A Systematical Partitioning Mechanism for Nested Loops with Non-uniform Dependences
Der-Lin Pean, Guan-Joe Lai" and Cheng Chen

Department of Computer Science and Information
Engineering,National Chiao Tung University, Hsinchu, Taiwan,
R.O.C.

" Department of Elementary Education, National Taichung
Teachers College, Taichung, Taiwan, R.O.C.

E-mail: cchen@csie.nctu.edu.tw

ABSTRACT

This paper proposes a generalized and systematical
mechanism to exploit parallelism from nested loops with
non-uniform dependences. This mechanism could partition
all kinds of non-uniform dependence loops effectively. Our
approach, based on the dependence convex theory and the
optimized integer programming technique, divides loops
into parallel partitions with variable size. All non-uniform
dependence loops could be classified into four types.
Adaptive mechanisms are proposed for each type to
minimize the number of parallel regions in the iteration
space. Consequently, our mechanism outperforms previous
ones not only in the number of parallel partitions but also in
the performance in the real machine.

Keywords: non-uniform dependence, loop parallelization,
parallel compiler and dependence convex hull.

1. INTRODUCTION

Loop dependences could be classified into two
categories: uniform and non-uniform dependences [1]. A
pattern of dependence vectors, which are expressed by
constants, will be known as uniform dependence vectors.
Other dependence vector patterns, which cannot be
expressed by constants, belong to non-uniform dependences.
Fig. 1 explicates non-uniform and uniform dependence
loops.

for I=1, 10 for I=1, 10
for J=1, 10 for J=1, 10
A (2*+3, J+1) =... AdJ) = ...
w=A ¥+, [+T+3) w=Al+1,J)+A(-1,J)
+A(LJ+1)+AMJ-1)
endfor endfor
endfor endfor

Fig. 1 (a) A non-uniform dependence loop, (b) a uniform
dependence loop.

Because there is a rich parallelism of loops in
scientific programs, parallel compilers have been written to
exploit the parallelism [1]. Several techniques based on the
convex hull theory have been proposed, such as dependence
uniformization [18], minimum dependence distance tiling [2,
11-12, 16-17], three-region partition [21], unique set
oriented partitioning [5] and improved three-region
partitioning (ITRP) [3]; and most of them fail in
parallelizing nested loops with non-uniform dependences.
However nearly 45 % of two-dimensional array references

are coupled [13], and most of them generate non-uniform
dependences. Therefore, a systematical partitioning scheme
for parallelizing loops with non-uniform dependences is
proposed here. Our method could extract parallelism from
nested loops with all kinds of dependence patterns
efficiently. Non-uniform dependence loops could be
classified into four categories according to dependence
vector patterns, the size of dependence convex hull and
dependence vector lines. Then adaptable mechanisms could
be applied to specific types of non-uniform dependence
loops.

Our mechanism is briefly described as follows. First,
if special dependence vector patterns with higher parallelism
degree could be found in non-uniform dependence loops, we
will detect and partition the iteration space according to the
special patterns. Second, we classify loops according to the
size of the area that could not be parallelized by using the
information of dependence convex hulls and dependence
vector lines of the iteration space. We call this area the
inherent serial area (ISA). If the ISA does not exist in the
iteration space, by using our optimized three-region
partitioning (OTRP) technique [6, 10], the iteration space
could be partitioned into two partitions in which iterations
could be executed in parallel. Otherwise, if the ISA exists
and its size does not cover all of the iteration space, we could
apply our two stage partitioning (TSP) mechanism [9]. TSP
mechanism partitions the iteration space into two parallel
areas and one serial area at stage one; and at stage two, it
partitions the serial region based on integer programming,
dependence convex hulls and dependence vector lines.
Finally, we propose two mechanisms, partial parallelization
decomposition (PPD) [7] and optimized dependence convex
hull partitioning (ODCHP) [8-9], to partition the iteration
space in which the ISA covers all of the loop iteration space.
PPD decomposes the iteration space by their partial
minimum dependence distances; and ODCHP partitions the
iteration space according to dependence vector lines,
dependence convex hulls and related techniques. They also
can be combined with our loop restructuring mechanisms
such as parallelization part splitting (PPS) [7] and irregular
loop interchange (ILI) [7] to exploit parallelism.

Four popular program models and two kernel code
segments in real programs are evaluated by our scheme in a
CONVEX SPP-1000 with 8 processors, and a
multiprocessor system environment called SEESMA [14].
Experimental results show that our scheme performs better
than existing ones such as uniformization, minimum
dependence distance tiling and ITRP.

The rest of this paper is organized as follows. Section
2 describes several related work. Section 3 presents the
categorization of non-uniform dependence loops and
partition mechanisms. The preliminary performance results
are illustrated in Section 4. Finally, we give some
conclusions with suggestions for future work.

2. PRELIMINARIES AND RELATED WORK

Most loops with complex array subscripts are
two-dimensional loops [13]. For a simplification of the
explanation, the considered program models in this paper
are doubly nested loops with coupled subscripts. The
solution to multilevel nested loops could be obtained by
enhancing our mechanisms. A doubly nested loop model is
depicted in Fig. 2, where f;(1.J), f2(1.J), f3(LJ), and fy(1,J) are
linear functions of loop variables. The dimension of the
nested loop is equal to the number of nested loops. In loop
1(J), Ly(L;) and Uy(U,) indicate the lower and upper bounds,
respectively. Both the lower and upper bounds of indices
should be known at compile time.

fOV I:LI,UI
fOI"J:LJ,UJ

Sa: Afil), fo(LI))=...
Su = AL, Ju1)))

endfor
endfor
Fig. 2 A doubly nested loop program model.

First, we define a program formally as follows.

Definition 1: A sequential program is represented as P =

<[] o 3§ O, wy n> where

® [Jis the set of instructions. An instruction is an
indivisible unit such as a simple arithmetic operation on
program variables.

o; is the depth, or the number of surrounding loops, of
instruction s.

