Proceedings of International Conference or Distributed
Systems, Software Engineering and Database Systems

A Program Slicing System for Object-Oriented Programs

Jien-Tsai Chan and Wuu Yang

Institute of Computer and Information Science
National Chiao-Tung University -
~ Hsinchu, Taiwan, R.O.C.
max@kennedy.cis.nctu.edu.tw and wuuyang@cis.nctu.edu.tw

Abstract

A slice of a program consists of those statements and
predicates in that program that may affect, directly or
indirectly, the values of certain variables at certain points
in the program. Program slicing has been used in program
understanding, testing, debugging, sofiware reuse, and
program integration. Little has been reported on program
optimization by program slicing. We designed and built a
program-slicing system as a source code optimizer for
object-oriented programs. It can eliminate redundant
classes, procedures, variables, and even statements in an
object-oriented program.

Key words: program slicing, program dependence graph,
program optimization

1. Introduction

Program slicing was introduced by Weiser[Wei84]. He :

claims that the process of debugging is really a
program-slicing action in the programmer's brain. A slice of
a program consists of the statements and predicates of the
program that may affect the values of certain variables at
certain points in the program. Program slicing can identify
relevant part of the whole program so that a programmer
can focus on a relatively smaller part of the program. This
makes debugging and™ program understanding easier.
Furthermore, since a slice of program is an executable part,
program slicing can extract reusable components from
existing software.

Object-oriented techniques (OOT) are one of the most
active research areas in software engineering. It may be
viewed as the prelude to the software millennium. OOT
supports some abilities to reduce software complexity.
While object-oriented programming may lead to cleaner
modularity and better component reuse, it also brings about
new challenges to software maintainers. A maintainer needs
to understand a program before he can modify it correctly.

This work was supported in part by National Science Council, Taiwan,'
R.O.C., under grants NSC 84-2213-E-009-043 and NSC
85-2213-E-009-051.

Inheritance, large class libraries and distribution of
functionality in object-oriented . programs may = make
programs hard to understand.

In the development of object-oriented programs, there -
are_usually two cooperating teams: the designers of class
libraries and the designers of application programs. From a
library designer's point of view, a class library should be as
versatile and complete as possible. This makes a class
library full of all conceivable functions. On the other hand,
the application designer wants the compiled code as
compact as possible. Unnecessary code may be linked into
the compiled program when a large class library is used. A
programmer may also write redundant code sometimes.
With the program slicing techniques; we can eliminate
irrelevant classes, irmrelevant functions, unnecessary
variables, and even irrelevant statements from the source
code of the libarry classes. Program optimization can be
accomplished at source code level. .

A number of slicing systems have been developed for
subsets of the C language, such as Ghinsu [LC92],
Unravel[JDJ+95], and Spyder [ADS93]. However, none of
these systems can deal with object-oriented programs. Little
has been published on the slicing techniques for
object-oriented programs. ‘In this paper we apply
program-slicing techniques to object-oriented programs and
build a practical slicing system. Because existing program
representation graphs are not suitable for object-oriented
programs, we also suggest a new program representation for
object-oricnted programs. Besides, a simple and efficient
construction = method for the representation, an

. interprocedural data-flow analysis method for OOP, and a

modified slicing method are also proposed.

 There are many messy problems in building such a
system, such as the representation of declarations of
variables, functions and classes, parameter passing, control
transfer, etc. Several techniques are suggested for these
problems i in this paper.

“ The remainder of this paper is orgamzed as follows The
extended program representation for OOP, called OOSDG,
is introduced in section 2. Section 3 presents our system
structure and implementation techniques, including the

422

construction of OOSDG, the interprocedural data-flow-
analysis method, and the modified slicing algorithm on
OO0SDG. Finally, section 4 summarizes the paper.

————p control dependence edge
a3 implicit control flow edge
- - = > explicit control flow edge

Figure 1. Control dadence graph, wnﬂx xmphcxt and explicit control flow edges.

