« Joint Conference of 1998 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

High-Level Reuse in the Design of an Object-Oriented

Real-Time System Framework

Win-Bin See® and Sao-Jie Chen
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, R.O.C.
email: csj@cc.ee.ntu.edu.tw

Abstract) ‘
Reuse is one of the major strategies to
increase software productivity. Object-oriented
techniques provide sound mechanism to support
the possibility of reuse. Yet, in order to promote
the effectiveness and scale of reuse, augmenting
the level of reuse is a promising direction to
endeavor. In the implementation of our Object-
Oriented Real-Time System
(OORTSF), we have attempted to design a
reusable object-oriented software framework for
embedded real-time applications. Later, with the
proliferation of design patterns, we found the
‘concept of design patterns be helpful in the
documentation and dssessment of our design.
Besides, from the aspect of promoting the
applicability of our framework, we found that
through adapting our framework for some open
software architecture, like CORBA, we can setup
a path to extend the reusability of our OORTSF
towards distributed systems. In our experience,
design pattern, framework, and architecture
complement each other and will become a
synergy of object-oriented technologies.

Key Words:
Software Reuse

‘Object-Oriented Paradigm,

1. Introduction

Software development cost has always been
a concern in software industry. Software reuse is
a direction towards software development cost
reduction, and augmentation in the level of reuse
entities will further strengthen the feasibility of
reuse to a larger scale. Recently, three high level
software reuse technologies, (1) Design patterns
[1,2], (2) Frameworks [3,4], and (3) Software
architectures [5,6], are evolving rapidly and
some exhilarant results have been reported [7].

? Win-Bin See works for Aero Industrial

Development Company, Taichung, Taiwan, R.O.C.

Framework -

In what follows, we discuss the high-level
reuse techniques based on: design patterns,
frameworks, and " software architectures, and
describe the design of our object-oriented real-
time system framework (OORTSF). Then, we
show how to use design patterns to document
and assess the OORTSF, and how to extend
OORTSF to an open architecture platform.
Finally, a conclusion is given.

2. High Level Reuse Techniques: Design
Patterns, Frameworks, and Software
Architectures '

Using terms similar to those have been used
in parallel processing, software reuse can be
classified as (1) low-level, or fine-grain reuse,
that reuses only small amount of code segments
at programming level, (2) high-level, or coarse-
grain reuse, that reuses design concepts and/or
larger amount of codes. Promoting the level of
reuse .is important in increasing the scale of
software reuse. In this article, we will focus on
high-level reuse. Promising technologies = in
high-level reuse are: (1) Design Patterns, (2)
Frameworks, and (3) Software Architectures.
Figure 1 shows a high-level reuse technology
hierarchy.

& Design Patterns provide solution to a
general design problem using sets of related
classes and objects. The description of
design patterns often provides metaphorical -
abstractions to make users capture the
concept easily and to use the patterns
effectively. Typical examples of design
patterns are, (1) structural pattern “Facade,”
which intends to provide a unified interface
to a set of interactions in a subsystem; (2)
“Observer,” which defines a one-to-many
relationship to reflect the changes of an

363

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

‘

High Level ,
Reuse
Design Frameworks Architectures
Patterns .
' / I
Architecture Architeéuire Architecture
Styles Frameworks Platforms
Figure 1. Classes of high-level reuse.
Design
Pattern 2 Desi
Design . esign
Patte%‘n 1 Pattern 3

Object

Figure 2. Using design patterns to construct an application.

|

object state into different forms of view [1]:
Design patterns have been used as a tool to

document a larger reusable software entity,

the framework [8]. Design patterns can also
be used to design or to help in assessing the
design of an application [1,2]. Figure 2
shows that application software can be
thought of or actually composed of design
patterns. The content of a design pattern
usually provides rich semantic descriptions.
Hence, a common set of design patterns can
enrich the communication among different
parties joining a software development
process.

Frameworks provide a set of collaborating
classes and run-time objects to facilitate the
creation of software in some specific

Application l

!

Application specific specialization

$

Framework I

Figure 3. Using framework to construct applications.

364

application domain. Figure 3 shows typical
usage of a framework, a specialization of
underlying framework to create application
specific software. Figure 4 shows a
framework for multimedia applications [4].
In this framework, domain object classes
were identified and organized. Media
format class is used to abstract various
media formats, such as JPEG image data or
ASCII text format data. Media component
class encapsulates the physical media
component, such as video mixer and image
scanner.
Software Architectures
Crafting software is also called to architect
a software. An operational software has
some sort of architecture inside. Since we
are interested in the reuse aspect of
software architectures, we further
differentiate the reusable entities in
software architectures- into three different
categories, (1) architecture style, (2)
architecture framework, and (3)
architecture platform. The differences
among them and examples for each
category are described as follows.
® A software architecture style shows

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

MediaFormat I

L N\T——

!TemporalMediaFormat "GraphicFormat I

AudioFormat

[Digital Audio | [AnalogVideo | |Digital Video |

Figure 4. Multimedia Framework.