9(i) is an affine expression derived from the loop
bounds such that i is a valid loop index for instruction s,
if and only if ,(i) = 0.

[.(i) is the affine array index expression in the rth
array reference to array z in instruction s.

W, is true if and only if the rth array reference to array z
in instruction s is a write operation.

V.5 1s true if and only if the r#h array reference to array z
in instruction s is a read operation.

® 1, is the number of common loops shared by
instruction s and 5.

The access patterns in a program define the constraints
of program transformations. Informally, there is a data
dependence from an access function [J to another access
function [J', if and only if some instance of [J uses a

location that is subsequently used by [J', and one of the
accesses is a write operation. A data dependence set of a
program contains all pairs of data-dependent access
functions in the program. Usually, an iteration denoting a
series of statements in the loop body is a unit of work
assigned to a processor. Therefore, the dependence
constraints inside iterations could be ignored. All the
dependences discussed in this paper include only
cross-iteration dependences. In our program model, as
shown in Fig. 2, statement S, defines elements of array 4,
and statement S, uses them. Dependence exists between S,
and S, whenever both refer to the same element of array A4.
If S; defines an element and S, uses it in a subsequent
iteration, there is a cross-iteration flow dependence between
S, and S, and will be denoted by (S, S,) J R/ . On the other
hand, if S, uses an element defined by S, at a later iteration,
the dependence is called the cross-iteration anti-dependence
and will be denoted by (S,, Sy) [Ry .

One of computing data dependence methods is to solve
a set of linear diophantine equations formed by iteration
boundaries. The data dependence set R contains two pairs of
access functions: <([7,;;, [p,;> and <[,y [J,>. The
constraints are 3, = 0 and 9, = 0, respectively. The loop in
Fig. 2 carries cross-iteration dependences if and only if there
exists four integers, ij, j;, i and j,, satisfying the system of
linear diophantine equations given by Eq. (1) and the system
of inequalities given by Eq. (2).

Ji(in, j) =102 j2) and fo(iy, ji) =iz j2),

where (i}, j;) and (i5, j2) (I, J), (1

L]Si],igSUlandLgsjj,jgs Ug. (2)

A Dependence Convex Hull (DCH) [18] is a convex
polyhedron and a subspace of the solution space. There are
two approaches for solving the system of diophantine
equations in Eq. (1). One way is to set i; to x;, j; to y;, and
then solve i, and j, respectively. Here, i;, j;, i, j, and its
inequalities can be represented as shown in Equation (3),
which forms DCH and is denoted by DCHI.

(inj1 i2J2) = (X1, Y1, &1(X1, ¥1), &2%1, y1),

Lysx;,g1(x,y) sUrand Ly <yy, gx(x, y) Uy (3)

The other way is to set i, to x», j, to ¥, and then solve i;
and j; respectively. Here, ij, j;, i5, j> and its inequalities can
be represented as shown in Equation (4), which forms DCH
and is denoted by DCH2.

(in J1 12 J2) = (85(x2 ¥2), &4lX2, ¥2), X2, ¥2),

Ly Sgs5(x3 y2), x2 SUpand LyS gy(xy, y2), y2 < U, (4)

Clearly, if we have a solution i;, j; in DCHI1, we will
have a solution i, j, in DCH2, because each of them is
derived from the same set of equations. If iteration (i, j,) is
dependent on iteration (i;, j;), we will have a dependence
vector D(x, y) with dy(x, y) = i, —i; and di(x, y) = j, — ji.
Therefore, for DCH1, we have

di(iy, ji) = &ilir, J1) - iy and diiy, j1) = g2(i1, j1) —ji- (5)
For DCH2, we have

di(is, J2) = iz - g5(iz, j2) and diiz, j2) =j2— g4(iz j2). (6)

After introducing some background and related
information, we will present the concepts of some our

proposed mechanisms. An arrow represents dependence in
an iteration space here. The arrow’s head indicates the
dependence head, and its tail is known as the dependence tail.
The notations of flow-dependence head (tail) set and
anti-dependence head (tail) set are denoted by Head(R})
(Tail(R})) and Head(Ry) (Tail(Ry)). Then the unique head
(tail) set [6] is a set of integer points in the iteration space
that satisfies the following conditions: (1) It is the subset of
one of the DCHs (or is the DCH itself); (2) it contains all the
dependence arrows’ heads (tails), but does not contain any
other dependence arrows’ tails (heads). We will first
examine the concept of DCH1 and DCH2 because it can
partition the iteration space into unique sets.

Lemma 1 [7]: For a nested loop, DCHI1 contains all
flow-dependence tails and all anti-dependence heads (if they
exist), and DCH2 contains all anti-dependence tails and all
flow-dependence heads (if they exist). Thus,

{oio oo (it (R)) 0 Head (Rg)}D DCH 1 and

{0i0 0%} O (Tait (R¢) 0 Head (R{))}0 DCH 2.

Lemma 1 tells us that DCH1 and DCH2 may contain
more than one unique set and two kinds of unique sets in
DCHI1 and DCH2 are also given. On the contrary, the
following lemma states the conditions for DCH1 and DCH2
to be unique sets.

Lemma 2 [7]: For a nested loop, if d;(x, y) = 0 does not pass
through any DCH, there will be only one kind of dependence,
either flow- or anti-dependence, and DCH itself is the
unique head set or the unique tail set.

Lemma 3 [7]: For a nested loop, if d;(x;, y;) = 0 does not
pass through DCH1, then d;(x,,y,) = 0 will not pass through
DCH2.

Lemma 4 [7]: For anested loop, if d;(x;,v;) = 0 (di(x,,y2) =0)

does not pass through DCH1(DCH2), and DCH1 (DCH2) is

on the side of d;(x;,y;) > 0 (di(x3,y;) > 0), then DCH1 (DCH?2)
is a flow-dependence unique tail (head) set. Otherwise, if
DCH1 (DCH2) is on the side of di(x;, y;) < 0 (di(x2y2) <0),

then DCH1(DCH2) is an anti-dependence unique head (tail)

set.

