Implementation of the Method

Problems during the process of implementing the method
proposed above are discussed in the section.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

(Reuse Libracy
Code
Program ERD,DFD C . New
Objects . er:meu Desngnl Objeets
Segroents SC, Eic. Predicate pec Designfspec
- / Code Writer
; Sermantic
Modalarisec Progam Object Intecface Sunthest
Transfocmer Extractor Analyser .
Code
RRRWSL
Representation New Gode
(still in RRRWSL)

1
i
Source Code '__ Translator '

R e L e

Knowledge Base f

Browser + Interface

Treanslatoc —-’ Target Code]

D ‘Tool Componcnt
D) Dat Prescntation

h— Data Flow

— Data and Control

Figure 1: The Reverse-engineering Reuse Re-engineering Assistant (RRRA)

3.2.1 TUse of Entity Relationship Model

To reverse engineer code to a high abstraction level represen-
tation is to make the original code easier to be understood.
Therefore a model at high abstraction level is needed. Because,
as discussed earlier, data centred code understanding has many
advantages and the Entity Relationship model has been popu-
larly used for many years, the model is used in RRRA.

Entity models provide a system view of the data structures
and data relationships within the system [4] [6]. All systems
possess an underlying generic entity model which remains fairly
static in time. The entity model reflects the logic of the system
data, not the physical implementation.)

Entity models provide an excellent graphical representation
of the generic data structures and relationships. They provide
a clear view of the logical structure of data within the bound-
ary of interest and allow the analyst to model the data without
considering its physical form. Entity modelling provides a sys-
tem view independent of current processing; it is a system-wide
view not a functionally decomposed view.

3.2.2 Crossing Levels of Abstraction and Use
of Program Transformation

Abstraction techniques are heavily used in reverse engineering.
In reverse engineering, abstraction is the process of identifying
the important qualities or properties of the phenomenon be-
ing modelled. They abstract from irrelevant details, describing
only those details that are relevant to the problem at hand,
¢.g., understanding the design.

Usually, program code and its design are not at the same
level of abstraction — the design is more abstract than the
code. It is necessary to reduce the amount of complexity that
must be considered at any one time, so that certain number
of abstraction levels may exist during the specification extrac-
tion process. Bach “layer” can be considered as a programin a
language provided by a virtual computer, implemented by the
layer below. At the lowest layer, we have a real machine.

Program transformations are a suitable tool for crossing lev-
els of abstraction because proven transformations when applied

342

will preserve semantics of code before transformed for the trans-
formed code. . .

A Program Transformer is a good static analyser, because
it checks a piece of code thoroughly to see whether the condi-
tions of applying a transformation are met, and only when the
conditions are met can a transformation be applied.

3.2.3 Use of Programming and Domain
Knowledge

Transformations are design and proven by the tool designer or
reverse engineering researcher according to the research results
of reverse engineering. Well designed transformations should

“integrate all relevant knowledge, application domain knowl-

edge, programming knowledge, etc.
Human knowledge assists in the following aspects:

1. Modularisation of source code. The first step in deal-
ing with real software is to modularise the software into
manageable sized modules which ought to be function-
ally independent.

2. Searching for and naming abstract data types. An ab-
stract data type is an important concept of data abstrac-
tion. It is the user who guides a program transforma-
tion system in searching for an abstract data type and
names the obtained abstract data type. The name of an
abstract data type affécts further abstraction from the
abstract data type. Though tools can help in this case,
e.g., work of Sneed [12], the role of human is decisive.

3. Searching and naming reusable components. In extract-
ing reusable components from code, it is again the user
who directs the search. This includes questions of where
to look for, and how to name, reusable components.

4. Making use of any potentially useful information visible
in the code, e.g., meaningful variable names, comments,
indentation, procedure and function names, etc.

