Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

SSCC: A Sufficiently Smart Compiler-Compiler

Wuu Yang and Yen-Tsan Liu
Computer and Information Science Department
National Chiao-Tung University, HsinChu, Taiwan, R.O.C.

Abstract. Artribute grammars are a formalism for
specifying cofmputations on syntax trees. SSCC is a
practical attribute-grammar system based on -a
polynomial-time extension of Kastens’s ordered attri-
bute grammars. The system comprises of two subsys-
tems. . The generation subsystem computes the evalua-
tion order of attribute occurrences in production rules
and translates attribute equations into low-level code
for a virtual stack machine. The evaluation subsystem
invokes tools to perform lexical and syntactic analysis
and evaluates the attribute instances during a traversal
of the syntax tree. Three features make SSCC capable
of performing any desired computation (within the. con-
straints of ordered attribute grammars): user-defined
data types, user-defined functions, and the finalize
function. A user may.define arbitrary types and func-
tions for use in the attribution equations. After all the
antribute instances are evaluated, SSCC calls the
finalize function, which may be supplied by a user,
and passes it the whole decorated syntax tree. - This
offers a user opportunities for further processing the
tree and the attributes. The SSCC system is semi-
strongly typed in the sense that type consistency within
a specification is fully checked; however, type con-
sistency between a specification’and user-supplied func-
tions, which are written in the C language, is not.

Key Words and Phrases: attribute grammars, ordered
attribute grammars, compiler compiler

Acknowledgement. - This work was supported in part by
National Science Council, Taiwan, R.O.C. under grant
NSC 85-2213-E-009-051.

1. Introduction

Attribute grammars, first introduced in 1968 [9],
have attracted much research interest. Attribute
grammars are a very convenient and powerful
framework for specifying computations based on
(abstract or concrete) context-free grammars. In
particular, they may be used to specify the seman-
tics of programming languages since the meaning
of a program may be viewed as attributes of its
syntax tree and specified in a syntax-directed
manner.

An attribute-grammar system is similar to a
parser-generator such as yacc [6] in that it
automatically generates an executable program
from a declarative specification. Instead of pars-
ing a context-free language, an attribute-grammar
system is concerned with computing attributes of
symbols in syntax trees specified by an (abstract

406

or concrete) context-free grammar,

To evaluate attribute ‘instances of a syntax tree,
it is usunally necessary to perform the evaluation in
an order that is consistent with the dependencies
among the attribute instances in the syntax tree.
This gives rise to the circularity problem of attri-
bute grammars: it is possible to produce circular
(and undesirable) dependencies in a syntax tree
for certain classes of attribute grammars. Thus,

‘the well-defined attribute grammars (or non-
circular attribute grammars), which creates no
‘syntax trees with circular dependencies, are

identified. For certain well-defined attribute
grammars, there is a fixed evaluation order of all
attributes of all symbols that can be applied-to all
syntax trees derived from the attribute grammar.
Kastens identifies such a class of attribute gram-
mars, called the ordered attribute grammars
(OAG), that allows a polynomial-time decision
procedure [7]. Yang et al. improve Kastens’s
algorithm for a larger class of grammars, called

" the extended ordered attribute grammars, that also.

allows a polynomial-time decision procedure
[18]. Efficient evaluators' may be built for
(extended) ordered attribute grammars because it
is not necessary to keep an attribute dependence
graph and to find an evaluation order for each
syntax tree. It is argued that most practical attri-
bute grammars belong to the class of OAG [7].
The SSCC system is based on the extended
ordered attribute grammars.

SSCC (a sufficiently smart compiler-compiler)

is a practical attribute-grammar - system. SSCC

defines a specification language for attribute gram-
mars. The language provides a few basic data
types. However, a user is free to define any

desired types as long as he supplies the related

operations on the types. Full static type-checking
within the attribute equations is performed by
SSCC. The specification language also provides a
few primitive operations for use in the attribution
equations. - Again, a user is- free to apply any
desired additional operations either to clarify the
attribute equations or to manipulate user-defined
types. The user-defined operations are written in
the C language and are supplied by the user. The
SSCC system automatically makes appropriate
links to these user-defined functions .during
evaluation.