Now, we have found that if d;(x;, y;) = 0 does not pass
through DCH1, then both DCH1 and DCH2 are unique sets
and the points in them have the same property. DCHI1
(DCH2) may contain dependence heads and tails when d;(x;,
vi) = 0 (di(x2y;) = 0) passes through it. This makes it
difficult finding unique head and tail sets. Lemmas 5 and 6
will show some common attributes when d(x;, y;) = 0
passes through DCH1(DCH?2).

Lemma 5 [7]: For a nested loop, if d;(x,y) = 0 passes through
a DCH, it will divide DCH into a unique tail set and a unique
head set. Furthermore, d;(x,y) = 0 determines the inclusion
of d;(x,y) = 0 in one of the sets.

Lemma 6 [7]: For a nested loop, if di(x; y;) = 0 passes
through DCH1(DCH?2), then DCH1(DCH?2) is the union of a
flow-dependence unique tail (head) set and an
anti-dependence unique head (tail) set.

Based on the properties described above, there are
various combinations of overlaps of these unique sets. We
will illustrate these properties by the following example:

Sorl=1 10
forJ =110
A 2%J+3,1+J+5) = ...
= A (2*4J-1,3*1)
endfor
endfor
Fig. 3. a doubly nested loop.

The set of inequalities and dependence distances of
the loop in Fig. 3 are computed as follows.

DCHI: DCH2: 7)
1<i, <10 and 1<, <10 and
1</, <10and 1<j,<10and

15%‘+%‘+2510and ISZiZ—J—;—4S10and

% 4;)
1=y i cqp 1gi2+£—2£10
3 2
20 ;
d/(l1yJ|)__?]+?]+2’ d(izajz)z_i2+%+4’

.. __2i| ./1 .
dj(l]7jl)_ ?4’? dj(iz,jz):—l'2+L22+2

flow dependence g,(x,,y,)=0 : o
unique tail st j =2j -6 di(x,,y,)=0 :

Q=2 -6 anti dependence
11— “h =

unique head set

@

flow . anti
dependence T - dePenden.cle
unique head 1. DCHI unique tai
set | set
. 1

1

1
4Cy)=0: : di(%,,y2)=0 :
j.=2i,-8 : B j=2i,-8

1 170

(b)

Fig.4 DCHs and the unique head (tail) sets of loop in Fig. 3.

Fig. 4 shows DCHs and the unique head (tail) sets of
the loop in Fig. 3. Clearly, d;(x;, y;) = 0 divides DCH1 into
two areas. The area on the side of dy(x;, y;) < 0 is an
anti-dependence unique head set, which is on the right side of
di(x;, y;) = 0 as shown in Fig. 4(b). Similarly, the area on the
side of di(x;, y;) > 0 is a flow-dependence unique tail set,
which is on the left side of d;(x;, y;) = 0 as shown in Fig. 4 (a).
di(x,, y2) = 0 also divides DCH2 into two areas. The area on
the side of d;(x,, y,) < 0 is an anti-dependence unique tail set,
which is on the left side of d;(x,, y;) = 0 as shown in Fig. 4 (b).
The area on the side of d;(x,, y,) > 0 is the flow-dependence
unique head set, which is on the right side of d;(x,, y;) = 0 as
shown in Fig. 4 (a).

Our approach is based on convex hull theory [18]. We
use the lines d,(, j) = 0 and d(i, j) = 0 to partition the iteration
space into four unique sets. All possible sets partitioned by

d(i, j) and dj(i, j) are summarized in Table 1 according to the
above lemmas. Table 1(b) shows each set that is a part of a
line segment, which is partitioned according to the sign of

di(iy, j1) and d(iy, j>).

Table 1. (a) The different sets partitioned by d;(i, j) and
d(i,j), (b) The case of d(i}, j;) =0 or di(i,, j;) = 0.
@ b)

diis, o) di(is, j1) dj(iz, j2)
>0 <0 =0 >0] <0 =(>0 | <0 =0
No cross- No cross-
FLFH | FH, AH FT| AH | i ration FH D?:‘ iteration
>0 || pcH,,pCH, | DCH,,DCH, [DCH, [DCH, | dependence |[PCH, *|dependence
Refer
a4z) <0 FT,AT | AT,AH [to(b) FT : Flow dependence Tail set
DCH,,DCH, | DCH,,DCH, FH : Flow dependence Head set
AT : Anti dependence Tail set
=0 Refer to (b) AH : Anti dependence Head set
DCH, and DCH, are regions they belong to

Here, we use memory space to gain the benefits of
parallel execution because the anti-dependence can be
avoided by copy renaming. And the extreme points of the
convex hulls may have real coordinates. Punyamurtula and
Chaudhary [11] proposed an algorithm to convert these
extreme points with real coordinates to extreme points with
integer coordinates called the Integer Dependence Convex
Hull (IDCH). In the following, we will present the concepts
of some our proposed mechanisms.

The Parallelization Part Splitting (PPS) [7] is
introduced firstly, which splits fully parallelizable part of the
iteration space for parallel execution. Because non-uniform
dependence loops are irregular, total parallelizable iterations
may occupy most of the iteration space. If we can split the
parallelizable region out from IDCH in advance using the
concept of loop splitting in uniform dependence loop
partitioning, and then execute each of them in parallel, it will
greatly enhance the speedup of non-uniform dependence
loops. Fig. 5(a) and Fig. 5(b) show the Left-tile and the
Right-tile respectively. We can first execute iterations on the
Left-tile in parallel, and then execute iterations that are tiled
using ordinary parallelization or our following mechanisms.
Finally, iterations on the Right-tile can be executed in
parallel. Due to elimination of all unnecessary dependencies
in both Left-tile and Right-tile, performance of the PPS is
not constrained by the minimum dependence distance as the
conventional methods behaved.

