
Adaptively Speculative Execution for Wide-Issue Superscalar Processors

Chia-Chang Lin and Tien-Fu Chen

Department of Computer Science
National Chung Cheng University

Chiayi, Taiwan 621, ROC

chen@cs.ccu.edu.tw

Abstract
In the past, a scheme of Adaptive Branch Trees (ABT)

has been proposed for adaptively keeping track of alterna-
tive branch paths and to speculatively execute the code on
the most likely path with constrained hardware resources. In
this paper, we combine the ABT concept with the instruction
prefetch by realizing an ABT table to prefetch the most likely
path of execution stream codes so as to reducing instruction
cache miss penalty. Then, we focus on the speculative ex-
ecution with ABT scheme. We will take the advantage of
the property of ABT to exploit execution parallelism. We
propose a register renaming mechamism to ensure that the
values of registers are generated and accessed to keep data
consistency and control dependency under dynamic out-of-
order execution.

1 Introduction

Several architecture schemes combining various branch
prediction mechanisms have been proposed to provide better
accurate prediction for superscalar processor[6, 9, 1, 5]. To
exploit execution streams as many as possible for parallelism
is necessary, two known alternatives to Single Path (SP) ex-
ecution streams have been proposed for reducing the ill ef-
fects of branch, i,e, Eager Execution (EE) and Disjoint Ea-
ger Execution (DEE)[8]. The first executes the code on both
paths of a branch, bypassing the branch, giving a branch mis-
predict penalty of zero. Although, it results in the best per-
formance, EE also has prohibitive cost because of the need
of large hardware requirement to satisfy every branch path.
Disjoint Eager Execution (DEE) is more promising one be-
cause it speculatively executes the code that is most likely to
be need. So, the conception of DEE is between EE and SP.
On one hand, it takes the advantage of dynamic instruction
scheduling to exploit parallelism. On other hand, DEE’s cost
is also attractive. So, under constrained hardware resource,
DEE indicates which code to assign to spare function unit for
the best performance.

Chen [2] introduced an concept of Adaptive Branch Trees
(ABT). Like DEE, the basic idea of the adaptive branch
branch tree is to dynamically keep track of alternative branch
paths and to speculatively execute the code on the most likely

path. But the ABT is not a static tree heuristic, it can dynam-
ically change its tree shape if a branch is resolved. Unlike
branch prediction, ABT concept can provide multiple execu-
tion streams and reduce long branch mispredict latency. The
concept of the ABT is realized by an adaptive branch tree ta-
ble (ABTT) supporting multiple execution streams and cor-
recting the update of the machine states.

In this paper, based on the idea of ABT, we extend the
study to have two contributions. The first is that we use the
ABT mechanism to support aggressive instruction prefetch-
ing for the instruction cache. We can reduce cache misses
by aggressive prefetching instructions which may be use-
ful in the future. We evaluate the performance of instruc-
tion prefetching scheme with ABT design and compare with
SP(branch prediction) prefetching scheme. The second is
to support speculatively execution of the code on the most
likely path provide us with a good solution about multiple
paths execution. We evaluate the performance of ABT spec-
ulative execution scheme and SP speculative scheme under
constrained hardware resources.

The organization of this paper is following: Section 2 in-
troduces the Adaptive Branch Tree concept. Section 3 gives
the instruction prefetching via using the ABT scheme. Sec-
tion 4 proposes the speculative execution which involves op-
timally adjusting instruction for parallel execution after a
branch’s two paths by ABT scheme. In Section 5, we present
our experiment. Finally, we conclude in Section 6.

2 Superscalar with Adaptive Branch Tree

The basic ideas of adaptive branch Trees (ABT)[2] is to
speculatively execute the code on the most likely path. The
characteristics of ABT are attractive for speculative execu-
tion in that ABT can be adaptively extended and execution
path sequence can be easily reset once a branch is resolved.
For a given node in the tree, the likelihood fraction of ei-
ther path is based in the taken probability of the branch, in-
stead of prediction accuracy as in the DEE scheme. The con-
cept of the ABT is realized by an adaptive branch tree table
(ABTT) as shown in Figure 1. The function of ABT table is
to record the dynamic execution flow from the viewpoint of
branch path unit. In the background of execution, the branch

1

I-Cache

IQ

Dispatch

Register
Set

FU. FU. FU.
MOB

Valid
 Bit

Token CP leaf
Branch
Address

Branch
Address

Cache

Adaptive Branch Tree Table

Target Path
Path

Fall-thru0 Bit 0

XOR

Branch Result

ROB & RAT

Reservation Station

Token is assigned to each instruction in instruction window

ABTT

D-cache

Figure 1. Machine with Adaptive Branch Tree Table

tree can be extended until there is no table entry is available.
Each entry is assigned with an unique token, such that the en-
tire tree can be reconfigured by shifting bits and invalidation
operation once the root branch is resolved. The cumulative
probability gives the cumulative likelihood of execution on
this path. The leaf flag indicates whether the corresponding
path is pending to be extended or hs been speculatively ex-
ploited,

There is a branch address cache (BAC), which cooperates
with ABT table, to store branch target address. In the BAC,
we also need an additional field to record the taken proba-
bility of the corresponding branch. The probability can be
obtained at the profile-time or dynamically estimated at run-
time. In our experiment, we use a profile to get the global
taken probability of each conditional branch. Given a branch
address, the BAC gives one fall-through path and one tar-
get path for speculative execution. Whenever the execution
finds a branch on either path, its new branch addresses will be
passed back to the ABT table. Note that the BAC is used for
only storing target addresses without prediction capability.
This is because the ABT table maintains some of alternative
branches with larger likelihood, instead of predicting a single
path that is likely to be taken or not.