The SSCC system, shown in Figure 1,
comprises of two subsystems: a generator and an

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

an SSCC
specification

- scangen
specification i

scangen source
extractor

scangen

llgen source
extractor

scangen ‘
table
llgen llgen

user-defined
functions
* _ 1

tree- walker decorated
—»| and VM

. parse tree

interpreter

SSCC evaluator

evaluator
generator

SSCC generator

scanner
driver

parser
driver

source
- file

Figure 1. SSCC system architecture

evaluator. The generator computes the evaluation
order of attribute occurrences in productions and
translates the high-level attribution equations into
lower-level code for a virtual stack machine. The
generator also produces the token definitions and
the context-free grammar. The token definitions
are translated into a table for a scanner by the
scangen tool [4]. The context-free grammar is
translated into a parse table for a parser by the
ligen tool [4]. The frontend of the evaluator con-
sists of drivers of a lexical analyzer and a parser
that make use of their respective tables. After a
program is translated into the corresponding syn-
tax tree, the evaluator traverses the tree based on
the evaluation order. During the traversal, the
evaluator interprets the virtual-machine code pro-
duced by the generator and makes appropriate
calls to ~user-defined functions. The fully
decorated tree is passed to a finalize func-
tion, which may be supplied by the user. This
offers the user opportunities for further processing
the tree and the attributes.

The rest of the paper is organized as follows.
We introduce the definition of attribute grammars
in Section 2. The SSCC specification language is
introduced in Section 3. In Section 4, we define

407

the virtual machine and show the implementation
of the SSCC system. We conclude this paper in
the last section.

2. Definition of an Attribute Grammar

In this section, we define attribute grammars.
Basically, we adopt Kastens’s notations [7].

An attribute grammar is built from a context-
free grammar (N, T, P, S), where N is a finite
set of nonterminals, T is a finite set of terminals,
S is a distinguished nonterminal, called the start
symbol, and P is a set of production rules of the
form: X —> o, where X is a nonterminal and o is
a string of terminals and/or nonterminals. For
each nonterminal X, there is at least one produc-
tion rule whose left-hand-side symbol is X. As
usual, we require -that-the sets of terminals and
nonterminals be disjoint. :

Atiached to each symbol X of the context-free
grammar is a set of attributes Ax. Intuitively,
instances of attributes in a syntax tree describe the
properties of a specific instance of a terminal or a
nonterminal. The attributes of a symbol X are
partitioned into two disjoint subsets, called the
inherited attributes (Alx) and the synthesized attri-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

butes (ASx), respectively. There are semantic
equations defining these attributes. For a produc-
tion, there are a semantic equation defining each
synthes1zed attribute of the left-hand-side symbol
and a semantic equation defining each inherited
attribute of the right-hand symbol of the produc-
tion. We assume that the start symbol has no
inherited attributes. Semantic conditions may also
be asserted in the productions in order to express
additional constraints on the context-free
language. An example is- given in- Figure 2,
which contains three production rules, eight attri-
bution equations, and a semantic condition.

3. The SSCC Specification Language

An SSCC specification consists of seven sections:
class, definition, typedef, attri-
bute, routines, rule, and routine-
body. The typedef, routines, and rou-
tinebody sections are optional. In the follow-
ing discussion, we refer to the example
specification shown in Figure 2. The example
deﬁnes a context-free grammar for a sequence of
a’s followed by a single b. There is a further
constraint that the number of a’s must be even
(in fact, this constraint can be expressed in the
context-free grammar; however, we use this con-
straint to demonstrate a semantic condition). The
attribution equations count the number of a’s and
change the a’s in the even positions into e’s and
those in the odd positions into o’s. The last
character, b, is changed into "c.