2. A New Program Representation -
OOSDG

Most program slicing algorithms are based on some
kinds of program representation graphs, such as control flow
graphs and program dependence graphs(PDG). With.a
graph representation, program slicing can be defined as a
graph-reachablility problem.

Program dependence graphs have received widespread
attention of researchers and implementors of
language-based tools. A PDG is a graphical representation
of a program that contains no procedures. The nodes of the
PDG represent the statements, control predicates, and
regions of the program. The edges of a PDG mean that there
are control- or data-dependence relations between the
nodes.

Control dependence is usually deﬁned in terms of a
post-dominance relation. For given statements X and Y in a
program, we say Y post-dominates X if Y appears in every
path from X to the end of program. A statement Y is said to
be control dependent on another statement X, if there exists
an execution path P from X to Y such that Y post-dominates
every node on P, excluding X and Y, but Y does not
post-dominate X. It means that there are two execution
paths out of X such that one path.always leads to the
execution of Y and the other may result in Y not being
executed. If there is an execution path from X to Y, a
variable is defined in statement X and referenced in
statement Y, but not redefined along the path from X to Y,
Y is said to be data dependent on X.

The original PDG suggested by Ferrante et al. does not
encode the control flow information in it [FOW87]. The
variant of PDG suggested by Horrald contains explicit
control -flow edges [HMR93]. Control flow information is
encoded in the PDG. The children of a region node are
ordered by the order they appear in the program. The order

Joint Conference of 1996 Internationai Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

of nodes under the same region node represents the implicit
control flow information. Figure 1 shows the control flow
information in a PDG. An explicit control flow edge
connects the last statement in a while loop to the while
predicate. Control flow edges are also necessary for the
transfer statements, such as goto, return, continue and break.

Horwitz et al. extend the original PDG such that their
PDG can capture the interprocedural calling contexts and .

hence it can handle multiple procedures [HRB90]. The
extended PDG is called a system dependence graph(SDG).
An SDG consists of multiple PDGs, one for each procedure
in the program. There are some nodes and edges that are
added for handling calling contexts.

Object-oriented programming languages include several
mechanisms that do not appear in the traditional
programming languages. Conventional program
representations, such as PDG and SDG, are not sufficient
for OO programming languages because they could not
denote the specific information of an OO program, such as
inheritance and polymorphism. An extended program
representation is required for OO programs. We propose a
new program representation for OO programs, called
Object-Oriented System Dependency Graph (OOSDG).

Figure 2 depicts the OOSDG of a complete program.
The root is a global node that controls the whole program.
Global variable declarations, isolated functions (i.e.
functions that do not belong to any class), and class
declarations are children of the root. The convention in
0O0SDG is that variable declarations are always placed to
the left of other nodes. This order is convenient for data
flow analysis.

hd oontrol dop
]—-ub inheritance
- > po|ymorphlcc‘hmce
| I

Figure 2. The overview of OOSDG.All the giobal variz;bles, functions, and classes are
control-dependent on the Global node. The data dependence edges and summary edges
are omitted.

2.1 The Nodes of 0OSDG

423

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Nodes in the CDG represent either simple statements,
predicates, or regions of codé€. The types of statement and
predicate nodes are:

«If Predicate: The parent of a then clause and an else

clause.

+ While predicate: A while predicate indicates the loop
entry. It is also the target of control flow of the
continue statements and the last statement in the loop
(except the transfer statements).

« Expression: A general arithmetic expression.

« Call: A simple function call.

+Declaration: A variable declaration.

» Actual-in: An actual parameter that would be passed
to a method. -

»Actual-out: An actual parameter that receives the
return value of the called method. :

«Formal-in: A formal parameter that receives the value
that is passed from the caller.

*Formal-out: A formal parameter that would be
returned back to the caller. Usually, they are the return
values of functions, changed referenced variable, data
members, and global variables with side effect.

+Goto: The goto statement, with an explicit control flow
edge to the target region node of label.

«Continue: The continue statement, with an explicit
control flow edge to the while predicate node.