5. Making use of program syntax components, €.g., con-
‘trolled variable of a loop, assignment statement, etc.

6. Allowing user's hypothesis made according to software
engineering knowledge and domain knowledge. . The
user’s hypothesis can be continuously updated all the
time as the process of applying transformations is going
on: .

7. Providing help information from a tool, that may have a
built-in manual facility for all the transformations avail-
able.

3.2.4 Qombi‘ning Data and Structure Analy-
sis

One of the characteristics of third generation languages is that
high level program designs often translate at the implementa-
tion level to censtructs in both the code and data. For example,
a reference in the data design between two data structures is
typically implemented in COBOL by a foreign key, i.c., an in-
teger index from one to the other. The relation between the
two data structures can only be discovered by examination of
the data and the code, not the data alone. It seemed to us that
formal transformation offered potential to solve this problem.

3.2.5 Abstract Data Type and Reusable
Component

An abstract data type is usually a suitable candidate as a
reusable component. An abstract data type consists of “ob-
jects” and “operations”. Objects are usually implemented as
variables and operations are implemented as procedures and
functions. In reverse engineering, an abstract data type may
be formed by locking for a closure of a group of variables and
a group of progedures (or functions). No matter whether a clo-
sure was originally used for an abstract data type, if an abstract
data type is obtained from this closure in the code, it is helpful
in viewing the code at a higher abstraction level.

The above method of identifying a user-defined abstract
data type can be implemented satisfactorily in the program
transformation approach because a program transformeris usu-
ally a powerful analyser in searching for a closure.

3.2.6 Keeping Formal Links between
Reusable Components and Their High-
Level Representation

The process of transforming a module at the code level to its
high abstraction level representation may takes a number of
steps. The Program Transformer has a Built-in facility to keep
a full history of the transformation process. The advantage of
doing this is that when a route of abstraction fails the Program
Transformer can “retreat” to a suitable point and move forward
again. At the mean time, this facility maintains a formal link
between the original module to every intermediate stage of the
transformed module as well as the final version of the module.

3.2.7 Annotating Predicates for -Reusable
Components

A systematic abstraction for reusable components is based on
formal predicates, i.e.:

* annotating a predicate to each component,

* propagating the predicate to a higher level component,
and . :

* recognise the required predicate conditions for abstraction
rules (if the predicate conditions hold the abstraction can be
achieved).

The idea is to use data semantics and operation seman-
tics in programs to infer a high level abstraction and seman-

tics. An example in this paper is to use semantics of data

343

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C:

structure sequential-file and a loop of record copy to infer that
the module. file-backup(F'ilel, File2) has the post:condition,
EQU(Filel,File2), i.e. we have inferred and abstracted seman-
tics of module file-backupfrom its composed components. How-
ever this inference can only be achieved when proper predicates
are annotated with software components. Although the anno-
tating process may be an overhead, it usually helps to reveal the
embedded semantics, which is needed during the comprehen-
sion process. In other words, it should reduce guessing work
and clarify the semantics during the process. "This approach
can be achieved with the help the Knowledge Base in RRRA.

The Knowledge Base in RRRA plays a vital role in an-
notating predicates for the reusable components. Knowledge
Base contains two major information: software templates, rep-
resenting knowledge, including domain independent and spe-
cific knowledge of software components in the formal predicate
format; abstraction rules, representing conditions for abstrac-
tion. :

3.3 An Illustration

The example program used in this illustration was taken
from a COBOL text book and its COBOL source code is as
follows:

* THIS PROGRAM SEQUEHTIALLY ACCESSES TO TWO SEQUENTIAL =*
* FILES, ONE IN JNPUT MODE AND ONE IK OUTPUT MODE. *

IDENTIFICATION DIVISION.
PROGRAM-ID. FILE-BACKUP.