S uiEny 21 / : e L
-°= H //I :O}Nun-lDCH/// 7 |NonIDC
: Il_‘l / | | pd = : / z
e/ / & 4 =
: HE H[' IDCH JNon—lDCH } (IbcH 7 S| bcH o
e) . z e vl g
o R
: | Il // ‘ | // S
b z} b S L/

\

10, e 100 X 10.. .. e 100 X 10, s

Fig. 5. Tiling of the PPS mechanism: (a) tiling of the left tile,
(b) tiling of the Right-tile, (c) tiling for Model 1 at Table 2.

Second, the Partial Parallelization Decomposition
(PPD) [7] mechanism is presented to partition the iteration
space into different parts and handles them by conventional
techniques. It avoids the loop parallelism restricted by the

minimum dependence distance in the whole iteration space.
If an iteration space could be partitioned into parts, the
minimum dependence distance of each part may be larger
than the original minimum dependence distance. This
decomposition method could exploit more parallelism
degree in each part of the iteration space. However, the
minimum dependence distance may be larger if iterations
are tiled along with other loop index, henceforth, loop
interchange could be applied. Fig. 6 shows an example of
applying PPD.

“Ar- “Ay
i 4'-1}’% i il-ﬂ‘i

R
- AR :i\- ° AR \O\c
= |1 Jovohi Wl - 11 Iovoh] e
SIS = =235 SIS B
w > 9] 1o | - >)
. 4‘: y =0 - «{‘:' ‘;5,;/

~

3456789 10X

23

Fig. 6. (a) Tile before PPD, (b) tile after PPD.

4567 89 10X

Third, because loop interchange may extract
parallelism in other loop dimensions, the Irregular Loop
Interchange (ILI) [7] scheme is proposed to detect whether
the transformation is legal or not. Fig. 7 indicates an
example of applying ILI mechanism for Model 4 at Table 2.

e

onADC

\

e

K € Fr s 9L 8 6 01 A
K € ¥ S 9L 8 6 01 X

123 45 6 7 8 9 10X 123 45 6 7 8 9 10Y

Fig. 7. (a) Tile before ILI, (b) tile after ILI.

Finally, the Growing Pattern Detection (GPD) [7]
technique detects the dependence vector function whether it
is increasing or decreasing progressively, and then tiles the
non-uniform dependence loop according to this dependence
vector function.

B3 B i
= B 4 B
- - .
-
- onfDC - onADC o N C
- - -
” - n
- / - I
- - -
- - -

123456789 10X 123456789 10X

Fig. 8. (a) Original Tiling, (b) tiling with GPD and (c¢) tiling
with ILI and GPD.

Tiling after the GPD mechanism is shown in Fig. 8 (b)
for the model 4 at Table 2; and the parallelism is greater than
that yielded by the original tiling method, as shown in Fig. 8
(a). The dependence index J is also a growing pattern, so we
use the ILI and GPD methods. After applying these two
mechanisms, the parallelism degree is further improved, as

‘I23456789IOY

displayed in Fig. 8 (c).

After introducing our proposed mechanisms, the
categorization of non-uniform dependence loops is
presented in the following section.

3. CATEGORIZATION OF
DEPENDENCE LOOPS

NON-UNIFORM

We have proposed several effective partition
mechanisms for non-uniform dependences loops with
different properties. ~Then, a systematical scheme is
presented here to classify non-uniform dependence loops
and partition them with suitable partitioning schemes. At
first, the non-uniform dependence loops are classified into
four types, (1) Non-uniform dependence loops with special
dependence vector patterns, (2) non-uniform dependence
loops without Inherent Serial Area, (3) non-uniform
dependence loops with Inherent Serial Area which does not
cover all of the iteration space and (4) non-uniform
dependence loops with Inherent Serial Area covering all of
the iteration space.

In the following, the mechanisms for partitioning each type
of non-uniform dependence loops will be proposed.

Type 1: Non-uniform dependence loops with special
dependence vector patterns.

If the loop's dependence vector contains special
patterns which could be partitioned easily, we could detect

and partition them based on their dependence vector patterns.

The growing pattern detection (GPD) mechanism could be
applied here to detect special dependence vector patterns
and parallelize them. When the irregular loop interchange
(ILI) mechanism detects that loop interchange is legal, the
loop could be interchanged to exploit more parallelism from
other dimensions.

Type 2: Non-uniform dependence loops without Inherent
Serial Area.

This type of non-uniform dependence loops could be

parallelized into partitions in which iterations could be
executed in parallel. Our optimized three region partitioning
(OTRP) [6, 10] mechanism is suitable for such kind loops.
At first, the iteration space is partitioned into three regions
Area;, Area,, and Area;. The iterations in Area; and Area,
could be executed in parallel. The iterations in Areas have to
be executed in serial. The following is the concept of
partitioning Area;, Area,, and Area;:
1) Area;: This region may include anti-dependence heads
and flow dependence tails, but should not include flow
dependence heads. As shown in Table 1, the case of d(iy, j»)
< 0 and (di(i2, j») = 0 and di(i,, j,) < 0) are included. On the
other hand, the area in the case of (d(i, j;) > 0 and d;(i,, j,) >
0) subtracting DCH2 is also included. The definition of
Area; is given: Area; = Areaj; U Area;; U Area;;, where
Areay = {(iz, J2) | di(ia, j2) < 0}, Areaj; = {(iz, j2) [diiz, j2) =0
and dj(iy, j2) < 0}, and Area;s = {(iy, j1) | di(i1, j1) > 0} M {(iz,
J2) [diiz, 12) > 03— {{ (i1, ju) [i1, j1) > 0} M {(iz, J2) [i, J2) >
0} N DCH2}.