*Return: The return statement, with an explicit control
flow edge to the exit node of the method.

*Break: The break statement, with an explicit control
flow edge to the statement node following the while
loop.

A region node groups the nodes with the same control
dependence. The types of region nodes are:

+Global: The parent of all classes, global variables and
isolated functions.

»Global exit: The end of the whole program.

»Class head: This node represents a class. It groups all
the members and methods of the class. A class head is
connected to the base class with an inheritance edge.

«Method entry: The entry of a method. This node is
connected with the global node, class heads, and call
nodes.

*Method exit: The end of a method. This node is
needed by the return statements. If the method entry
node is in a slice, the method exit node will be included
in the slice. '

»Virtual method entry: The entry of a virtual method.
This node is connected to the class head node. This
node is different from the method entry node in that a

 virtual function is bound dynamically at run time. All
the related virtual functions are linked together via the
polymorphic-choice edges.

424

« Then clause: A region node grouping statements in the
then part of a predicate.

- Else clause: A region node grouping statements in the
else part of a predicate.

+While body: A while body groups the statements of
the true part of the while predicate.

» While exit: The exit point of a while loop.

+Label: A label node groups the statement starting from
a label till another label, the end of a while loop or the
end of a procedure.

2.2 The Edges of OOSDG

The edges are directed lines, starting from one node and

ending on another node in the OOSDG. There are nine
kinds of edges:

+Control dependence: A control dependence edge
always starts from a predicate node or region node and
ends on either a statement node or a region node.

+Data dependence: A data dependence edge starts from
a node where a variable is defined and ends on another
node where the defined value is referenced.

+ Control flow: Control flow information is added to the
CDG for data flow analysis. The lefi-to-right order of
nodes under the same region preserves the implicit
control flow. Beside, there are explicit control flow
edges added to the CDG. For example, the continue
statements are connected to the beginning of a
while-loop; the break statements are connected to the
node that follows the while loop; and the return
statements are connected to the method exit node. -

«Call: A call edge starts from a call node and ends on

“the entry of a method. Besides the simple call nodes,
object declaration statements will become a call node
too. The reason is that the instantiation of an object
needs to call the constructor function,

*Declaration dependence: A declaration dependence
edge starts from a node where a variable is declared
and ends on another node where the variable is
defined. ,

+Parameter-in: A parameter-in edge starts from an
actual-in parameter node- and ends on the
corresponding formal-in parameter node.

«Parameter-out: A parameter-out edge starts from a
formal-out parameter node and ends on the
corresponding actual-out parameter node.

* Polymorphic-choice: - A polymorphic-choice edge
connects the entry nodes of virtual functions between
subclasses and superclasses. Because the function that
is actually called is determined at run time, all possible
candidate functions should be included in the slice.
With the polymorphic-choice edges and inheritance

edges, all of the relevant virtual functions are included
in the slice. :

«Inheritance: The inheritance - edges ‘connect the
superclass head to the heads of the inherited
subclasses. a '

2.3 Discussion

A statement may be treated as one node or may be
decomposed into several nodes for the abstract-syntax-tree
(AST) node [LC92]. Basically, our system considers a
statement as a single node but with a few exceptions.
Though many variables may be declard in a single
statement, in OOSDG, the declaration of each variable is
considered as a single node.

There may be many function invocations in one
expression, for instance, a = b + ¢(x) + d(y,z). Functions
can also serve as the parameters in another function call, for
instance, p(x, q(W), r(y, z)). This representation is difficult
to process. Consequently, a complicated expressmn is
represented by several nodes so that each node is an
expression with at most a function call. Temporary variables
will be introduced if necessary. Two examples are shown in

Figure 3.

pix, q(w), (Y, 2))

Figure 3. The ples of d d The upper is an example about
complicate arithmatic expression. The lower depits the function call as parameters.