The novel idea of ABT scheme is in the token assign-
ment and the determination of valid bit. When a branch is
resolved, all of the tokens will be shifted right by one bit and
one of child nodes of the root will become the new root node.
The detailed operations of ABT scheme can be found in [2].

3 Instruction Prefetch using ABT for Instruc-
tion Cache

Prefetching scheme is an efficient method to reduce the
gap between processor and memory speeds. A prefetching
cache generates prefetch requests to bring data in the cache
before it is actually needed, thus allowing overlap with pre-
miss computations. The instruction cache exists for supply-

ing requested code to the instruction prefetcher. As shown in
Figure 2, the prefetcher issues only read requests to the code
cache.

TLB

TLB

Instruction
Cache

Branch

Data Cache

Fetcher & decoder

Prefetch buffers

ROB & RS

Register File

Units

Execution
64-bit

Bus
Interface

Backside
Bus

Interface

L2

Cache

Prediction

External Bus

Figure 2. Processor Cache System Overview

Since the target line is usually not ready in time on a
taken branch, the prefetched wrong-path line is expected to
used only when execution returns to the branch. Another in-
struction prefetching about speculative execution is to inves-
tigate the various fetch policies for speculative execution[3].
Now, we will give an aggressive prefetching scheme, which
prefetching instructions unit is branch path instead of cache
line to match the requirement of deeper speculative execu-
tion.

As mentioned in [3], the processor starts fetching instruc-
tion along the wrong execution path when a branch misfetch
or misprediction occurs. If an instruction cache is then en-
counter, two detrimental effects might arise from fetching the
missing line: (i) the line on the wrong path may replace use-
ful instructions in the I-cache. (ii) the bus between the IL1
and IL2 cache might be busy while an I-cache miss on the
correct paths to be processed. Because the codes of succes-
sive branch paths of previous conditional branch might be
the same with that of previous branch path, it is no doubt
that the program with regular branch behaviors will per-

2

form well if we use branch prediction to prefetch multiple
branch paths. However, the branch prediction mechanism
is a history-based prediction method, it needs training time
to complete acceptable prediction rate. So, the more deeper
depth of the predicted branch is, the less prediction rate it is.
When a branch misfetch or a branch misprediction occurs,
and the demanded cache lines are not yet ready, the long la-
tency du to cache miss will be detrimental to overall perfor-
mance, especially under the environment with deeper spec-
ulative execution. Another shortcoming of multiple branch
paths prefetching is that no execution on wrong path, the pre-
vious prefetched code may pollute the I-cache.

Oppositely, if the instructions prefetched on the wrong
path will be used sooner than the displaced instructions,
it is worth our effort prefetching the instructions of wrong
paths. This scheme dynamically keeps track of alternative
branch paths so that the code on the most likely path can be
prefetched to I-cache for speculative execution. By applying
ABT concept, we keep probing the existence of the codes in
cache which belong to multiple pending branch paths accord-
ing to ABT activity. Hence, we can greatly reduce access
time and slightly reduce miss rate by ABT prefetching be-
cause branch misprediction will be very costly when deeper
speculative execution is performed based on branch predic-
tion.

Although aggressive instruction prefetching results in
higher replacement rate and cache pollution than little-
quantity prefetching, it really reduce the chance of cache
miss which may result in long latency. If the prediction rate
of branch prediction is higher, and the program behavior is
very regular, the selected pending branch paths of branch
prediction scheme will be similar to that of ABT scheme.
Otherwise, ABT will take the advantage of early fetch the
code of alternative branch paths.

4 Aggressively Speculative Execution for
Wide-Issue Processors

We exploit more pending branch paths into instruction
window for reducing branch misprediction penalty under
constrained hardware resources. Therefore, ABT specula-
tive execution scheme can be another choice. As shown in
Figure 3, the machine model of ABT speculative execution
is slightly modified from typical superscalar model. From a
viewpoint of hardware resources, we need not to duplicate
multiple instruction queue, to have too many execution units
or larger instruction pool in execution core. ABT specula-
tive execution scheme assigns a novel token to every instruc-
tion when this instruction enters the instruction window. By
the characteristics of shifting operation (see [2]), the branch
recovery operation can be simplified without too much sys-
tem states maintenance or bus traffic (like Eager execution
and Disjoint Eager Execution) when branch misprediction
occurs. The following will describe the operations when a
branch misprediction occurs in ABT speculative execution
model:

� all instructions which are currently in the ROB and be-
long to the successive branch paths of the mispredict

branch must be flushed from the ROB. (Maybe there
are still pending instructions came after the branch in
ROB.)