Because there may be anti-dependence heads and tails

in different areas, copy-renaming is applied to remove
anti-dependences. And then the iterations in Area; can be
fully executed in parallel [6, 10].
2) Area,: In this region, the flow dependence and
anti-dependence heads should be included. As shown in
Table 1, the cases of (d;(i;, j1) < 0 and d;(iy, j2) > 0), (di(iy, j1)
=0 and d;(iy, j1) <0) and (di(i», j,) = 0 and dj(i,, j) > 0) are
included. The definition of Area, is given: Area, = Area,
U Areay, U Areay; U Areay,, where Areay; = {(iy, j1) | di(iy, j1)
<0} M {(i2, J2) | iz, j2) > 0}, Areaz, = {(i1, j1) | dili1, j1) =0
and di(i1, j1) <0}, Areay = {(iz, j2) | di(iz, j2) = 0 and di(iz, j2)
>0}, and Areays = {{(i1, 1) [di(i1, j1) > 0} M {(iz, j2) | di(iz, j2)
>0} (1 DCH2}—{{(i1, j1) | diin, 1) > 0} 1) {(ias) | di(ias o) >
0} N DCHI1 N DCH2}.

This Area, contains anti-dependence heads and flow

dependence heads whose corresponding tails exist in Area.
Once Area; and Area; are executed, the iterations in Area,
can be fully executed in parallel.
3) Area;: This region is the rest of the iteration space
excluding Area; and Area,. In this region, flow dependence
heads and tails are included. As shown in Table 1, the cases
of ((di(il, _]1) > (0 and di(iz, _]2) > 0)m DCHIN DCH2) and
(di(i1, j1) = 0 and d(iy, j;) > 0) are included. The definition of
Areas is given: Area; = Areas; U Areasy, where Areaz; = {(ij,
i) 1di(in, 1) > 03 M {(iz, j2) | di(iz, j2) > 0} M DCH1 M DCH2
and Areas; = {(i1, j1) | di(is, j1) = 0 and di(i, j;) > 0}.

di(x1,y)=0

7 1

di(xz,y2) <0

Fig. 9. The non-uniform dependence loop of model 1 in
Table 2 with dependence of type 2.

Because Area, contains only flow dependence tail sets
after copy-renaming and Area, contains only flow
dependence head sets after copy-renaming, they could be
executed in parallel respectively. However, Area; contains
both flow dependence head and tail sets. The iterations in it
must be executed in serial, i.e. Area; is an inherently serial
region. Due to type 2 doesn’t have ISA part, the execution
of the partitioning follows the sequence of Area,— Area,.
Iterations in Area; and Area, can be executed in parallel.
The complexity of the algorithm is bounded by the
complexity of dependence convex hull's algorithm. Thus, it
is effective and can be constructed in current parallel
compilation environments. We will give an example for the
program model 1 in Table 2 with U; = U; =10, the iteration
space contains only anti-dependence and can be eliminated
by copy renaming. The ISA region does not exist in the

iteration space as shown in Fig. 9.

Type 3: Non-uniform dependence loops with Inherent Serial
Area which does not cover all of the iteration space.

This type loops still have iterations which could be executed
in parallel, so we could partition them in advance by PPS
and the first stage of our TSP [9] mechanism. After
applying above mechanisms, the iterations which could not
be executed in parallel, i.e. the ISA area, could be further
partitioned into parallel partitions by the TSP’s second stage
and PPD mechanism.

Our two stage partitioning (TSP) [9] mechanism is
based on the three-region partitioning technique and the
dependence convex theory to reduce the complexity of our
algorithm. TSP could divide the iteration spaces into three
regions, Area;, Area,, and Area; in the first stage. The
iterations in the regions Area; and Area, can be executed in
parallel and Area; must be handled furthermore in the
second stage. The definitions of Area;, Area,, and Area are
similar to that of OTRP mechanism, and the execution order
is Area; — Areaz — Area,. lIterations in Area; and Area, can
be executed in parallel, Area; cannot be executed in parallel,
and further processes are needed in the second stage.

The main idea of the second stage of the TSP
mechanism is as follows. If we could find the flow
dependence head iteration, (x, y), that occurs first (i.e., its
execution order is lexicographical firstly) in the range of the
loop given by Area; and its corresponding tail is inside the
Area;. Due to there is no dependences between these
iterations, all the iterations, (i, j), in the range of these
iterations whose lexicographical order is less than the
iteration (i, j) and inside the Area; could be executed in

parallel. Hence, we could make the iterations into a partition.

The range of the iterations whose lexicographical order is
the same and greater than the iteration (7, j) and inside the
Area; could then be partitioned in the same way. We could
repeat this procedure for the rest of the loop iterations inside
the Area;. However, if the tail of the dependence head is
located at one of the previous partitions, there is no
dependence. Thus, we could ignore the dependence heads
explored above when we partition these extra iterations.

Fig. 10 illustrates the result of applying the first stage
of TSP method to the loop of Fig. 3 in which the iteration
space contains non-empty Inherent Serial Region. Area; is
the region excluding the relation (((J > 2I-8) n (J<2I-6)) [J
(2I-8 <J) n (J<4-181) n (J<-21+16))), Areasis ((J > 2I-8)
N (J<4I-28)), and Area, is (J < 21—-6) n ((2I-8 < J)) O
((J>41-28)n (J<(3+2D/4)n (J>21-6))).

To partition the iteration space with non-empty ISA,
we should apply the first stage of TSP or the PPS mechanism
in advance. In this case, we find that we could exploit more
parallelism after applying the first stage of the TSP
mechanism, and the ISA region could be further partitioned
by the second stage of the TSP mechanism.

Type 4: Non-uniform dependence loops with Inherent Serial
Area covering all of the iteration space.
To partition the iteration space with the ISA covering

all of it, we could apply ODCHP [8-9] or PPD mechanisms.
All the iteration space could be partitioned into several
regions in which iterations can be executed in parallel. We
could choose one of the ODCHP and PPD mechanisms
based on which has the smaller number of partitions.

di(xi,y)=0 : Area;

di(x2,y2)=0 :
j2=2i-8

Fig. 10. Regions of the loop partitioned by the first stage of
TSP for Fig. 3.