ENVIRONMERT DIVISION.
IRPUT~OUTPUT SECTION.
FILE~CONTROL.
SELECT. SOURCE-FILE-NAME ASSIGN TO XYZ
ORGANISATION SEQUENTIAL : -
ACCESS MODE IS SEQUENTIAL.
SELECT TARGET-FILE-NAME ASSIGN TO WXY
ORGANISATION SEQUENTIAL .
ACCESS MODE IS SEQUENTIAL.
DATA DIVISION.)
. FILE SECTIORN.
FD SOURCE-FILE-NAME. : i
PIC X(50).

01 SOURCE-RECORD
.FD_TARGET~FILE~NAME.
01 BACKUP-RECORD PIC X(50).

WORKING-STORAGE SECTION.
01 EOF PIC X.
PROCEDURE DIVISION.
MAIN. :
OPEN INPUT SOURCE-FILE-NAME
0UTPUT TARGET~FILE-NAME
PERFORM, WITH TEST AFTER, UNTIL EOF = “T"
READ SOURCE-FILE-NAME NEXT;
AT ERD -
MOVE "T" TO EOF
HOT AT END
MOVE “F" TO EOF
MOVE SOURCE-RECORD TG TARGET-RECORD
WRITE TARGET-RECORD;
EBD-PERFORN
* THE STOP RUN STATEMERT CLOSES.THE FILES
STOP RUN.

Table 1. A File-backup Program in COBOL

The - program is translated into its equivalent form in
RRRWSL (Table 2). The program module was a procedure
in the original program and it was called by a (COBOL) PER-
FORM statement. This program copies the contents in one file
to another file. Table 2 shows the format of the program when

- loaded in to the transformation tool of the RRRA prototype.

The identification division in COBOL is translated into a
comment statement in RRRWSL. Information in the environ-
ment division will be used when data division and procedure
division are translated, i.e., the files in the code are sequential

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

files. In the data division, COBOL records and files are trans-
lated into RRRWSL records and files. COBOL files in this
example are sequentially organised and sequentially accessed.*

In this program original file operations are translated into
RRRWSL as external procedures (denoted by !p which is the
RRRWSL function to call an external procedure for which it-is
known definitely which variables will be changed) or external
functions (denoted by !f which the the RRRWSL function to
call a named external function).

comment: “program-id:
file source-file-name with
record source-record with
end;
end;
file target-file-name with
record target-record with
end: -
end;
eof = 0;
Ip open file (i var source-file-name);
Tp open file (o var target-file-name);
while (eof £ 1) do v
if non_empty? (If eof? (source-file-name))
then eof:= 1
‘else eof:= 0;
!p read.file (source-record yar source-file-name);
target-record := source-record;
Ip write.file (target-record var target-file-name);

file-backup”;

fi;
od;

Table 2. The File-backup Program in RRRWSL

The above program is then dealt with by the Program
Transformer, wgich applies transformations to it. The process
to move from code to design/specification level and finally to
be annotated with formal pre-conditions, post-conditions and
obligations is a process of crossing levels of abstraction and the
program will become more abstract when abstraction program
transformations are applied. This process is also a process of
code understanding.

 To understand the module, the program transformation first
transform two records in the program into two data entities,
i.e., those two records in the module can be viewed as two data
entities. The entity keeps the same name as the record.

Operations on a sequential file are treated as operations on
a “mathematical” queue: to “read” a record being reading a
record form a queue, to “write” a record to a file being writ-.
ing a record to a queue, and to test whether the file operation
pointer is pointing to the end of the file being testing whether
the pointer is pointing the end of the queue.

When a record is transformed into an entity, any program
statement using this record must be changed accordingly. Be-
cause transforming a record into an entity is an abstraction,
the statement using the obtained entity must be expressed at a
higher abstraction level. In this case, the assignment statement
in the module should be viewed as those two entities (originally
two records) are related or linked.

Other two assignments in- the “if” statement was used as
control purpose should be viewed as something that would not
exist at the high abstraction level and therefore they can be
ignored.