The class section defines character classes

with symbolic names. The definition sec-
tion defines tokens of the target language. The
two sections use the same format as the one
employed in scangen [4]. In the example, two
kinds of tokens are defined, namely, LETA and
LETB. White spaces will be discarded automati-
cally by the scanner.

The specification language provides five primi-
tive data types: int, real, boolean,
char, and string. However, a user is allowed
to define any desirable new types. These new
types are listed in the typedef section. In the
example, a new type List is declared:. Since
only the names of the user-defined types are
needed by the SSCC system for full static type-
checking, these user-defined types are -also called
abstract types. Details of the operations that
access and manipulate values of abstract types are
hidden in- user-defined functions. The separation
of attribute dependencies and attribute computa-
tions simplifies and clarifies specifications.

The names and types of attributes for symbols
are declared in the attribute section. Fol-
lowing trends in modern language definitions, all
attributes must be declared. In the example, the
symbol S has two attributes -and X has four.
Note that the SSCC system automatically infers
whether an attribute is inherited or synthesized.
This piece of information is not declared by the

408

user..

In order to write attribution equations, SSCC
provides the following primitive arithmetic and -

logic operators: +, —, *, ~ (the exponen-
tiation operator), =, !=, >, >=, <, <=, and,
or, and if-then-else. It also provides

type-casting operations for converting between
int and real values. In addition to these prim-
itive operators, a user is free to define new func-
tions. either to simplify the specification or to
manipulate user-defined types. User-defined func-
tions must be declared in the routine section
together with the types. of the parameters and

- return values. The SSCC system performs com-

plete static type-checking of the attribution equa-
tions. In the example, four user-defined functions
are declared.

The main part of a specification is the rule
section, which contains the context-free syntax
and the associated attribution equations and
semantic conditions. In the SSCC system, the
context-free syntax must be an LL(1) grammar [1]
because SSCC makes use of the ligen tool [4] to
generate parse tables for the frontend of the
evaluator (discussed in the next section). The
attribution equations are defined directly in terms
of the concrete syntax, rather than on a separate,
abstract syntax, as is done in many other
attribute-grammar systems. This approach saves
the overhead of transforming concrete syntax trees
into abstract syntax trees. The price we paid,
however, is that concrete syntax trees are usually
larger (and hence occupies more storage) than
abstract syntax trees.

The attribution equations define the computa-
tion of attributes. The.semantic conditions are
constraints on the defined language. For instance,
in modem programming languages, it is usually
required that a variable must be declared before it.
is used. This requirement does not compute new
attributes; rather it is expressed as a semantic con-
dition. - In the example, there is a semantic condi-
tion for the first production rule. The condition
asserts that the value of the attribute S.c must
be even.

User-defined types and functions, written in the
C language, may be put in the routinebody

section or may be placed in a separate file. The

SSCC system, like yacc, simply copies this sec-
tion, together with a few pre-defined data types,
into-a file for compilation by the C compiler.
Since SSCC does not analyze the C code, it is not
capable of checking the type consistency between
the C code and the attribution equations, though
the consistency within the attribution equatlons is
fully and statically checked '

4. Implementation of SSCC

SSCC is based on a polynomial-time extension to
Kastens’s ordered attribute grammars. The algo-
rithm for the extended ordered attribute grammars

MODULE demo

Joint Conference of 1996 International Computer Symposium.
December 19~21, Kaohsiung, Taiwan, R.0.C.