� all of the instructions which belong to the successive
branch paths of the mispredict branch and are currently
in the reservation station or are currently being executed
must be flushed.

� all instructions in the earlier pipeline stages and belong
to the successive branch paths of the mispredict branch
must be flushed.

� instructions in the instruction queue and belong to the
successive branch paths of the mispredict branch must
be flushed.

Instruction
Queue

I-Cache I-TLB

Reg Renaming

Reservation Station

decoder

Bus Interface

decoder decoder decoder

FP unit L/S L/S

Memory
Order
Buffer

D-Cache D-TLB

& op Reads
Reorder Buffer

Result Bus

Shadow

ABTT

Register

Branch
Address
Cache

(BAC)

Crossbar Switching
Network

unit
Integer

Reg. File

Figure 3. Superscalar Model for ABT scheme

The entries in the gray rectangular parts shown in Figure
3 are with a token as a field. By following the token as-
signment rule and re-configuration rule of ABT concept, the
code flows in execution core are easy to be adjusted when a
branch is resolved. However, ABT will make the instruction
queue, reorder buffer, memory order buffer generate non-
sequential empty slots because of random placement policy.
This phenomenon results in the microarchitecture will need
some modifications. Originally circular buffer of instruction
queue, ROB, and MOB must be altered as a buffer with fully-
associative mapping policy. Fortunately, it can be easy im-
plemented by assigning a new tag to each newly allocated
entry and a multiport content addressable memory (CAM)
supported. When the lookup operation is needed, the result
bus provide the result tag for matching when results become
available.

3

4.1 Shadow Register Set

Another hardware issue is that we provide a branch ad-
dress cache (BAC) to determine branch target address instead
of the BTB of traditional branch prediction. ABTT request
a lookup operation to BAC and then BAC provides the taken
probability and target address to ABTT for fetching suitable
target instruction to instruction window.

ABT speculative execution model also provides a shadow
register set which is a subset mapping of the alias register in
ROB. The primary function of shadow register set is to keep
data consistency under the non-sequential branch path exe-
cution streams in the execution pool (ROB) and to keep the
commit sequence in program order. Based on the regular na-
ture of superscalar machine model, we only need to slightly
modify some microarchitecture to match the ABT specula-
tive execution behavior.

4.2 Keep Data Consistency

The major problem is that how the source operand can
read form the latest operands to keep the correct program
execution under this kind environment with non-sequential
ROB entries. One function of reorder buffer is to rename
the destination register to a unique tag identifier; i.e. reg-
ister renaming. The result from a functional unit uses this
unique tag to write to an allocated entry in ROB. Originally,
ROB behaves like a circular buffer by shifting operation. Al-
though more than one destination CAM cells in ROB can
match a source register identifier, the value or tag desired
comes from the cell matching the most current destination
identifier, which is closest to the top of the reorder buffer. By
shifting operation and matching mechanism of register iden-
tifier, it is trivial to keep data consistency in traditional single
path code stream.

R1=R1+R2
R2=R1+R7

0.35
0.05

0.324 0.216

0.060.54

0.40.6

 1

 2

 3

4

 5

 6 7

R1=R2+R3

Figure 4. Branch path v.s. data consistency

In ABT speculative execution, however, the fetched in-
structions in ROB can be fragments from the viewpoint of
fetched branch paths. As shown in Figure 4, The sequence
of fetched instructions in ROB will be equal to the number of
the branch path. (i,e, path 1, path 2, path 3, path 4, path5,....)

How can we ensure that the source operand R1 of path 5 is
read from the latest destination operand R1 of path1? Fortu-
nately, the characteristics of ABTT token encoding can solve
the problem and help to construct a register renaming mech-
anism to keep data consistency.

00001

00011

0011100101
00100

01000 01100

001

011010

10

1010

10000 11100

00010

Level 1

Level 3

Level 4

Level 5

Level 2

Figure 5. Specific token and its successive token

Token Mark Ready

Bit

Result alias

register#

Reorder Buffer

XOR AND

Entries which contain destination reg# Rn

If zero, the possible destinarion regs
which are at the same execution path

Result register

value

Token of demanded source reg# Rn

Figure 6. Block diagram of register reference

From the tree shape of pending branch paths as shown in
Figure 5, we find that the least (leveln - 1) bits of the token in
(leveln) is the same with that of its subtree. Then, by judg-
ing the tokens and levels of branch paths, we can find out the
overall possible source operands to read in the generated des-
tination operand in (leveln) by simple exclusive-or operation
logic of several bits.