The looping statement, while, is also used as a control
structure in implementing programs but did not appear in the
original program design. A looping statement can be treated as
enumerating the same operation on every instance of entities.
The condition part of the loop also does not contribute to the
Entity Relationship diagram. So a while loop can be removed
just leaving the body of the loop.

The original program is supposed to implement-copying all
the records from the original file to the backup file. At the
higher abstraction level, it is to say that there is a “copy” re-
lationship between two entities. Each record is one instance of
an entity. The original program is transformed into (Table 3):

entity source-record end;
entity backup-record end;
relationship entity target-record
_ has one back-up relation
with one entity source-record;

Table 3. An Entity Relationship Diagram for the File-backup
Program in RRRWSL

After applying transformations discussed in this section, the
final result of the “file-backup” program can be shown by an
Entity Relationship diagram (Figure 2).

When the original program was transformed into an En-
tity Relationship diagram, the user can easily decide that the
program segment can be a good candidate of a reusable com-
ponent. - Therefore, the component in RRRWSL (Table 2 and
3) will also be analysed by the Semantic Analyser(SA) in or-
der to generate a form annotated with formal pre-conditions,
post-conditions and obligations.

To demonstrate how SA works, we list the software tem-
plates and abstraction rules, which are related to the File-
?Tlckup program shown in Table 2. in Knowledge Base, as

ollows:

Software Templates For each type of software compo-
nent, such as external function, system function, data type,
operation, statement, data structure, etc., the Knowledge Base
should have a corresponding template for it, which describes

" its semantics and characteristics.

For the declaration of file structure,

pre-condition

1Sequential-File(file-name, record-name)
post-condition

\EQU (file-name, array[1..N] of record-name)

file file-name with
record record-name with
end;

end;

For function open file, where “?” feprcsents that any record
type make this condition TRUE,

pre-condition
1Sequential-fil{ file-name, ?)
post-condition
Index-of-Seq-File(1, file-name)
10pen-File(file-name)

!p openfile (i var file-name);
For function eo f?(file-name),

pre-condition

'Open-File(file-name)
1Sequential-fil{file-name, ?) -

\EQU (file-name, array[1..N] of 7)
VIndex-of-Seq-Fild(z, file-name)
post-condition

%%f i > N then eof?(file-name) = TRUE
lelse eof?(file-name) = FALSE

eof?(file-name)
For module read,

pre-condition
'Open-File(file-name)
\Sequential-filefile-name, ?7)

\EQU (file-name, array[l..N] of 7)
{Index-of-S5eq-Fild(4, file-name)
post-condition

'EQU (record, file-nameli])

‘tIndex-of-Seq-File(i + 1, file-name)

read(record, file-name)

For an assignment statement,

pre-condition

'EQU Typd(idl), Type(id2))

post-condition
'EQU(id1, id2)
1dl = 1d2

For module write,

pre-condition
'Open-File(file-name)
!Sequential-file(file-name, ?)
\BEQU(file-name, array[l..N] of ?)
!Index-of-Seq-File(1, file-name)
post-condition :

'EQU (file-namefi], record)
\Index-of-Seq-File(7 + 1, file-name)
write(record, file-name)

Abstraction Rules For the iteration variable: in a loop
statement,

pre-condition
Hteration-Index(: : .
'EQU(A,array[1..N] of record-name)
\BEQU(B,array(l1..N] of record-name
= V1 BEQU(A[], B[i])
\LEQ(i,N
post-condition '
‘teration-Index(s + 1)

14[i] = B[{]
and
pre-condition

1Sequential-File{ Filel, record-typel
1Sequential-File(F'ile2, record-type2,
!EQU (record-typel, record-type2)

= EQU(Filel,File2)
post-condition

¢ EQU(filelli), file2fi])

" Table 4 shows the module Backup_File after the analysis
and the condition propagation by the Semantic Analyser was
done and Table 5 shows the predicates having been propagated
from and to be attached to the original program module, which
can be used for further checking when it is reused.