Component

IImagerrmat] |Producer ’ |Consumer I

a well-established common form of
global software organization. For
example, according Shaw and Garlan
[6], seven styles of architectures have
been introduced, they are Pipes and
Filters, Object-oriented organiza-
tions, Implicit invocations, Layered
systems, Repositories, Interpreters,
and Process control.
® An architecture framework is a more
detailed and - complete framework
using one or more architecture design
styles for some specific domain
application development. A software
architecture artifact designed with
some style can be reused as an archi-
tecture framework;, if only it provides
enough documentation and - builds
enough flexibility inside to encom-
pass a certain application domain.
In the article [9], an architecture
for telecommunication-infrastructure
systems has been introduced. Since it

platforms are designed to provide

cross :applications software commu-
nication. Thus, they can be served as
an infra-structure to promote the
object level collaboration and reuse,
The Common Object Request Broker
Architecture (CORBA) and Specifi-
cation of Object Management Group
(OMG) [5,10] is an example of this.
Figure 5 shows a layered architecture
view of the OMG CORBA reference
model. Under CORBA, all communi-
cations between = components are
managed by the ORB (Object
Request Broker). The ORB is the
foundation of OMG solution in an
open distributed computing
environment. CORBA supports
applications to run in heterogeneous
computing platforms, insulates
applications from the variations in
hardware platforms and in operating
systems.

is an architecture with more specific =~ Table 1 summarizes the distinctive attributes of
domain of application, we categorize these high-level reuses. We compare different
it as an architecture framework. high-level reuse categories with the following

Although, this architecture has been

claimed to be based on “building
blocks” instead of being “object- -
oriented”, we believe that it is
possible to have “object-oriented”
counterpart for this kind of system.

® An architecture platform provides .a
flexible infra-structure to fit a wide
range of applications. An architecture
platform is similar to an operating
system in providing some basic
services to the application software

LCIient Appli'cation] I Objects

A

ORB Interface I IObject Adapter

ORB Core

Operating System Platform 1

Figure 5. An architectural view of the

developed on it. Yet, architecture

365

OMG CORBA model.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Table 1. High level reuse styles aﬁd related features

Mlﬂ)eﬁgn Patterns |Frameworks Architectures
Examples Gamma et al. [1] |Multimedia Architecture Styles [6];
Framework [4] |Telecom. architecture [9];
' OMG CORBA [5,10]
Reuse entities Conceptual, Design, [Design, Code Conceptual,;
Code Design, Code;
Object
Application domains Wide range Specific Wide;
Specific;
: Wide
Coupling with computing |Low High Low;
platforms High;
Low
Effort (provider) Low Medium to High [High
Effort (user) Medium Medium High

attributes: (1) reuse. entities, (2) -application

domains, (3) coupling with computing platforms,

and (4) the amount of the effort spent by

providers and users of the reuse items.

¢ In first row of Table 1, examples for three
different high-level reuses are given. In the
last column of the examples row, three
items are listed, each item corresponds to
one of the three sub-categories of
architecture-level reuse.

¢ In the row of reuse entities, we identify four
reusable entities: (1) conceptual entity, (2)
design, (3) code, and (4) object. Reuse in
object entity means to reuse the run-time
object, the component software concept [5]
belongs to this category, CORBA is an
open standard architecture platform which
can be used to develop component
software.

¢ In the row of application domains, design
patterns are solutions to general problems,
thus it has a wide range of application
domains. A framework will be more
specific in its domain of application. In the
architecture-level of reuse, an architecture
style can be used in different application
domains, while an architecture framework
will be in a more specific application
domain.

¢ In the row of coupling with computing
platforms, the framework and architecture
framework will be more specifically
developed, hence the coupling of them with
computing platforms will be higher, the
reuse of these entities to different platforms
need to. consider more about inter-platform
porting issue.

4 As shown in the effort rows in the table, the
provider and the user have to spend high

effort in producing the reusable architecture
artifact and customizing it, respectively; but
the scale, and hence the potential benefit, of
reuse in this level will also be prominent.