CLASS
LETA = ’a’;
LETB = 'b’;
NEWL = 10;
BLNK = ' 7;
DEFINITION
IDA {1} = LETA;
IDB {2} = LETB;
WhiteSpace {0} = (BLNK{TOSS}, NEWL{TOSS})+;
TYPEDEF # TYPEDEF section is optional
LIST
ATTRIBUTE

S { INT ¢; LIST out;}

X { INT c¢; LIST in, out;}
ROUTINES # ROUTINES section is optional
INT " finalize();
LIST newlist ();
BOOLEAN even (INT);
LIST concat (LIST, CHAR);
RULE
PO = § => X
COMPUTE
S.c = X.c;
X.in = newlist();
S.out = X.out;
CONDITION
even(S.c)
END;
Pl = X => IDA X
COMPUTE

X[1l]l.c = X[2].¢c + 1;
X[2].in = X[1].in;
X[1l].out = IF even(X[l].c)

THEN concat (X[2].out,
ELSE concat (X[2] .out,

END;

P2 = X => IDB
COMPUTE
X.c = 0;
X.out = concat(X.in, 'c¢’);
END;)
ROUTINEBODY

#include <stdio.h>
#include "finalize.h"

ret)
'o’) ENDIF;

typedef struct LL { char ch; struct LL *next; } LinkList;
static int tmpeven; /* a global variable for the even function */

static void printlist (head)
struct AttribListNode *head;
{ LinkList *h;
printf(" %s ", head->type);
h =.*(LinkList **) (head->value);

for (; h; h = h->next) printf (*%c", h->ch);

409

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

int finalize (root, symtab)

struct TreeNode *root; struct AttributeNode *sttab;

{ struct AttribListNode *tmp;

for (tmp = root->AttriblList; tmp != NULL; tmp = tmp->next) {

printf ("%s", tmp->name);
if (strcmp (tmp->type, "INT") == 0)

printf(" %s &%d", tmp->type, (int)*(int *) (tmp->value));

else if (strcmp(tmp->type, "LIST")
printlist (tmp);
else printf("™ %s is WRONT TYPE!",
} .
return (0);

}

int *even(v) int *v;

== 0)

tmp->type) ;

{ if.(*v / 2 * 2 == *v) tmpeven = 1; else tmpeven = 0; return(&tmpeven); }

static LinkList *tmpnewlist; /* a global variable for the newlist function */

LinkList **newlist ()

{ tmpnewlist = NULL; return(&tmpnewlist);

LinkList **concat (1, c¢)
LinkList **1; char *c;
{ LinkList *node, *m;

}

node = (LinkList *)malloc(sizeof (LinkList));

node->ch = *c;

node->next = NULL;

if (*1 == NULL) { *1 = node; }

else { m = *]1;
while (m->next != NULL) { m =
m->next = node;

}

return(l);

}

ENDM demo
Figure 2. A complete SSCC specification

is similar to that for the original ordered attribute gram-
mar. For the sake of brevity, the reader is referred to
Kastens’s and Yang et al.’s reports [7, 18] for the algo-
rithms to find evaluation orders. In this section, we
will explain the implementation of the SSCC system.

SSCC is implemented in the. Unix environment on
Sun Sparc Classic workstations. Since the implementa-
tion uses only the standard C language, porting SSCC
to other platforms should not cause any difficuity.
SSCC consists of two parts: a generator and an evalua-
tor, shown in Figure 1. The generator is implemented
with the help of lex [12] and yacc. The generator
processes SSCC specifications and prepares input for
scangen and llgen. The generator also checks the
specifications for correctness and produces plans for the
production rules, virtual-machine code for the attribu-
‘tion equations, a symbol table of symbols and attri-
butes, and two files containing the C code for user-
defined functions and a function handler. The results

m->next; }

produced by the generator are used in the evaluator.

A scanner driver and a parser driver, together with
the tables produced by scangen and ligen, form the
frontend of the evaluator. The backend of the evaluator
consists of a tree-walker-and a virtual-machine inter-
preter. The tree-walker walks through the syntax tree
according to. the plans produced by the generator. The
interpreter executes virtual-machine code. '

The SSCC evaluator is a table-driven generic evalua-
tor for extended ordered attribute grammars. In addi-
tion to the scanner and the parser, which are driven by
tables, the tree-walker and the interpreter are also
driven by plans and virtual-machine code, respectively.