The concept of ODCHP is described as follows. If we
could find the dependence head iteration, (x, y), that occurs
first (i.e., its execution order is lexicographically the first) in
the range of the loop given by /; <x <u; and [, <y <u,, then
all the iterations, (i, j), in the range of (/; <i<x-land [, <j <
u;) plus (i = x and [, <j <y-1) could be executed in parallel
since there are no dependences between these iterations.
Thus, we could make the iterations in the range of (/; < i <
x-1 and [, <j <u;) plus (i =x and [, <j <y-I) into a partition
with size (x-1,)(uy-l,+1) + (v-I,). The range of (x < i < u;
and [, <j <u,) plus (i = x and y <j < u;) could then be
partitioned in the same way. The procedure is repeated for
the rest iterations. However, there is no dependence if the
tail of the dependence head is located at one of the previous
partitions. The definition of Optimized Dependence Convex
Hull Partition (ODCHP) is given as follows. For a nested
loop, the ky, partition of the ODCHP method, ODCHP,,
begins from the end of the next iteration of the previous
partition to the previous iteration of the first head node with
a tail node that belongs to the current partition.

/ODCHPz

ODCHP4

Jo==""7

e

1
T l\\

LI

T\

1 ‘\ ¥
= === = =
K

N

\

\

<]

G
1
1
s
v

\
1i!
(a) (b) :

I
Fig. 11 (a) An example partitioned by the Minimum
dependence distance tiling without inclusion property, (b) an
example of ODCHP partitioning with the inclusion proerty.

By using the Inclusion Property [8-9], for a nested
loop, if all the corresponding dependence tails of
dependence heads belong to the previous ODCHP partitions,
then the iterations from the source node of the current
ODCHP partition to the node of the last dependence head

with lexicographical execution order can be executed in
parallel.

As shown in Fig. 11 (a), the iteration space in Fig. 1 (a)
is partitioned by the minimum dependence distance tiling
method. Even the corresponding dependence tails of
dependence heads a, b, ¢, d belong to the previous tiles, they
are also tiled with less dependence distance than the
ODCHP scheme. We find that the number of iterations
executed in parallel increases greatly by using ODCHP. As
shown in Fig. 11 (b), all the corresponding dependence tails
of dependence heads a, b, ¢, d belongs to the previous
ODCHP partition, ODCHP;. Thus, the iterations from the
source node of the ODCHP, partition to the node of the last
dependence head ¢ with lexicographically execution order
can be executed in parallel. For a nested loop, the iterations
inside the same ODCHP partition can be executed in parallel,
and the number of iterations inside each partition tiled by the
ODCHP mechanism is a greedy maximum under the
constraint of lexicographical execution order. By using an
improved integer programming technique, we could obtain
the generalized and optimized algorithm to exploit more
parallelism in nested loops with non-uniform dependences.

According to the partition methods discussed above,
we propose a complete non-uniform partitioning algorithm
in the following. They are classified based on the concept of
dependence convex hulls and dependence vector lines.

Algorithm Categorization;
/* Input: The nested loop L with non-uniform dependences
Detection Mechanisms: GP, ,GPy, ILI, ISA and IS
Partitioning Mechanisms: GPD, ILI, PPS, OTRP, ODCHP, PPD
and TSP.
Output: The nested loop L, after partitioning */
Begin
If (GP, (L)== True) then
/*Axis x is detected as growing pattern®/
Li=GPD(L); /*Growing Pattern Detection Mechanism*/
Else if (GP, (L)== True) and (is(ILI(L)) == true) then
/*Axis y contains growing Pattern®/
L=ILI(L); /*Irregular Loop Interchange Mechanism*/
Li=GPD(L); /*Y axis is applied GPD Mechanism*/
Else if (Sizeof(ISA(L)) < Sizeof(IS(L)))
/*Inherit Serial Region is less than Iteration space*/
If (Parallel(ISA(L)) == True) /*OTRP is applied if the */
L,=OTRP(L); /* inherit serial region can */
/*be executed in parallel */
Else /*TSP is applied if the inherit serial region can*/
L,=TSP(L); /* not be executed in parallel*/
Else if ((Sizeof(ISA(L)) = Sizeof(IS(L))) then
/* ISA is equal to the size of iteration space*/
L=PPS & ILI(L); /* apply PPS and ILI mechanisms*/
If (# of Partitions of (PPD(L)) < # of Partitions of
(ODCHP(L)))
L,=PPD(L); /*PPD is used if better than ODCHP*/
Else

L,=ODCHP(L); /*ODCHP is used*/

End.

In this algorithm, we firstly detect the special pattern
of Type 1 discussed above because it can exploit parallelism
step by step and its parallelism exploited is very large. We
will detect this special pattern in every dimension of loops if
combined with the ILI mechanism. If the GPD pattern is
detected in the loop, we will partition them in the specific
dimension with the maximum GPD parallelism of the
specific dimension. Second, we will partition them due to
the size of their ISA region. When the size of the ISA region
is empty, then the OTRP mechanism can partition the
iteration space into two parallel regions. Third, if the ISA
region is not empty and it does not cover all of the iteration
space, we can apply the TSP mechanism. Finally, if the ISA
region covers all of the iteration space, the PPD and ODCHP
schemes can be applied and effectively exploited parallelism.
The time complexities of the proposed mechanisms are
depicted in [6-10], and the time complexity of the
categorizing step is bounded by the complexity of
dependence convex hull algorithm. By using existing
dependence convex hull functions in current parallel
compilers, our mechanism is reasonable to be constructed in
current parallel compilation environments.

We could parallelize general non-uniform dependence
loops without any constraint. In order to show the
performance of our mechanisms, we have implemented
them in a parallel compilation environment and evaluated
them in supercomputer and evaluation environment with
large number of processors. We will discuss them in the
following section.

4. PERFORMANCE EVALUATIONS

We have constructed our mechanisms in the SUIF [20]
parallel compilation environment and then evaluated the
program models on a CONVEX SPP-1000 system with 8
processors and on a simulator named SEESMA (A
Simulation and Evaluation Environment for
Shared-Memory Multiprocessor Architecture [14]) which is
enhanced from MINT [19]. The evaluated program models
are four popular models and two real program kernel code
segments [4, 15, 16-18] as shown in Table 2 and 3.