In order to keep data consistency for using ABT specula-
tive execution, the traditional register renaming mechanism
must have some changes. According to the characteristics of
specific token encoding rule we mentioned in Figure 5, we
can develop a feasible register renaming mechanism to find
out the latest generated destination register value. We will
divide the renaming method into two parts as following:

� Register assignment

Basically, the register identifier can be generated by to-
ken encoding. We add two additional fields (i,e, to-
ken bit string and mask bit string) to the entries of re-
order buffer. The function of mask bit string is to fil-
ter the possible demanded registers which may be the

4

Table 1. Simulation Workload characteristics
Program Instruction

simulated
Static
branch
instr.#

Dynamic
branch
instr.#

Uncond
Direct (%)

Cond
Direct
(%)

Call
Direct
(%)

Uncond
Indirect
(%)

Call
Indi-
rect
(%)

Compress 200M 493 39238779 12.83 72.37 7.40 7.40 0.00
Gcc 200M 13573 41672372 6.64 79.31 5.62 8.13 0.30
Ijpeg 200M 1946 26651776 19.56 61.91 9.14 9.27 0.12
Li 184M 4157 14800459 12.54 57.97 12.14 17.07 0.27
Vortex 200M 10027 31944397 1.89 72.26 12.77 13.06 0.02
Applu 200M 1499 6663343 0.04 99.85 0.03 0.06 0.01
Apsi 200M 3025 10295477 4.39 82.87 5.6 6.55 0.59
Hydro2d 200M 1483 4175154 14.69 64.13 6.09 11.73 3.35
Tomcatv 200M 886 40353450 14.59 63.79 7.26 11.68 2.68
Turb3d 200M 1446 9654164 2.81 87.18 5.00 5.01 0.01

destination registers on the same execution path. How-
ever, only one value or tag among these filtered register
identifiers can match the demand source destination. It
means that the destination register identifier closest to
the demanded register identifier is only desired. The
primary principles of mask bits assignment are:

1. Every entry in ROB must have a mask field follow
the token field.

2. For any branch path on the same level will follow the
same mask encoding rule.

3. If a token with n bits can be labeled with
anan�1:::; a1, and this token is at the ith level. Then,
we label the mask bits as

000:::0
| {z }

n�i

111::111
| {z }

i�1

As shown in Figure 6, we can select all possible desti-
nation registers for demanded source register by simple
XOR and AND logic operations. If register Rn is the
demanded source, we must have a lookup operation in
ROB to select all entries which contain result register
Rn and its ready bit corresponding to its register num-
ber. Then, the possible register values at the same ex-
ecution path will be selected among all entries contain
the same register name and its ready bit is set.

� Keeping data consistency

Traditionally, the single path execution model make the
instructions in ROB continuous. Although ABT exe-
cution model generate several empty slots because of
squashing some entries due to branch recovery, it still
keeps relative location of program order when instruc-
tions are dispatched into ROB. As a result, we can find
the latest destination register value by combining the
register renaming mechanism mentioned above with a
propagation circuit when the lookup operation is done
in the entire reorder buffer. If the instructions at the bot-
tom always commit its result to the register file, we can

start the lookup from the bottom of ROB. When a pos-
sible destination register value, we put the value to the
propagation cell corresponding to the ROB entry. Oth-
erwise, the value of previous propagation cell will be
propagated to current propagation cell. When the look
up operation is over, the latest destination register value
will be find.

Then, we can combine the token field and the result alias
register number in the ROB to find out the possible previous
dependent operation, As shown in Figure 6, we retrieve the
overall possible source of pending operand into the shadow
register set, which is also a CAM cell with tag, token field.
Then, we can find out the real source of pending operand by
looking up the shadow register set. It’s operation is similar
to that of ROB.

Table 2. Hardware Configuration of ABT evaluation

Sym. ROB/MOB
/IQ#

Ialu/Imult
/FPalu/FPmult#

Mem
Port#

Issue
Width

R32 32/16/8 6/2/6/2 2 8
R48 48/24/12 9/3/9/3 3 10
R64 64/32/16 12/4/12/4 4 12
R80 80/40/20 15/5/15/5 5 14
R96 96/48/24 18/6/18/6 6 16
R112 112/56/28 21/7/21/7 7 18

5 Performance Evaluation

We used execution-drivensimulation environment to eval-
uate the performance of our proposed architectures and tradi-
tional branch prediction mechanisms by using SimpleScalar
tool set[4], to evaluate the aggressive instruction prefetching
scheme and speculative execution scheme. The out-of-order
issue simulator simulates the detailed behaviors of pipeline
stages. The out-of-order issue and execution scheme are