Joint Conference-of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

expression is wrong because t is not a member of object a.
The correct way is to use a temporary variable to replace the
pair of member accessing or method calling sequentially.
For this example, first, replace the a.b(x) with t1 and form
the new expression tl.c.d.e(y,z). Second, take t2 to replace
the tl.c and the expression becomes t2.d.e(y,z). Following -

‘this procedure, the original expression will be decomposed

into tl=a.b(x); t2=tl.c; t3=t2.d; t4=t3.e(y,z) in the order.
The resulting nodes are showing in the Figure 4.

Figure 4. A example of decomposed complicate method call statement.

Members and methods of a class are children of the
class head node. Although the members and methods can be
placed in an arbitrary order in the original program, the
corresponding nodes for members and methods are
rearranged in the OOSDG so that all members appear to the
left of methods. With this ordering of nodes, data flow
analysis is performed in a left-to-right depth-first tree-walk
on the control dependence edges.

The head node of a base class and the head nodes of
derived classes are connected with inheritance edges. The
derived class accesses members and methods of the base
class along this edge. All the related polymorphic functions
are linked together with polymorphic-choice edges. By these
edges, all the possible candidates of a call to a virtual
function will be included in the slices.

Figure 5. The overview of the program slicing system.

The accessing expression of members and methods of an
object can be arbitrarily complex, e.g., a.b(x).c.d.e(y,z). As
arithmetic expressions and parameters may contain other
function calls, the function calls must be separated from the

“expressions as well. Method invocation is different from a
function call ‘in that the method of an object can not be
directly extracted out. For example, if a temporary variable t
is substituted for b(x) in the expression a.b(x).c.d.e(y, z),
the example will become a.t.c.d.e(y, 2). This new

3. System Structure and
Implementation Techniques

3.1 System Overview

Figure 5 depicts the overall structure of the slicing
system. The system consists of three parts: the extended

425

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

control-dependence-graph constructor (parser), the
data-flow analyzer, and the slicér. The source program is
fed into a C++ native preprocessor first. We use an existing
preprocessor . to process preprocessor directives. The
constructor takes the processed source and constructs an
extended control dependence graph (ECDG). After the
ECDG is built, data-flow analysis is performed on it. All the
interprocedural edges are computed, such as call edges,
parameter-in, and summary edges. Finally, the slicer takes
the OOSDG and the slicing criteria (designated points and
variables of the program) as input and computes the slices.
The produced slices are displayed via a user interface.

3.2 Source Preprocessing

C++ is the source language of the slicing system. Since
- our system does not support C++ preprocessing currently,
an ANSI C++ preprocessor is assumed to exist to process all
preprocessor's directives. . The code produced by the
preprocessor is then fed into a standard ANSI C++ parser,
which constructs its ECDG.

The constructor can not accept variable length parameter
lists currently. If a program contains such functions, the
slicing system will not process it.

3.3 OOSDG Construction

3.3.1 Construction Techniques of ECDG

- The PDG construction techniques introduced in
[CFR+91] and [FOW87] are based on a control flow graph
(CFG). CFG is used to identify post-dominators from which
control dependencies are computed. These techniques are
complicated and difficult to implement. In particular, these
methods can not handle the arbitrary jump statements
[BH931.

Ballance et al. and Harrold et al. present another
technique for constructing CDG [BM92, HMR93]. Their
method does not require the CFG and auxiliary data
structures. The CDG is constructed while the program is
parsed. Then construction is based on abstract syntax trees
(AST). The AST is processed in a lefi-to-right preorder
traversal and a corresponding action is used as each node is
encountered. This method is easier. The method can handle
the structured and unstructured transfers too.

The key to handle the transfer statements is the concept
of the follow regions [BM92]. When ‘a block is exited, a
new region must be created that will become the current
region for statements following the block. The follow region
summarizes the control dependence information for the
statements following a conditional statement. The concept

of the follow regions can be applied to nested conditional

statements as well.