We used the model 4 in Table 2 to evaluate different
mechanisms. Fig.12 shows the speedup of our techniques
versus minimum dependence distance method and
uniformization technique. For this model, our technique got
a better performance. The loop bounds of this model are 30.
Thus, iterations of this model are much larger than the
number of processors in the IBM SPP1000 system.

Fig. 13 shows the speedup of our technique OTRP
versus ITRP combined with MDT (Minimum Dependence
distance Tiling) and VSP (Variable Size Partitioning)
techniques. Our technique delivers a better performance
while the loop bounds of this example are set to 100 as
shown in Fig. 13 (a). As the number of processor increases,
the performance of the OTRP combined with the VSP

mechanism shows even better than the others. However, the
speedup of different mechanisms is nearly linear as shown in
Fig. 13 (b) due to the massive parallelism degree and the
limited number of processors in the CONVEX SPP-1000

while the loop bound is set to 1000.
Table 2 The standard models.

sl: AQL2J))= ...
s2: ... =A(+10, [4J+6);
enddo

Model 1 Model 2
for I=1,N do for I=1,N do
for J=1,M do for J=1,M do

sl: A(I+], 31+)+3) = ...
s2: ... = A(I+J+1, [+2]+4);
enddo

Speedup on the SPP-1000 with Loop Bounds = 100 .

——OTRP
—=ITRP
——OTRP-MDT
=< ITRP-MDT
—*= OTRP-VSP Z
——ITRP-VSP Z -

Speedup
S — W s Lo

—~ o
A oA A

Number of Processors

Speedup on the SPP-1000 with Loop Bounds = 1000 .

8 |+ OmRP
= [IRP
7['|=—Ome D]
6 ||~ ITRPMDT
o 5 || OIRP-VSP
£ [| -+ nRPVSP
34
g
@3
2
1
0

b
4

p=3
p=5
P=6
p=7
p=8

Number of Processars

Fig. 13. Evaluation on the real machine for the program in

Fig. 3, (a) Speedup on the SPP-1000 with loop bound = 100,

(b) loop bound = 1000

(@) Speedup (Propogate Code Segmen). (b) Speedup (Swap Code Segmum).
100 120
90 | —B—IRP _g-IRP
80 | —%— ITRENDT 100 ¥— ITREAMDT
70 | —e— ODCHP
> s | —o— ODCHP
s @ | —avitom s _A— Uniform
g S0 o MOT B
g T Or oM
& 40 &
30 40
20
20
10
0 T | . 0 L ,
% 7 e o Z % Numbrof = & e o Number of
I ¥ 11§ ¢ § o8 I 1 I f 5 § 3 &blme
d 4 LT procssors 4 4 T Processors

enddo enddo
Model 3 Model 4
for I=1,N do For I=1,N do
for J=1,M do for J=1,M do
sl: AQI+3,I+1) = ... sl: AGGL 5))=...
s2: ... =A(I+J+3, 21+1); s2:...... =ALJ);
enddo enddo
enddo enddo
Table 3 The practical code Segments.
Propogate Code Segment Swap Code Segment
DO I=1,Q DO I=1, 10
DO J=1,R DO J=1, 10
AR (I, J)= AR(1,J) Y(J, 1) =Y(J, N+1-I)
CONTINUE CONTINUE
CONTINUE CONTINUE
Speedup on the SPP-1000
800 o
60 ——Tiling
g gre:
§4G) e
2] —¥—ILGD
200 —&— Lhifomization
O.(x) L L L L L L L I}
v v v v v 'd7u 'u '¢
TEELELEE
Benchirerks

Fig.12. Evaluation on the real machine for model 4.

Fig. 14 shows the speedup comparisons in the
SEESMA. For Propogate code segment, our mechanism
finds that the flow dependence tail only covers a small
region of the iteration space. And after the first partitioning
step, all the iteration space is fully parallelized. Thus, in this
program code segment, our mechanism shows dramatic
better performance than other mechanisms as shown in Fig.
14 (a). For the Swap code segment, because the ITRP,
ITRP-MDT and our ODCHP mechanisms partition the
iteration space into two parallel regions, their performance is
nearly the same and all effective as shown in Fig. 14 (b).

Fig. 15 shows the speedup comparisons in the
SEESMA environment. Our technique delivers a better
performance while the loop bounds of this example are set to

Fig. 14. Evaluation on the SEESMA environment for (a)
Propogate, (b) Swap code.

Speedup for Loop Bound = 100
Speedup for Loop Bounds = 10

35
—OTRP - OTRP
120 | |a-rTRP

30 [|=ITRP
- OTRP-MDT 100 | | OTRP-MDT
< ITRP-MDT

257 |- 1TRP-MDT
ol lese 80 [|-e-TsP

Speedup

r ¥ I I i

P=32
P=64
P=128

Number of Processors

Speedp for Loop Bound = 1000

- OTRP
- ITRP

100 | |+ OTRP-MDT
- ITRP-MDT
TSP

1

- ®
il]
a &

~ ° N 3
Il - « <
A [i

& &

P:
P=
P=128

Number of Processors

Fig. 15. Speedup on SEESMA for the program in Fig. 3
with (a) loop bounds = 10, (b) = 100, (c) = 1000.

10, 100 and 1000 as shown in Fig. 15 (a), (b) and (c). As the
number of processor increases to 128, the performance of
the TSP shows even better than the other mechanisms. They
are close to the ideal speedup 8.3, 10 and 33 respectively
than the speedup running on the CONVEX SPP-1000 which
are 8.13, 9.29 and 29.55 as shown in Fig. 15 (a) because of
more number of processors can exploit more parallelism
degree. It is clear that the TSP exploits more parallelism
than either three-region partitioning or unique set oriented
partitioning method. In addition, the TSP scheme extracts
much more parallelism than the ITRP and OTRP schemes

and other mechanisms do.