5

èää

±
±
¯²

±
¯³

±
¯´

±
¯µ

±
¯¶

Ô
Ñ
®¹
ì
®³

Â
Ã
Õ
®¹
ì
®³

Ô
Ñ
®¹
ì
®µ

Â
Ã
Õ
®¹
ì
®µ

Ô
Ñ
®¹
ì
®·

Â
Ã
Õ
®¹
ì
®·

Ô
Ñ
®²
·
ì
®³

Â
Ã
Õ
®²
·
ì
®³

Ô
Ñ
®²
·
ì
®µ

Â
Ã
Õ
®²
·
ì
®µ

Ô
Ñ
®²
·
ì
®·

Â
Ã
Õ
®²
·
ì
®·

Ôäéæîæ®ÄâäéæÔêûæ®Åæñõé

â
÷
è
êï
ô
õ¯
î
êô
ô

ñ
æ
ï
â
íõ
ú
©
ä
ú
ä
íæ
ª

Éêõ®ðï®õéæ®çíú Ñæïâíõú

Óæâí Îêôô Ñæïâíõú

íê

±
±
¯±
³

±
¯±
µ

±
¯±
·

±
¯±
¹

±
¯²

Ô
Ñ
®¹
ì
®³

Â
Ã
Õ
®¹
ì
®³

Ô
Ñ
®¹
ì
®µ

Â
Ã
Õ
®¹
ì
®µ

Ô
Ñ
®¹
ì
®·

Â
Ã
Õ
®¹
ì
®·

Ô
Ñ
®²
·
ì
®³

Â
Ã
Õ
®²
·
ì
®³

Ô
Ñ
®²
·
ì
®µ

Â
Ã
Õ
®²
·
ì
®µ

Ô
Ñ
®²
·
ì
®·

Â
Ã
Õ
®²
·
ì
®·

Ôäéæîæ®ÄâäéæÔêûæ®Åæñõé

â
÷
è
êï
ô
õ¯
î
êô
ô

ñ
æ
ï
â
íõ
ú
©
ä
ú
ä
íæ
ª

Éêõ®ðï®õéæ®çíú Ñæïâíõú

Óæâí Îêôô Ñæïâíõú

÷ðóõæù

±
±
¯±
¹

±
¯²
·

±
¯³
µ

±
¯´
³

±
¯µ

Ô
Ñ
®¹
ì
®³

Â
Ã
Õ
®¹
ì
®³

Ô
Ñ
®¹
ì
®µ

Â
Ã
Õ
®¹
ì
®µ

Ô
Ñ
®¹
ì
®·

Â
Ã
Õ
®¹
ì
®·

Ô
Ñ
®²
·
ì
®³

Â
Ã
Õ
®²
·
ì
®³

Ô
Ñ
®²
·
ì
®µ

Â
Ã
Õ
®²
·
ì
®µ

Ô
Ñ
®²
·
ì
®·

Â
Ã
Õ
®²
·
ì
®·

Ôäéæîæ®ÄâäéæÔêûæ®Åæñõé

â
÷
è
êï
ô
õ¯
î
êô
ô

ñ
æ
ï
â
íõ
ú
©
ä
ú
ä
íæ
ª

Éêõ®ðï®õéæ®çíú Ñæïâíõú

Óæâí Îêôô Ñæïâíõú

(a) Integer Benchmarks

âñôê

±
±
¯±
²

±
¯±
³

±
¯±
´

±
¯±
µ

±
¯±
¶

Ô
Ñ
®¹
ì
®³

Â
Ã
Õ
®¹
ì
®³

Ô
Ñ
®¹
ì
®µ

Â
Ã
Õ
®¹
ì
®µ

Ô
Ñ
®¹
ì
®·

Â
Ã
Õ
®¹
ì
®·

Ô
Ñ
®²
·
ì
®³

Â
Ã
Õ
®²
·
ì
®³

Ô
Ñ
®²
·
ì
®µ

Â
Ã
Õ
®²
·
ì
®µ

Ô
Ñ
®²
·
ì
®·

Â
Ã
Õ
®²
·
ì
®·

Ôäéæîæ®ÄâäéæÔêûæ®Åæñõé

â
÷
è
êï
ô
õ¯
î
êô
ô

ñ
æ
ï
â
íõ
ú
©
ä
ú
ä
íæ
ª

Éêõ®ðï®õéæ®çíú Ñæïâíõú

Óæâí Îêôô Ñæïâíõú éúåóð³å

±
±
¯±
¹

±
¯²
·

±
¯³
µ

±
¯´
³

±
¯µ

Ô
Ñ
®¹
ì
®³

Â
Ã
Õ
®¹
ì
®³

Ô
Ñ
®¹
ì
®µ

Â
Ã
Õ
®¹
ì
®µ

Ô
Ñ
®¹
ì
®·

Â
Ã
Õ
®¹
ì
®·

Ô
Ñ
®²
·
ì
®³

Â
Ã
Õ
®²
·
ì
®³

Ô
Ñ
®²
·
ì
®µ

Â
Ã
Õ
®²
·
ì
®µ

Ô
Ñ
®²
·
ì
®·

Â
Ã
Õ
®²
·
ì
®·

Ôäéæîæ®ÄâäéæÔêûæ®Åæñõé
â
÷
è
êï
ô
õ¯
î
êô
ô

ñ
æ
ï
â
íõ
ú
©
ä
ú
ä
íæ
ª

Éêõ®ðï®õéæ®çíú Ñæïâíõú

Óæâí Îêôô Ñæïâíõú

õðîäâõ÷

±
±
¯±
¹

±
¯²
·

±
¯³
µ

±
¯´
³

±
¯µ

Ô
Ñ
®¹
ì
®³

Â
Ã
Õ
®¹
ì
®³

Ô
Ñ
®¹
ì
®µ

Â
Ã
Õ
®¹
ì
®µ

Ô
Ñ
®¹
ì
®·

Â
Ã
Õ
®¹
ì
®·

Ô
Ñ
®²
·
ì
®³

Â
Ã
Õ
®²
·
ì
®³

Ô
Ñ
®²
·
ì
®µ

Â
Ã
Õ
®²
·
ì
®µ

Ô
Ñ
®²
·
ì
®·

Â
Ã
Õ
®²
·
ì
®·

Ôäéæîæ®ÄâäéæÔêûæ®Åæñõé

â
÷
è
êï
ô
õ¯
î
êô
ô

ñ
æ
ï
â
íõ
ú
©
ä
ú
ä
íæ
ª

Éêõ®ðï®õéæ®çíú Ñæïâíõú

Óæâí Îêôô Ñæïâíõú

(b) Floating Point Benchmarks

Figure 7. IL1 average instruction miss penalty (assume average L1 miss latency = 10 cycles)