comment: “program~-id: file-backup”;
pre-condition
!Sequential-File(source-file-name, source-record)
'EQU (source-file-name, array[l1..N] of source-record)
file source-file-name with
record source-record with
end;
end;
post-condition
1Sequential-File(target-file-name, target-record)
\EQU (target-file-name, array(1..N] of target-record)
file target-file-name with
record target-record with
end;
end;
eof = 0;
pre-condition
ISequential-fild source-file-name, 7)
post-condition)
!Index-of-Seq-File(1, source-file-name)
!Open-File(source-file-name)
!p open file (i var source-file-name);
pre-condition

345

Joint Conference of 1996 international Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

!Sequential-fil(target-file-name, ?)
post-condition
!Index-of-Seq-File(1, target-file-name)
!Open-File(target-file-name)

!p open file (o var target-file-name);
while(eof # 1)do
pre-condition .
!0pen-Fildsource-file-name)
!Sequential-fil(source-file-name, ?
\EQU (file-name, array[1..N] of ?
!Index-of-Seq-File(i, file-name)
post-condition
%f ¢ > N then eof?(file-name) = TRUE
lelse eof?(file-name) = FALSE
if non_empty? (i eof? (source-file-name))

then eof:= 1
else eof:= 0;
pre-condition

!Open-File{source-file-name)

!Sequential-file(source-file-name, 7)

!EQU (source-file-name, array[l..N] o f ?)
!Index-of-Seq-File(3, source-file-name)
post-condition i

'EQU (source-record, source-file-namefi])
!Index-of-Seq-File(i + 1, source-file-name)

!p read file (source-record yar source-file-name);
pre-condition

TEQU(Typel target-record), Type(source-record))
post-condition ‘
{EQU(target-record, source-record)

target-record := source-record;

pre-condition)
!Open-File(target-file-name)

!Sequential-file{ target-file-name, ?)

\EQU (target-file-name, array(l..N] of ?)
!Index-of-Seq-File(t, target-file-name) .
post-condition

1EQUY target-file-namel(i], target-record)
!Index-of-Seq-File(i + 1, target-file-name)

!p write_filé (target-record var target-file-name);

od;

Table 4. File-backup Program with annotated predicates

Based on predefined templates in the Knowledge Base, pred-
icate analysis and propagation, we can infer that the module
file-backup contains the following predicates:

pre-condition

!Sequential-file F'ilel, record-typel
!Sequential-file F'ile2, record-type2)
'EQU (record-typel, record-type2)
post-condition

'BEQU (Filel, File2)

file-backup(Filel, File2)

Table 5. Semantic Interfac_:e Predicates Generated

This cxamplé illustrates one of many experirments that have
been carried out.

4 Discussions

marks

Identifyingreusable components from existing code with the
help of coding understand tﬁrough program transformations is
a practical approach. The use of formal program transforma-
tion will give users confidence about the reusable components
identified. The use of semantic interface analysis will make the
selection of a reusable component more accurate. And after
all, the whole process is formal and therefore has been properly
integrated into a tool. The approach used in the RRRA has
several features: :

and Concluding Re-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Source-Record

one

<

one

Target-Record

Figure 2: Entity Relationship Diagram for File-Backup Program

e Program understanding techniques have been fully used

by the proposed method and integrated in building the
tool. Main examples include:

1. Code reading is used in modularising a program
system.

2. The use of Entity Relationship diagrams is based
on the idea of code centred understanding.

3. The use of program transformation represents the
use of formal methods.

4. Programming knowledge is used in many places,
such as dealing with file operations, etc.

5. Static analysis is used for checkmg applicability of
transformation.

¢ Reverse engineering code into high level abstraction rep-
resented in Entity Relationship diagrams provides the
user with a good chance to understand a program mod-
ule existed in the old code and this will help the user to
decide more confidently whether the module is reusable
or not.