3. Object-Oriented Real-time System
Framework (OORTSF)

Real-time systems must be suitably

" constrained in order to be able to verify the

timing behavior. One way to constrain a real-
time system to have predicted timing is to
implement it as a system of periodic tasks. For
periodic tasks, three real-time task scheduling
methods have been proven to be theoretically
sound and practically useful, they are: (1) cyclic
scheduler (CYS), (2) rate monotonic scheduler
(RMS), and (3) earliest deadline first scheduler
(EDF) [11]. In our framework, the above three
scheduling methods are supported. Users can
choose whichever is suitable for their need.
Object-oriented paradigm is pledged for (1)
its power in modeling real world objects, and (2)
its reusability. Providing an object-oriented real-
time system framework will help the real-time
application system developers to integrate their
real world objects into this framework more
naturally. Hence, we design a framework using
object-oriented paradigm, called the object-
oriented real-time system framework (OORTSF),
where abstract class concept of object-oriented
paradigm is used to extract common behavior of
the objects under consideration. For example, we
defined an abstract class CSchedulerBase to
capture the basic behaviors of the schedulers
needed; then an inheritance mechanism is used to
specialize this abstract base class into three
schedulers differentiated by their scheduling
methods:) CCYScheduler, 2)

366

CRMScheduler, and (3) CEDFScheduler.
Figure 6 shows the class hierarchy diagram of
scheduler-related classes and their associated
attributes and member functions in OORTSF.
System supporting classes other than
scheduler and application tasks in OORTSF,
such as: (1) TimeBase, (2) Exception Handler, (3)

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.O.C.

of the FaultManager object contains:
fault identification code (fault_id), fault
occurrence - time (fault time) which .
shows the first occurrence of the fault, fault
severity level (fault severity), fault
occurrence count (fault cnt), and fault
message.. The occurrence count of faults

| CObjectBase |
| | |
CTask CSchedulerBase | CCollections I
Attributes: Attributes:
int Period; int ScheduleType; 2%
int ExecutionTime; int FrameSize; CTaskMap
int Deadline; Member Functions: Attributes:
int BlockTime; CSchedulerBase(); - Member Functions:
int Phasing; virtual void Schedule(); TaskRegister();
char *ResourceUsage; |{virtual void ScheduleCheck(); TaskCount();
Member Functions: virtual void ScheduleBuild(); NextTask();
virtual void CTask(); |[|virtual void TargetSysBuild(); FirstTask();
CTaskInit();
CTaskExec();
|
[cCYScheduler | | CRMScheduler | | CEDFScheduler
Figure 6. Class hierarchy of the OORTSF framework.

Fault Manager, (4) Shared Resources, (4) I/O

Data Link, and (5) TMR (Triple-Module-

Redundancy) Interface, are presented as follows.
CTimeBase
This is the time base class. A system time is
provided by an object of this class. The
system time resolution can be adjusted by
refining the bebavior of this class. The
execution time frame size is also
determined in this class by interrupting the
system at periodic intervals.

4 CExceptionHandler .
Any exception condition, e.g., system
power failure and machine errors, will
cause a system exception. After exception
handler performs the system status saving,
it will invoke the fault manager for further

handling and fault reporting.
¢ CFaultManager

In a typical embedded application
environment, the memory tends to be of
limited size. To reduce the memory
consumption, we give a fixed-sized table to
manage fault collection. Figure 7 shows the
definition of CFaultManager class. The
information kept inside the fault list

367

will be helpful for post mission trouble
shooting. .
4 CSharedResources

This class provides a semaphore operations

to guard shared resources in the application

to ensure serialized access to it. The

definition of this class is shown in Figure 7.
¢ CI/ODatalink

This class provides the basic input and

output function of the system,
¢ CTMRInterface

* As a variant of our kernel design, a

TMRInterface is introduced. It is because

our project requires the kérnel to support

system with fault tolerant hardware. This
class is responsible for the interfacing with

a TMR design.

A real-time application using OORTSF
consists of a scheduler object, a task-map object,
and one or more application task objects, and
objects of the above-mentioned supporting
classes. In Figure 6, a variable started with a
leading "C" means that it is a class definition.
Directed arrow shows the inheritance relation
between classes, the arrow points from derived
class to superclass. Each application task