The attribution eqiations in the rule section indicate
dependencies among attribute occurrences in a produc-
tion rule. Since an attribute occurrence cannot be
evaluated until all the attribute occurrences it depends
on are evaluated, the dependencies among atiribute

“occurrences dictate an evaluation order of the attribute

410

occurrences. The algorithm for the (extended) ordered
attribute grammars computes .a correct evaluation order.
On the other hand, semantic conditions in a production
rule may be evaluated as soon as all the attribute
occurrences used in the conditions are evaluated. For
the sake of simplicity, evaluation of all semantic condi-
tions are delayed until all attribution equations in' the
production are evaluated in SSCC.

The evaluation order is represented by a plan
for each production in the grammar. The plans
for the example in Figure 2 is shown in Figure 3.
There is one plan for each production in the gram-
mar. A plan consists of a sequence of elements.
There are three kinds of elements: eval X.a, visit
(i, j), and leave (a FINISH element in Figure 3 is
equivalent to a leave element). The element eval
X.a directs the evaluator to evaluate the compiled
attribute equation for the attribute X.a by invoking
the VM interpreter. A visit (i, j) element guides

- the evaluator to descend into the i** child for: the
J* time to perform the evaluation plan applied at
that child. The evaluation in the current plan is
suspended until the evaluation in the ¢hild’s plan
encounters a leave element. Thus, the evaluator
switches among the plans for the nodes in the
syntax tree, evaluating the attributes in a
prescribed order. Due to the properties of
(extended) ordered attribute grammars, it is
guaranteed that all the attribute instances in the
syntax tree will be evaluated and the evaluator
will return to the root once its work is-done.

‘To. evaluate an attribute occurrence means to
evaluate the right-handside expression of the attri-
bution equation defining the attribute occurrence.
The attribution equation is written in a high-level
notation. Since there are, in general, many
instances of the same attribute occurrence in a
syntax tree, it may be necessary to evaluate: the
same aftribution equation many times. In order to
improve the efficiency of the evaluator, the equa-
tions are translated into assembly-like code for a

RULE 0 VISIT 1, 1
EVAL S.c
EVAL X.in
vVISIT 1, 2
EVAL' S.out ;
FINISH , I
RULE 1 VISIT 2, 1
EVAL |\ X[1].c
LEAVE'
EVAL X[2].in
VISIT 2, 2
EVAL X[1].out
FINISH
RULE 2 EVAL X.c
LEAVE
EVAL
FINISH
Figure 3. Plans for the three production rules

X.out

411

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

virtual machine.

4.1. The virtual machine

The virtual machine is a stack machine. There are
24 instructions for this machine, shown in Figure -
4. An instruction contains an operator and an
operand. The operand might be a constant or an
attribute name. An attribute name is a character
string.

The APPLY instruction is used to implement
user-defined functions. An APPLY k instruction
applies a function to k paramenters; the name of
the function and the k parameters are popped
from the stack. The COND instruction is used to
implement semantic conditions. If a. COND
instruction evaluates to false, the whole evaluator
will halt with an error message indicating the
violated semantic condition. The virtual-machine
code for the example is shown in Figure 5.

Note that, in the virtual-machine code in Figure
5, attribute names are represented as character
strings, rather than addresses as in conventional -
compilers. Therefore, the interpreter kernel needs
a symbol table, which is also produced by the
generator.

The interpreter is a combination of a generic,
precompiled kernel and separately compiled and
linked user-defined functions and a function
handler. The generic kernel interprets virtual-
machine code and calls appropriate user-defined
functions when necessary. The link between
user-defined functions and their implementation in
C code is established by the names of functions.
This is discussed in the next subsection.