5. CONCLUDING REMRKS

In summary, we propose a systematical and effective
partitioning mechanism to exploit parallelism from nested
loops with non-uniform dependences. As discussed above,
we not only classify benchmarks into several specific types
but we also apply appropriate schemes according to their
attributes. On the other hand, we proof the effectiveness of
our categorizations. In the preliminary evaluations, we find
that our categorization can partition effectively. Our scheme
could extract parallelism from all types of non-uniform
dependences. Many aggressive methods may be possible
only for specific types of dependence vector patterns.
However, our method is the most complete and general one
currently. So far, our mechanisms have been implemented
in SUIF to be used as a good platform for parallel
compilation of non-uniform loop structures.

6. REFERENCES

[1] Banerjee. U., 1988. Dependence Analysis for
Supercomputing, Kluwer Academic Publishers, 101
Philip Drive, Assinippi Park, Norwell, MA 02061,
Boston.

[2] Chen, D.K. and Yew, P.C., 1996. On Effective Execution
of Nonuniform DOACROSS Loop, IEEE Transactions
on Parallel and Distributed Systems. 7. 5, 463-476.

[3] Cho, C. K. and Lee, M.H., 1997. A Loop Parallelization
Method for Nested Loops with Non-uniform
Dependence. Int. Conference on Parallel Processing,
Dietz, Hank & et al., (Eds), Los Alamitos, CA, 314-321.

[4] Dongarra, J. J., Moler, C. B., Bunch, J. R. and Stewart G.
W., 1979. LINPACK Users' Guide by SIAM,
Philadelphia.

[5] Ju, J. and Chaudhary, V., 1996. Unique Sets Oriented
Partitioning of Nested Loops with Non-uniform
Dependences, Int. Conference on Parallel Processing,
III, Los Alamitos, California, K. Pingali. (Ed), 45-52.

[6] Der-Lin Pean and Cheng Chen, “An Optimized Three
Region Partitioning Technique to Maximize Parallelism
of Nested Loops with Non-uniform Dependence,”
accepted and to appear in the Journal of Information
Science and Engineering.

[7] Der-Lin Pean and Cheng Chen, “Effective
Parallelization Techniques for Loop Nests with
Non-uniform Dependences,” accepted and to appear in
the Journal of Parallel Algorithm and Applications.

[8] Der-Lin Pean and Cheng Chen, “ODCHP: A New
Effective Mechanism to Maximize Parallelism of
Nested Loops with Non-uniform Dependences,”
accepted and to appear in the Journal of Systems and
Software.

[9] Der-Lin Pean, Guan-Joe Lai and Cheng Chen, “An
Optimized Dependence Convex Hull Partitioning
Technique to Maximize Parallelism of Nested Loops

with Non-uniform Dependences”, accepted by
Proceeding of the 2000 Int. Conf. on Para. and
Distributed Systems, ICPADS'2000, Iwate, Japan, July
4-7, 2000.

[10] Der-Lin Pean and Cheng Chen, “An Optimized Loop
Partition Technique for Maximize Parallelism of Nested
Loops with Non-uniform Dependences,” in Proceeding
of the Fifth Workshop on Compiler Techniques for
High-Performance Computing, Chiayi, Taiwan, R.O.C.,
March 18-19, 1999, pp. 158-171.

[11] Punyamurtula, S. and Chaudhary, V., 1994. Minimum
Dependence Distance Tiling of Nested Loops with
Non-uniform Dependences, Proc. 6th IEEE Symposium
on Parallel and Distributed Processing, 74-81.

[12] Punyanurtula, S., Ju, J., Chaudhary, V. and Roy, S.,
1997. Compile Time Partitioning of Nested Loop
Iteration Spaces with Non-uniform Dependences,
Parallel Algorithms and Applications. 12, 113-141.

[13] Shen, Z., Li, Z. and Yew, P.C., 1989. An Empirical
Study on Array Subscripts and Data Dependencies, Int.
Conf. on Parallel Processing, Pennsylvania State
University, Ris, Fred & Kogge, Peter M. (Ed.), 145-152.

[14] Su, J.P., Wu, C.C. and Chen, C., 1996. Reducing the
Overhead of Migratory-Shared Access for the
Linked-Based Directory Coherent Protocols in Shared
Memory Multiprocessor Systems. Proc. ICS’96 on
Computer Architecture, Kaohsiung, Taiwan, R.O.C.,
Wen-Shyong and Lionel M. Ni (Eds.), 160-167.

[15] Swarztrauber, P. A. and Sweet, R. A., 1979. Efficient
Fortran Subprograms for the Solution of Separable
Elliptic Partial Differential Equations. ACM
Transactions on Mathematical Software, 5. 3, 352-364.

[16] Tseng, S.Y., King, C.T. and Tang, C.Y., 1992. Minimum
Dependence Vector Set: A New Compiler Technique for
Enhancing Loop Parallelism, Int. Conference on
Parallel and Distributed Systems, HsinChu, Taiwan,
National Tsing Hua University, 340-346.

[17] Tseng, S.Y., King, C.T. and Tang, C.Y., 1996. Profiling
Dependence Vectors for Loop Parallelization, Proc.
International Parallel Processing Symposium, Los
Alamitos,Cali, 23-27.

[18] Tzen, T. H. and Ni, L.M., 1993. Dependence
Uniformization: A Loop Parallelization Technique,
IEEE Trans. on Parallel and Distributed System. 4,
547-558.

[19] Veenstra, J.E. and Fowler, R.J., 1994. MINT Tutorial
and User Manual, Technical Report, 452, University of
Rochester, New York.

[20] Wilson, R., Lam, M.S. and Hennessy, J., 1996. An
Overview of the SUIF Compiler System, Computer
Systems Lab, Stanford University.

[21] Zaafrani, A. and Ito, M., 1994. Parallel Region
Execution of loops with Irregular Dependences. Proc.
the Int. Conf. on Parallel Processing, Aug. 15-19, 11-19.