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

definition must be encapsulated in a class
derived from CTask. The scheduling related
parameters of the task, needed by the scheduler,
ate defined as attributes of this class and they
should be provided by the system user. A task-
map object, instance of CTaskMap, is used to
collect the application task objects. The
collection operation is done via the
TaskRegister method of the task-map object.
A scheduler object is an instance of one of the
three scheduling-algorithm-specific ~scheduler
classes: CCYScheduler, CRMScheduler,
and CEDFScheduler. All these three classes
are derived from CSchedulerBase. This
framework can be operated in two phases: (1)
Schedulability check phase, (2) Application
execution phase. In the schedulability check
phase, all application tasks will have to be
registered into a task-map object via the
TaskRegister method, the task-map object
will be analyzed by the ScheduleCheck
method of the scheduler object to check the
schedulability. If the application tasks get
through the schedulability check successfully,
the tasks can be scheduled for normal system
operations, that is to enter phase two operation.
After the success of schedulability check, user
has an option to generate a compact target
system containing only execution codes of
application tasks and framework kernel. This job
is done via the TargetSysBuild method of
the scheduler object. Another way to enter phase

two operation is using the Schedule method of

the scheduler object to start the application
directly. Figure 8 shows the schedulability check
and target system build operations of this
framework. We have also devised an interactive
user friendly graphical user interface for the
above operations which includes task parameéters
entry, schedulability check reports, and
application task build [12]. Figure 9 shows a set
of typical collaborating objects in an embedded
system using OORTSF.

4, Design Patterns Assessments of OORTSF

Users of a framework do not need to have
thorough understanding about the design details
of the framework. Using design pattern as a
description language to document a framework, a
framework user will be able to have a quick
understanding about the mechanisms used in the
framework, specially when the user already has
general knowledge about the design patterns
used in the document. In what follows, we
discuss some design patterns which can be used
to document and assess the OORTSF. Gamma
categorized the design patterns [1] based on their
purpose into (1) creational patterns, (2) structural

patterns and, (3) behavioral patterns. For the

assessment of OORTSF, we choose three

structural patterns: Adapter, Bridge, and Proxy;
and three behavioral patterns: Iterator, Observer,
and Strategy.

& Adapter: It converts the interface of a class

" into another interface expected by a client.
Adapter lets classes work together that
‘could not - -otherwise because of
incompatible interface. In OORTSF
framework, application tasks need to be
converted to the format of the Ctask class,
Adapter pattern can be used by the users of
the framework to adapt their tasks to the
framework.

¢ Bridge: This is a structural pattern to
separate the abstraction from its
implementation. Since we have cropped
three different kinds of real-time scheduling
methods in OORTSF and there is
possibility to introduce some other
scheduling methods, it looks feasible to use
the Bridge pattern for the design of a
scheduler class. However, in order not to
introduce overhead of using pointers in
Bridge pattern design we do not adopt the
Bridge pattern in our scheduler class
design. :

& Proxy: This pattern provides a surrogate or
placeholder for another object to control
access to it. After the scheduler schedules
some application task objects to execution
according to the scheduling method used,
the scheduled tasks have to be dispatched to
the processor. Proxy pattern cari be used to
hold the entry point of an application task
for dispatching.

& Iterator: Iterator pattern provides a way to
access the elemerits of an aggregate object
sequentially ~ without - exposing its
underlying representation. In OORTSF, the
schedulability check can be implemented in
a task-map object to access the required-
task during the schedulability check phase
and the application execution phase.

& Observer: This is a behavioral pattern to
define a one-to-many dependency bétween
objects so that when one object changes
state, all its dependents are notified and
updated automatically. This pattern is used
to implement the phase 1 operation of
OORTSF, that is the schedulability check
report. We provide numerical output
statistics and timeline display to show the
result of off-line scheduling.

& Strategy: The intent of the Strategy pattern
is to- define a family 'of algorithms, to
encapsulate each one, and to make them
interchangeable. Strategy pattern lets the

368

algorithm vary independently from the
clients that use the Strategy. Since different
scheduling methods have different
behavioral properties, we let the user
explicitly choose one from the scheduling
algorithms provided by OORTSF. Thus,
this pattern is not needed.

In above discussions, Adapter pattern
demonstrates a method for the user to integrate
application tasks to the framework to make them
compatible with CTask class. The discussions
about Bridge, Iterator, Observer, Strategy, and
Proxy patterns show the assessment about the
design decisions used in OORTSF.