based on the Register Update Unit (RUU)[7]. RUU, a com-
bination of reservation stations and reorder buffer device,
serves as a collection of ordered reservations stations and
coopertes with reorder buffer. The reservation stations cap-
ture register results and await the time when all operands are
ready, at which time the instruction is issued to the functional
units. This RUU scheme also uses a reorder buffer to auto-
matically rename registers and to hold the results of pending
instruction.

The speculative execution was simulated programs from
SPEC95 benchmark suite. Table 1 shows the basic statis-
tics for the program we executed. We compare the perfor-
mance of our proposed scheme with Single Path execution
flow model with PAs branch prediction scheme. The primary
factors to influence cache performance are hit ratio and ac-
cess time. Hence, the primary metric we used in the experi-
ment are miss ratio and miss penalty of IL1 cache.

About our cache configuration, we give 2-way associa-
tive, LRU replacement policy with IL1 cache size of 8k, 16k
bytes, and a 8k/8k bytes unified L2 cache. About the mem-
ory latency in the memory hierarchy, L1 ,L2 cache hit la-
tency and memory access latency are 1, 6 ,18 in cycles, re-
spectively. We will evaluate the ABT instruction prefetching
scheme compared with SP scheme under varied prefetching
path depth of 2, 4, and 6.

We compared the ABT speculative execution scheme with
traditional single path speculative execution with branch pre-
diction includes BTB size of 2048 entries. We defined sev-
eral hardware resource configurations, which include the size
or number of the reorder buffer, memory order buffer, in-
struction queue, integer functional units, float-point func-
tional units, and issue bandwidth, which are as shown in
Table 2. First, we give the ABT table size of 16, branch
mispredict penalty of 7 cycles, and fixed register set of 32
integer registers, 32 floating-point registers, and several spe-
cific registers. Then, we evaluate the following metric terms:

IPC(Instructions per Cycle), Average Issue Bandwidth Uti-
lization, Wrong Path Complete Rate, Function Unit Utiliza-
tion, Reorder Buffer Utilization.

When pipeline is deeper, branch mispredict penalty is
larger. We will compare the IPC of SP scheme with that
of ABT scheme with an ABT table of 16 entries, varying
the branch mispredict penalty from 7 to 15 for knowing the
effect of mispredict branch penalty, Lastly, we attempted to
exploit more pending branch paths by enlarging the entries
of ABT table.

Figure 7 gives the total IL1 cache miss latency by cal-
culating the number of real IL1 cache misses and the total
cycle consumption of the IL1 hit-on-the-fly, given the aver-
age IL2 access latency of 10 cycles when IL1 real miss oc-
curs. It shows the average latency of ABT and SP scheme
with 8k, 16k bytes cache size when the number of prefetch-
ing depth varies. It give a breakdown of the two components
to contribute to total miss ratio. From Figure 7, we can know
that larger IL1 cache size is more feasible when more pend-
ing branch depths are prefetched. On the performance issue
of total IL1 cache miss penalty, ABT scheme yields an im-
provement (decrease in total miss penalty) from 20% through
40% than SP scheme in most applications by prefetching
the instructions of most-likely execution paths without ap-
plying standard branch prediction scheme. No matter what
prefetching schemes are applied, the improvement in total
miss penalty are 50% from 2 to 6 prefetching branch depths.
Therefore, ABT prefetching scheme can be competitive with
SP.

Figure 8 illustrates the number of IL1 cache cache misses
which are due to the prefetching behavior. It means that the
cache line will be hit originally, but the demanded cache
line is replaced because prefetching. We named it as pol-
luted block count. This metric gives the availability of cache
blocks. We found that ABT scheme still offers an accept-
able improvement in most application in our simulation.