Our technique for constructing ECDG is based on
Harrold's method [HMR93]. Furthermore, we embed the
function for constructing ECDG into the parser. The AST
becomes unnecessary. The system works as a one-pass
compiler and the target is the ECDG. Every statement
translates to the corresponding nodes of ECDG. '

.3.3.2 Computation of Data Dependence

After the ECDG is constructed, we can perform
data-flow analysis on it. There are many kinds of data-flow
analyses. All we need to know is the definitions and uses of
variables. Because our goal is data dependence edges, we
aim at the reaching definitions [FL91]{ASU86] that are used
to compute flow dependencies for DDG.

A definition is an assignment of a value to a variable in a
statement. For a definition of variable V, if there exists a
path from the definition of V to a use of V without
redefinition of V, we say that the definition of V reaches the
use of V. From the reaching definitions, we know the
origins where a value may come from. Reaching definitions
can be computed with the following equations [FL91]:

Oub(b) = Def(b) U (In(b) - Killed(b), b is a node in the

control flow graph.

In(b) =ieyb Ou(i), P(b) is the predecessor of b in the

control flow graph.
Four types of data sets are used to compute the set of

 definitions that reach each statement in the program. All

nodes contain IN, OUT, DEF, and USE data sets. The IN
set represents the definitions that reach the point
immediately before the statement. The IN set of the starting
node is the empty set. The OUT set represents the
definitions that reach the point immediately after the
statement. The DEF set of a statement contains those
definitions that reach the end of the node. The variables in
the DEF set are those variables that are assigned a value in
the statement and global variables and parameters whose
values are changed during a call in the definition. All the
referenced variables of an expression node are saved in the
USE set. The elements of a USE set include the variables on
the right-hand side of the assignment, global variables and
parameters that are referenced during a function invocation.
Data dependence edges can be built with the USE and IN
sets. For each variable V defined in the statement, the
KILLED set contains all those definitions of V other than
the one that appears in the DEF set. The KILLED set clears
those definitions overwritten by local definitions in the
statement. The KILLED set can be obtained from the
intersection of the IN and DEF sets, so it needs not to be
saved in a node. :

When an object is declared, all the data members of an

-object are implicitly declared. The declarations of objects

add all data members (included those of the ancestor
classes) to the DEF set.

426

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohshing, Taiwan, R.0.C.

Procedure: lnterproceduralSlicing

Input: an OOSDG and a slicing starting node S in the O0SDG

Output: the slice corresponding to S

begin
// Phase 1
MarkReachingNodes(OOSDG, S, {parameter-out})

// Phase 2
S' = the marked nodes in OOSDG

MarkReachingNodes(OOSDG, S', {parameter-in, call})

end

Procedure: MarkReachingNodes
Input: G-->an OOSDG, .
S-->a set of nodes in OOSDG,
K-->some edge's kinds that will be excepted
begin
worklist = S
while worklist is not empty
select and remove a node V from wordlist
“mark V as in slice

for each unmarked node w there is a edge w—v whose kind is not in K
// caputre out the transfer statement exit the procedure, like return

if w is a method entry node

add corresponding method exit node to worklist

if w is transfer statement(continure,return,break,goto)

else
if the edge is explicit control flow edge
add w to worklist
endif
else
A add w to worklist
; endif
endif
endfor

endwhile
end

Figure 6. The algorithms for slicing. The procedure InterproceduralSlicing marks the nodes in the slice. The auxiliary
procedure MarkReachingNodes marks all nodes in G from which there is a path to a niode in V along edges of kinds

other than those in the set K.

The DEF set and the USE set are computed and attached
to the ECDG node when the ECDG is constructed. Because
we are dealing with the ECDG, not the CFG, there are a few
things that need to be carefully computed. The IN set is the
union of the OUT sets of the preceeding control flow nodes.
The preceeding control flow nodes of a node may be found
out from the ECDG. These may be the starting nodes of a
control dependence edge, an explicit control flow edge, or
the nearest left sibling.