4.2, User-deﬁned fanctions

User-defined functions are invoked by the generic
kernel of the interpreter based on the names of
functions. = A user-defined function such as
concat (1, c) is implemented as follows. The
function call is translated into three consecutive
PUSHes that push the function name concat
and the values of the parameters 1 and c into
the stack. These are followed by an APPLY 2

"instruction, which pops three elements from the

stack (two examples are shown in the wvirtual-
machine code for the second production in Figure
5). The name of the function, as a character
string, is passed to the function handler that calls
a compiled function with the same name. The
function handler is essentially a nested if state-
ment with one branch as follows:
else if (strcmp (Funcname,

"concat") == 0)
-return (void *)concat (para[0],

paralll);

The function handler is a link between symbolic
function names known in the specification and the
compiled functions that are supplied by the user.
Since it needs to know the names of the functions,
the function handler must be synthesized from an

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

arithmetic operations
ADD, SUB, MUL, DIV, EXP:

logical operations
_AND, OR, NOT:

perform the indicated operation<on the top
two elements in the stack.

perform the indicated operation on the top

two elements in the stack

comparison operations

EQU, NONEQU, GT, GE, LT, LE: perform the indicated operation on the top
two elements in the stack

condition branches

N
COMP : branch to the else-label if the top element
is false ;
ELSE: indicate a position for the COMP instruction
ENDIF: indicate the end of an if expression

function application

APPLY k: - ‘pops k cells and a function name from the stack
and call the function with k cells as parameters
miscellanea : :
PUSH arg: push arg into the stack
ASSIGN: assign the top element on the stack to the
. . element just below it :
COND : check whether the top element is false

WIDEN, SHORTEN:

convert between int and real values

MINUS: negate a value

Figure 4. Instruction set of the virtual machine

SSCC specification. The function handler, like
user-defined functions, is not part of the generic
kernel of the interpreter; it must be compiled and
linked with the precompiled kernel of the inter-
preter.

Parameters to user-defined functions must be in
a generic form in order to bypass the type-
checking of the C compiler when compiling the
interpreter. In SSCC, parameters are passed as
pointers. The concat function in Figure 2 is
such an example.

4.3. The finalize function

After all the attribute instances in a syntax free are
evaluated, the default action -of the evaluator is to
print the syntax tree and the attributes. However,
SSCC provides a hook—the finalize
function—so that a user can specify additional
post-processing on the decorated tree by providing
his own version of finalize. The final-
ize function accepts a pointer to the root of the
syntax tree and a pointer to the symbol table; all
nodes and aftribute instances are: accessible
through the two pointers. Since the user may
needs to access the internal data structures.of the
evaluator, the required data type definitions are
collected in the finalize.h file.

5. Conclusion

We have implemented a practical attribute-
grammar system SSCC based on an extension of
ordered attribute grammars. Due to the inclusion
of the user-defined types and functions, SSCC is
capable of processing any desirable attribute com-
putation. Furthermore, a user can process the

412

fully decorated syntax trees by supplying his own
version of the finalize function. -

Although yacc-like parser generatots can also

implement systems that are implemented by
attribute-grammar systems, attribute-grammar sys-
tems are a more declarative tool in that a user

need not worry about the evaluation order for:

obtaining a correct result. By contrast, yacc-like
tools require a user to explicit write pieces of code
that are executed during parsing.

There are many existing attribute-grammar sys-
tems [5,8,10]. These systems .implement edi-
tors[15], compilers[3, 16, 17]. compiler-compilers,
programming environments, and proof checkers
[14]. SSCC has been used as the frontend of a
parallel-evaluation system for attribute grammars
in the PVM environment [11].

There are a few improvements that we wish to
implement. First we wish to decouple the abstract
syntax from the concrete syntax. Currently, the
attribute equations are closely bound to the con-
crete syntax. This approach requires the whole
parse tree be maintained in the evaluator.

REFERENCES

1. "A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:
Principles, Technigues, and Tools, Addison-
Wesley, Reading, MA (1986).