6

èää

±

µ±±±±

¹±±±±

²³±±±±

²·±±±±

³±±±±±

¹ì®³ ¹ì®µ ¹ì®· ²·ì®³ ²·ì®µ ²·ì®·

ÄâäéæÔêûæ®Åæñõé

Î
êô
ô
å
ö
æ
õð

ñ
óæ
çæ
õä
é
ñ
ð
íí
ö
õê
ð
ï

ÔÑ

ÂÃÕ íê

±

µ±±±±

¹±±±±

²³±±±±

²·±±±±

³±±±±±

¹ì®³ ¹ì®µ ¹ì®· ²·ì®³ ²·ì®µ ²·ì®·

ÄâäéæÔêûæ®Åæñõé

Î
êô
ô
å
ö
æ
õð

ñ
óæ
çæ
õä
é
ñ
ð
íí
ö
õê
ð
ï

ÔÑ

ÂÃÕ ÷ðóõæù

±

´±±±±

·±±±±

º±±±±

²³±±±±

²¶±±±±

¹ì®³ ¹ì®µ ¹ì®· ²·ì®³ ²·ì®µ ²·ì®·

ÄâäéæÔêûæ®Åæñõé

Î
êô
ô
å
ö
æ
õð

ñ
óæ
çæ
õä
é
ñ
ð
íí
ö
õê
ð
ï

ÔÑ

ÂÃÕ

(a) Integer Benchmarks

âñôê

±

µ±±±

¹±±±

²³±±±

²·±±±

³±±±±

¹ì®³ ¹ì®µ ¹ì®· ²·ì®³ ²·ì®µ ²·ì®·

ÄâäéæÔêûæ®Åæñõé

Î
êô
ô
å
ö
æ
õð

ñ
óæ
çæ
õä
é
ñ
ð
íí
ö
õê
ð
ï

ÔÑ

ÂÃÕ éúåóð³å

±

¹±±±±

²·±±±±

³µ±±±±

´³±±±±

µ±±±±±

¹ì®³ ¹ì®µ ¹ì®· ²·ì®³ ²·ì®µ ²·ì®·

ÄâäéæÔêûæ®Åæñõé

Î
êô
ô
å
ö
æ
õð

ñ
óæ
çæ
õä
é
ñ
ð
íí
ö
õê
ð
ï

ÔÑ

ÂÃÕ õðîäâõ÷

±

·±±±±

²³±±±±

²¹±±±±

³µ±±±±

´±±±±±

¹ì®³ ¹ì®µ ¹ì®· ²·ì®³ ²·ì®µ ²·ì®·

ÄâäéæÔêûæ®Åæñõé

Î
êô
ô
å
ö
æ
õð

ñ
óæ
çæ
õä
é
ñ
ð
íí
ö
õê
ð
ï

ÔÑ

ÂÃÕ

(b) Floating Point Benchmarks

Figure 8. IL1 Cache Miss Rate due to prefetching pollution (direct-mapped cache)

èää

±

±¯³µ

±¯µ¹

±¯¸³

±¯º·

²¯³

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ

äðîñóæôô

±

±¯¹

²¯·

³¯µ

´¯³

µ

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ

íê

±

±¯µµ

±¯¹¹

²¯´³

²¯¸·

³¯³

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ
ÊÑ
Ä

ÔÑ

ÂÃÕ

÷ðóõæù

±

±¯´

±¯·

±¯º

²¯³

²¯¶

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ

(a) Integer Benchmarks

âñôê

±

±¯·

²¯³

²¯¹

³¯µ

´

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ éúåóð³å

±

±¯´

±¯·

±¯º

²¯³

²¯¶

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ

õðîäâõ÷

±

±¯³µ

±¯µ¹

±¯¸³

±¯º·

²¯³

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ

õöóã´å

±

±¯¹

²¯·

³¯µ

´¯³

µ

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³

Éâóåøâóæ Óæôðöóäæ

ÊÑ
Ä

ÔÑ

ÂÃÕ

(b) Floating Point Benchmarks

Figure 9. IPC comparison (Branch Mispredict latency = 7 cycles, ABTT entries = 16)

When more branch paths are prefetched, the impact of pol-
luted blocks can be slightly worser when moving prefetching
depths from 2 to 6. Except the apsi application, most appli-
cations perform better if ABT scheme is provided. We also
found that the more regular the branch behavior is, the worser
the cache pollution is when ABT prefetching is used. The
apsi application demonstrates this condition due to taking in
incorrect branch path’s instruction into IL1-Cache when us-
ing ABT prefetching.

Figure 9 shows the IPC with varied hardware resource,
given a fixed branch mispredict penalty of 7 cycles, and
a fixed ABTT entries of 16. As shown in Figure 9, we
found that ABT speculative execution achieve 7% to 290%

improvement relative to SP scheme with hardware resource
named R112 (see Table 5.2). The improvement of most ap-
plications is slight because the reduction of branch mispre-
diction penalty is small. The program behaviors of some
applications are different from that of others. For exam-
ple, we found that the cycle consumption of some applica-
tions(compress, gcc, tomcatv) due to waiting for a previ-
ous branch to resolve because of the limited number of out-
standing unsolved branches is larger when SP scheme is pro-
vides. However, ABT scheme can reduce this kind of wait-

ing penalty and achieve larger IPC speedup because ABT
scheme can explore more pending branches. Figure 9 also
showed a phenomenon that the difference of IPC of ABT
scheme and that of SP scheme is increasing larger when hard-
ware resource is enlarged. The primary reason is because
more incorrect prediction may occur in branch prediction(SP
scheme) when a processor speculatively executes across a
number of branches in a wide-issue or deeper pipeline pro-
cessor.

As can be seen in Figure 10, the issue bandwidth utiliza-
tion is proportional to the IPC value. However, it is ob-
vious that the issue bandwidth utilization can not be fully
exploited when SP scheme is supported in a wide-issue or
deeper pipeline processor. Therefore, it is a good idea to
use ABT scheme for increasing issue bandwidth utilization.
In fact, executed program in SP scheme is greatly limited
in data dependency, control dependency, or resource conflict
even large amount of hardware resources are supported.