The formal-in parameter may not become a formal-out
‘parameter if the formal-in parameter is qualified with a
constant qualifier. Except a pointer parameter, the parameter

that is passed by value would not be changed. A pointer
parameter will involve the aliasing problem. It is an
NP-hard problem to find out all the possible aliasing
variables, even in the intraprocedural -analysis [PLR94]. In
our current implementation, we do not find the exact
solution and = pessimistically treat pointers as may-be
changed. This new definition does not kill. previous
definitions but add new definitions to the DEF set. Besides,
the parameters that are passed by reference could also be
changed.

We developed some techniques to compute the
interprocedural reaching definitions [HS94]. Besides the

427

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

regular formal-in parameters, all the global variables and the
data members within objects are passed as extra parameters.
The formal-out nodes represent the return value of a
function call, content-changed pointers, changed referenced
variables, data members, and global variables with side
effect. These variables in the formal-out nodes will be added
to the DEF set of the caller node. The referenced extra
parameters must be recorded and will be added to the USE
set of the caller node.

3.3.3 Summary Edges

Summary edges represent the transitive dependencies
between an actual-in node and an actual-out node. The
summary edges in an OOSDG serve to circumvent the
calling-context problem. Because the summary edges are
transitive dependencies and computing slices makes use of
the dependencies, we can find out the summary information
via intraprocedural slicing. Slicing starts from every
formal-out node and traces back to the formal-in nodes via
the control dependence and data dependence edges. If it can
reach some formal-in nodes, there are summary edges
between the starting formal-out node and the formal-in
nodes that can be reached. After all summary information
for every formal-out node is computed, the information is
propagated back to the call nodes via the call edges: Then
the actual-in nodes and the actual-out nodes are connected
by the summary edges.

3.4 Slicing

A slice of a program with respect to a program point P

and a variable V consists of all statements and predicates of -

the program that might affect the value of V at point P. A
slice is a smaller program that reproduces a part of the
original program's behavior. Slicing can help a programmer
to understand complicated or unfamiliar code.

Our interprocedural slicing algorithm is based on the
algorithm suggested by Horwitz et al. [HRB90]. The slicing
algorithm consists of a two-pass traversal of the system
dependence graph (OOSDG). Assuming the slicing starts at
some node S in procedure P. The first phase identifies nodes
that can reach S, and are either in P or in a procedure that
calls P(either directly or indirectly). The slicing starts from
S and goes backward (from target to source) along all the
edges in OOSDG except the parameter-out edges. In the
first pass, the -traversal will not descend into the called
procedures. The effects of such procedures are not ignored;
they will be captured with the parameter-out edges of
actual-out nodes in the second pass.

The second pass identifies nodes that can reach S from
procedures called by P (transitively) or from procedures
called by procedures that call P (transitively). Slicing starts
from nodes that are included in the slice in the first pass and
traces backward along all the edges in OOSDG except the

call edges and parameter-in edges. The traversal does not

~ascend into the calling procedures.

The conventional PDG-based slicing algorithms produce
incorrect slice when there are unconditional transfer
statements such as continue, break, and goto[BH93]. There
are two reasons for this problem. First, conventional PDG
does not produce nodes for transfer statements. -Second,
even if the variants. of PDG make nodes for the transfer
statements, there are no edges flowing out from these nodes.
Because slicing is a graph-reachability problem, the nodes
representing transfer statements will never appear in any
slice. We build nodes for the transfer statements and
connect them to the correct targets with control-flow edges.
The slicing algorithm is modified for programs with
arbitrary transfer statements. If a node is the target of an
explicit control flow edge and the source nodeis a transfer
statement, the source node must be included in the slice.
The modified algorithm can also handle the inherited class
structures and polymorphic methods. The new slicing
algorithm is given in Figure 6.

4. Conclusion

- In this paper, we propose a suitable program

‘representation (OOSDG) for object-oriented programs.