2. G.JV. Bochmann, Semantic evaluation from left to
right, Comm. ACM 19(2) pp. 55-62 (February
1976).

3. R. Farrow, Generating a production compiler from
an attribute grammar, IEEE Software 1(4) pp.

7. U. Kastens, Ordered attribute grammars, Acta

RULE 0 PUSH S.c Informatica 13 pp. 229-156 (1980).

PUSE X.c 8. U. Kastens, B. Hutt, and E. Zimmermann, GAG: A
ASSIGN Practical Compiler Generator, Springer-Verlag,
PUSH X.in New York (1982).

PUSH newlist - i

APPLY O 9. D.E. Knuth, Semantics of context-free languages,
ASSIGN Mathematical System Theory 2(2)pp. 127-145
PUSH S.out (June 1968). Correction. ibid. 5, 1 (March 1971),
PUSH X.out 95-96.

ASSIGN 10. K. Koskimies and J. Paakki, Automating Language
PUSH even Implementation, Ellis Horwood, New York (1990).
Teory 3 C 11. S-H. Lee, Y.-T. Liu, J.-T. Chan, and W. Yang,
COND | . Automatic generation of parallel compilers in the

RULE 1 PUSH X[1].c PVM environment, pp. 51-57 in Proceedings of
PUSH X[2] ’c the 2nd Workshop on Compiler Techniques for
busH - 1) High-Performance Computing, (Taiwan, R.O.C.,
ADD March 20-22, 1996), (January 1996).

ASSIGN 12. M.E. Lesk and E. Schmidt, LEX — A lexical
"PUSH X[2].in analyzer generator, Computeér Science Technical
PUSH X[1].in Report 39, Bell Labs., Murray Hill, N.J. (1975).
ASSIGN 13. J. Paakki, Attribute grammar paradigms—A high-
PUSH X{[1].out level méthodology in language implementation,
PUSH even ACM Computing Surveys 27(2) pp. 196-255 (June

PUSH "X[1l].c 1995).

APPLY 1 :

COMP 14. T. Reps anq B. Alpern, Interactive proof checking,
PUSH concat pp. 36-45 in 'C'onference‘ Record of the Eleventh
PUSH X[2].out ACM Symposium on Principles of Programming
PUSH rat Languages, (Salt Lake City, UT, Jan. 15—18,
APPLY 2 1984), ACM, -New York (1984).

ELSE 15. T.W. Reps, Generating language-based environ-
PUSH concat ments, MIT Press, Cambridge, MA (1984).

gg:g),(c[f] -out 16. W.M. Waite, Use of attribute grammars in com-
APPLY 2 piler construction, Workshop on Attribute Gram-
ENDIF mars and T{leir Applications, Lecture Notes in
ASSTGN Computer Science 461 pp. 255-265 (1990).

RULE 2 PUSH X.c 17. W.M. Waite, A complete specification of a simple
PUSH O compiler, CU-CS-638-93, Computer Science
ASSIGN Dept., Univ. of Colorado at Boulder, Boulder, CO
PUSH X.out (January 1993).

PUSH concat 18. W. Yang and W.-C. Cheng, A polynomial-time
igzg },(:,m extension to ordered attribute grammars, submitted
€ for publication, Computer and Information Sci-
i‘z];IIAG{N 2 ence Dept., National Chiao-Tung Univ., Hsinchu,
Figure 5. Virtual-machine code for the three Taiwan (June 1936).

production rules

Joint Conference of 1996 International Computer Symposmm

December 19~21, Kaohsiung, Taiwan, R.O.C.

77-93 (July 1984). 7
4. C.N. Fischer and R.J. LeBlanc, Jr., Crafting a

Compiler with C, Benjamin/Cummings, Reading,
MA (1991).

5. R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane,
and W.M. Waite, Eli: A complete, flexible com-
piler construction system, Comm. ACM 35(2) pp.
121-131 (February 1992).

6. S.C. Johnson, YACC-Yet another compiler com-
piler, CSTR 35, Bell Labs., Murray Hill, N.J.
(1979).

413