Since we consider a wide-issue processor, speculative ex-
ecution may go up to a maximum level of speculative depth
for unresolved branches. We limit the number of entries
available in the branch tree table (ABTT) to have a con-
strained executed branch paths in the instruction window. As

7

èää

±

±¯¶

²

²¯¶

³

³¯¶

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ äðîñóæôô

±

²¯³

³¯µ

´¯·

µ¯¹

·

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ êëñæè

±

²¯³

³¯µ

´¯·

µ¯¹

·

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ íê

±

²

³

´

µ

¶

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ

(a) Integer Benchmarks

âññíö

±

²¯³

³¯µ

´¯·

µ¯¹

·

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ âñôê

±

±¯¹

²¯·

³¯µ

´¯³

µ

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ éúåóð³å

±

±¯µ

±¯¹

²¯³

²¯·

³

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ õðîäâõ÷

±

±¯µ

±¯¹

²¯³

²¯·

³

Ó´³ Óµ¹ Ó·µ Ó¹± Óº· Ó²²³
Éâóåøâóæ Óæôðöóäæ

Â
÷
æó
âè
æ
Êô
ôö
æ

Ã
âï
å
ø
êå
õé

Ö
õê
íê
ûâ
õê
ð
ï

ÔÑ

ÂÃÕ

(b) Floating Point Benchmarks

Figure 10. Issue Bandwidth Utilization comparison (Branch Mispred. latency = 7 cycles, ABTT entries = 16)

shown in Figure 11, we assign the number of entries from
8 to 32 to observe the effect of ABTT entries. We found
that the the IPC increase slightly when ABTT entries in-
crease from 8 to 16. However, when we enlarge the num-
ber of ABTT entries which is larger than 16, we found that
the IPC improvement has little or no different. Because of
given the constrained hardware resource(which named R32,
see table 5.2), the growth of pending instructions of specu-
lative branch paths in the instruction window is also limited.
In general, small number of ABTT size is enough. When
hardware resources can satisfy more and more instructions
executed smoothly, larger number of ABTT entries can be
optional.

Éâóåøâóæ Óæôðöóäæ ¾ Ó´³

Ãóâïäé Îêôñóæåêäõ Íâõæïäú ¾¸ äúäíæô

±

±¯¶³

²¯±µ

²¯¶·

³¯±¹

³¯·

âñôê éúåóð³å õöóã´å äðîñóæôô èää êëñæè

Ãæïäéîâóìô

ÊÑ
Ä

¹ ²· ³µ ´³

The number of ABTT entry

Figure 11. Effects of ABTT’s Entry Number

6 Conclusion

In this study, we extend the concept of Adaptive Branch
Tree (ABT)[2] in a combination with instruction cache
prefetching and speculative execution. We apply the ABT
concept for prefetching and speculative execution to reduce
the two sources which hurt performance. Our goal is to de-
sign an effective and feasible speculative execution mech-
anism to dynamically keep track of alternative branch paths
and to speculatively execute the code on the most likely path.

Our results indicate that ABT prefetching scheme is suit-
able for aggressive instruction prefetching when using non-

blocking, wide memory bandwidth cache. We found that
ABT scheme can reduce greatly branch misprediction la-
tency to enhance performance. When larger hardware spec-
ification is supported, the speedup of ABT relative to SP
scheme in some applications with large IPC value is also
larger.

References

[1] Brad Calder and Dirk Grunwald. Fast and accurate instruction
fetch and branch prediction. In Proc. of 21st Annual Symposium
on Computer Architecture., pages 2–11, 1994.

[2] T.-F. Chen. Support highly speculative execution via adaptive
branch trees. In Proc. of the 4th Intl. Symposium on High-
Performance Computer Architecture, 1998.

[3] Brad Calder Dennis Lee, Jean-Loup Baer and Dirk Grunwald.
Instruction cache fetch policies for speculative execution. In
Proc. of the 22nd Annual Intl. Symposium on Computer Archi-
tecture, pages 357–367, 1995.

[4] Todd M. Austin Doug Burger and Steve Bennett. Evaluating
future microprocessor: the simplescalar tool set. Technical Re-
port TR-1308, Computer Sciences Department, University of
Wisconsin-Madison.

[5] Ravi Nair. Dynamic path-based branch correlation. In Proc. of
the 28th International Symposium on Microarchitecture., pages
15–23, 1995.

[6] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of
dynamic branch prediction using branch correlation. In Proc. of
the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 76–84,
1992.

[7] Gurindar S. Sohi. Instruction issue logic for high-performance,
interruptible, multiple functional unit, pipelined computer. In
Proc. of IEEE Transactions on Computers, pages 39(3):349–
359, 1990.

[8] A. K. Uht. and V. Sindagi. Disjoint eager execution: An optimal
form of speculative execution. In IEEE Proceeding of MICRO-
28, pages 313–325, 1995.

[9] T. Yeh. and Y. Patt. A comparison of dynamic branch predictors
that use two levels of branch history. In Proc. of 20th Annual
Intl. Symp. on Computer Architecture., 1993.

8