OOSDG can represent the information that comes from new
mechanisms of object-oriented programming languages.
Inheritance relations that exist between the classes are
encoded in OOSDG as well. All the related polymorphic
functions are linked together to resolve dynamic binding of
virtual functions. Control-flow information is also encoded
in OOSDG so that the control-flow. graphs are not necessary
for data-flow analysis. ' A

Some techniques are developed for constructing
OOSDG and for performing data-flow analysis. The
construction of OOSDG is embeded in a parser. The
concept of the follow regions is introduced to handle the
structured and unstructured transfer statements. We use an
iterative method to process the interprocedural data-flow
analysis. The summary information are also computed with
an iterative method.

After translating a program to an OOSDG, a modified
slicing algorithm is applied to compute the slices. We have
designed and implemented a . practical- program-slicing
system for a subset of C++.

Reference

[ADS93] H. Agrawal, R. A. DeMillo and E. H. Spafford.
‘Debugging with dynamic slicing and
backtracking. Software--Practice and
Experience, 23(6):589 -616, June 1993.

428

[ASUS6]

[BH93]
[BM92]

[CFR+91]

[ES90]
[FL91]}

[FOW87]

[HMR93]

[HRB90]

[HS94]

‘the

A. V. Aho, R. Sethi and J. D. Ullman.
Compilers. Principles, Techniques and Tools.
Addison-Wesley, 1986.

T. Ball and S. Horwitz. Slicing programs with
arbitrary control-flow. In Vol. 749 of Lecture
Notes in Computer Science, pp. 206-222.
Springer-Verlag, 1993.

R. Ballance and B. Maccabe. Program
dependence graphs for the rest of us. Technical

“Report, University of New Mexico, Noverber

1992.

R. Cytron, J. Ferrante, B. K. Rosen, M. N.
Wegman and F. K. Zadeck. Efficiently
computing static single assignment form and
control dependence graph. ACM
Transactions on Programming Languages and
Systems, 13 (1991) 451-490.

M. A. Ellis and B. Stroustrup. The Annotated
C++ Reference Manual. Addison-Wesley,
Reading, MA, 1990.

‘C. N. Fisher and R. J. LeBlanc, Jr. Crafting a

compiler. Benjamin/ Cummings, Redwood
city, CA, 1991. ,

J. Ferrante, K. J. Ottenstein and J. D. Warren.
The program dependence graph and its use in
optimization. =~ ACM Transactions on
Programming Languages = and Systems,
9(3):319-349, 1987.

M. J. Harrold, B. Malloy and G. Rothermel.
Efficient construction of program’ dependence
graphs. ACM International Symposium on
Software Testing and Analysis, 18(3):160-170,
June 1993.

S. Horwitz, T. Reps and D. Binkley.
Interprocedural slicing using dependence
graphs. ACM Transactions on Programming
Languages and Systmes, 12(1):26-60, 1990.

M. J. Harrold and M. L. Soffa. Efficient
computation of interprocedural definition-use
chains. ACM Transactions on Programming
Languages and Systems, 16(2):175-204, 1994

429

Joint-Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

{JDJ+95] James R. Lyle, Dolores R. Wallace, James R.

[LC92]

[PLR94]

[Wei84]

Graham, Keith B. Gallagher, Joseph P. Poole,
and David W. Binkley. Unravel: A CASE Tool
to Assist Evaluation of High Integrity
Software. Volume 1: Requirements and
Design. Technical Report NISTIR 5691. U.S..
DEPARTMENT of COMMERCE,
Technology Administration National Institute
of Standards and Technology, Computer
Systems Laoratory, Gaithersburg, MD. 1995

P. E. Livadas and S. Croll. Systern dependence
graphs based on parse trees and their use in
software maintenance. Technical Report
SERC-TR-61-F, University of Florida,
Gainesville, 1992.

H. D. Pande, W. A. Landi, and B. G. Ryder.
Interprocedural Def-Use associations for C
systems with single level pointers. IEEE

Transactions on Software Engineering,
20(5):385-403, May 1994,

M. Weiser. Program slicing. 1EEE
Transactions on Software Engineering,

SE-10(4):352-357, July 1984.