5. Extending OORTSF

OORTSF is a real-time software framework
designed with embedded system as our target
application domain. In OORTSF, we build the
facilities of schedulability check for three- well
established algorithms, namely (1) cyclic
executive, (2) rate monotoric scheduling, and-(3)
earliest deadline first scheduling algorithms: By
adapting the OORTSF to an ORB of CORBA
architecture, we can integrate other tasks

implemented in CORBA into OORTSF. In su¢h'

a way, OORTSF can be extended to behave as an
ORB client application, as shown in Figure 5,
and ‘the ORB server objects' can' be used ‘as

application tasks of OORTSF. The timing

overhead of the ORB services can be calculated
and accumulated into the real-time scheduling
task parameters of OORTSF CTask objects.
After these modifications, the two phase
operations of the OORTSF can be used to do the
schedulability check and execution for the real-
time applications ona CORBA environment.
This is an example of integrating a framework
to ‘an architecture platform. We believe these
kinds of interaction in high-level reuse

technologies will extend the degree of software

reuse.
6. Conclusion

In this article; we describe three high-level

reuse techniques used in object-oriented software-

development: = (1) -~ design patterns, (2)
frameworks, and (3) software architectures. The
architecture-level ‘reuse -has been further
classified into three different categories: (1)
architecture ‘styles, (2) architecture frameworks,
and (3) architecture platforms. Using the design
patterns to refrospect a préviously designed
framework will be helpful - to' document and
evaluate the framework. With the use of an
architecture platform, like CORBA, we found 2
way to extend ‘the reusability of our real-time

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C. -

framework to a distributed computing
environment. We believe that the proliferation of
high-level reuse technologies: design patterns,
frameworks, and software architectures, will
further inspire the object-oriented software reuse
to a much larger scale. The iterative examination
and adaptation of high-level reuse technologies
available will inspire new way of enhancing and
extending the existing design in a good cost-
performance ratio. .

References

[1] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software,
Addison-Wesley, Reading, Mass., 1995.

[2] W. Pree, Design Patterns for Object-
Oriented Software Development, Addison-

. ‘Wesley, Reading, Mass., 1994.

[31 W. Myers, “Taligent’s CommonPoint: The
Promise of Objects,” IEEE Computer, Vol.
28, No: 3;-March 1995, pp. 78-83. '

[4] S. J. Gibbs and D. €. Tsichritzis,

- Multimedia Programming: Objects,
Environments and ‘Frameworks, Addison-
Wesley, 1994.

[51 R. M. Adler, “Emerging Standards for
Component Software,” IEEE Computer,
Vol. 28, No. 3, March 1995, pp. 68-77.

[6] M. Shaw and D. Garlan, Software
Architecture: perspectives on an emerging
discipline, Prentice Hall, New Jersey, 1996.

- [71 D. C. Schmidt, “Using Design Patterns to

Develop Reusable Object-Oriented
Communication Software,” Comm. ACM,
Vol. 38, No. 10, Oct. 1995, pp. 65-74. _

[8] R. E. Johnson, “Documenting Frameworks
using - Patterns,” In Proceedings of
OOPSLA’92, (Vancouver, BC, Oct. 1992),
pp. 63-76.

[9] F.J. Van Der Linden and Jurgen and K.
Muller, “Creating Architectures with
Building Blocks,” IEEE Software, Vol. 12,
No. 6, Nov. 1995, pp. 51-60. .

[10] J:R. Nicol, C. T. Wilkes, and F. A. Manola,
“Object Orientation in Heterogeneous
Distributed Coitiputing Systems,” [EEE
Compuiter, Vol. 26, No. 6, June 1993, pp.
57-67.

[11] C. L. Liu and J. W. Layland, “Scheduling
Algorithms for Multiprogramming in a
Hard Real-Time Environment,”” JACM, Vol.
20, No. 1, 1973, pp. 46-61.

[12] T.'Y. Kuan, W. B. See and S. J. Chen, “An
Object-Oriented Real-Time Framework and
Development Environment,” Position paper
for the OOPSLA’95 Workshop#18, 16 Oct.
1995, Austin, Texas, USA. '

369

Proceedings of International €onference on Distributed
Systems, Software Engineering and Database Systems

CFaultManager CSharedResources
Attributes: Attributes: '
fault_rec { char *Name;

int fault_id; ‘| |[FAR PTR int *pSemaphore

int fault_time; int ProcessTime;

int fault_severity; - CTask *UserTaskList;

char *fault_message; | |CTask *TaskInUse:

int fault_cnt; ‘\Member Functions:

} fault list[20]; Operator_P(); //Lock
Member Functions: Operator_V(); //Unlock
fault_report(); : SR_use();
fault_handle();
fault_list_read();
fault_list_write();

Figure 7. Fault manager class and shared resources class.

Timing Requirement N s'oheduvlabﬂity R Schedulability
of Tasks | Check Report
Application Tasks Target System | Kernel +
> 3 Application
Source Code Build
Tasks Codes

Figure 8. Schedulabilily.chcck and target system build operations of OORTSF. |

TimeBase |

’(ExceptionHandler]
- Fault Manager
‘ I/0 DataLink \ TMR Interface

Figure 9. Collaborating objects in the OORTSF.

-370-