In addition to helping the user to comprehend a pro-
gram module forma]]y, the proposed approach will still
use a formal means to examine the module and generate
formal semantic interface predicates for reuse.

Experiments have demonstrated the feasibility of ‘the
method proposed in this paper. Since the method always

starts with looking for manageable-sized code blocks, it |

can be applied to large programs, i.e., the method can
scale up.

Example programs used in the experiments were mainly
written in ADA, COBOL and C, and they were translated into
RRRWSL. It is expected that more experiments will be car-
ried out on programs written in other languages. Also, in the
future work of the research in RRRA, the results of applying
those reusable components identified by the approach described
in the paper will give useful feedback on improving the process

of identification of reusable components.

References
[t] Bennett K.,

“An Overview of Software Maintenance

and Reverse Engineering”, in The REDO Compendium,

John Wlley & Sons, Inc., Chichester, 1993.
[2] Bennett K., Bull T. and Yang H.,

“A Transformation

System for antenance — Turmng Theory into Prac-
tice”, IEEE Conference of Software Maintenance-1992
(CSM '92), Orlando, Florida, November, 1992.

(3] Biggerstaff T. and Ritcher C., “Reusability Framework,
Assessments and‘Dircction", IEEE Software, Vol.4, No.
7, pp. 252-257, 1987.

346

-

5

[6

{7

[8

[10

[11

[12

13

[14

(15

[16

] Chen P. P., “The Entity B:elationship Model — Toward
a Unified View of Data”, ACM Transaction on Database
Systems, Vol. 7, No. 1, March, 1976.

] Chu W. C. and Yang H., “Component Reuse Through
Reverse Enginecering and Semantic Interface Analysis”,
IEEE Nineteenth Computer Software and Application
Conference {(CompSac’95), Dallas, Texas, ‘August, 1995.

] Cutts G., Structured Systems Analysis and Design
Methodology, Paradigm Publishing Company, London,
1987.

] Evans A., Bulter K., Goos G. and Wulf W., DIANA
Reference Manual, Tartan Laboratories, Inc., Pitts-
burgh, 3rd Edition, 1983.

] Gilmore D. J., “Models of Debugging”, Fifth European
Conference on Cog'mtwe Ergonomics, September, 1990,
Urbino, Italy.

] Joiner J.K., Tsai W. T., Chen X. P. Subramanian S.

and Gandamanem H, “Data-Centred Program Under-
standing”, IEEE Intemational Conference on Software
Maintenance-1994, Victoria, Canada, 1994.

] von Mayrhauser A. and Vans A. M., “From Code Un-
derstanding Needs to Reverse Engineering Tool Capac-
ities”, Proceedings of the Sixth International Workshop
on Computer-Aided Software Engineering (CASE '93),
Singapore, July, 1993.

] Robson D. J., Bennett K., Cornelius B. J. and Munro
M., “Approaches to Program Comprehension”, Journal
of Systems Software, 1991.

] Sneed H. M. and Jandrasics G., “Inverse Transforma-
tion of Software from Code to Specification”, IEEE Con-
ference on Software Maintenance-1988, Phoenix, Ari-
zona, 1988.

] Soloway E. and Ehrlich K., “Empirical Studies of Pro-
gramming Knowledge”, IEEE Transaction on Software
Engineering, SE-10, Scptember 1984.

] Tilley S. R., Wong K., Storey M. D. and Muller H. A.,
“Programmable Reverse Engineering”, IEEE Interna-
tional Conference on Software Maintenance-1994 (ICSM
'94), Victoria, British Columbia, Canada, September,
1994.

] Wappler T. and Yglesias K P., “What A Reuse Tool
Can Do for You”, Object Magazme Vol. 4, No. 8, Jan.,
1995..

] Yang H., “The Supporting Environment for A Re-
verse Engmeenng System — The Maintainer’s Assis-
tant”, IEEE Conference on Software Maintenance-1991
(CSM '91), Sorrento, Italy, October, 1991.

