The Fetch Mechanism Issue Of
X86 Superscalar Processors with Fetch Rules

Jih-ching Chiu and Chung-Ping Chung

Department of Computer Science and Information Engineering,
National Chiao Tung University
Hsinchu, Taiwan 30050, R.O.C.
E-mail: chiujihc@ee.nsysu.edu.tw

Tel: +886-7-5252000ext4142

Abstract

Fetching multiple instructions is the most
important job of the superscalar fetcher. However,
in x86 superscalar processors, the variable-length
instructions and the complex addressing system
make fetching multiple instructions in a cycle
difficult. The formats of the x86 instruction are
issued in the complexity for parallel fetch of
multiple instructions. The model of multiple x86
instruction fetch (MIFM86) is defined with the
fetch rules instead of issue rules. By this model,
the performances of current x86 processors,
affected by each fetch methods, are analyzed and
are compared.

Index Terms —ILP, superscalar processor, fetch
rule, x86 architecture, multiple instruction fetch

1. Introduction

Due to the success of the IBM PC, the x86
architecture ~ has been dominating in
microprocessor market over the past years. Intel
Inc. introduced a 16-bit microprocessor, the 8086,
which is the beginner of the x86 architecture, in
1978. In new generations of the x86 architectures,
such as Pentium, Pentium Pro, Pentium II, K5,
K6, M1 and M2, superscalar instruction issue is
used to achieve higher performance. The idea of
superscalar instruction issue was first formulated
as early as in 1970. The concepts of the parallel
instruction issue, realized in early 1990s, favors
the RISC architecture for its fixed instruction
length, simple addressing mode, and simple
operation in an instruction [1]. While for the x86
architecture, which is the one of CISC
architectures, it is mush more challenging if one
tries to speed it up with a superscalar processor
design.

Because of the recent advances in silicon
technology, parallel execution architecture with
higher instruction level parallelism can be
implemented on a chip. While increasing the

Fax: +886-7-5254199

execution parallelism, designers have soon
reached the point where performance is limited
by the system’s capability of finding independent
instructions, fetching them from code memory,
and feeding them to multiple pipelined execution
units operating in parallel. Parallel instruction
fetch and issue have become the performance
bottleneck, particularly in the x86 architecture.

All of today’s high-performance
microprocessors are superscalar [2]. While a
higher issue rate is often used to acquire higher
processor performance, at the same time it
complicates the control and data dependencies on
the processor performance. Designers may opt to
eliminate dependencies during instruction issue
by using register renaming and speculative
branch processing. The hardware complexity for
fetching and decoding instructions in a limited
time delay is challenging the x86 microprocessor
designers for the high-speed circuit system. The
variable lengths of the x86 instructions make
hardware design for the instruction fetch unit to
identify each instruction in a multiple instruction
fetch a difficult task. Complex operations of x86
instructions complicate the design of the parallel
code translation. For simplifying the hardware
complexity, some instruction coupling rules is
taken by today’s x86 processor. We call them as
fetch rules. To study the effect of the fetch rule,
we ignore the execution unit performance, and set
it as a full out-of-order environment and a
resource-free unit. And this will evaluate an
upper-bound performance of a processor.

The fetching model proposed by Wallace and
Bagherzadeh [14] deals with the RISC
architecture, whose instruction has fixed length,
and need not fetch rule for them. In our model,
we consider today’s x86 processors to construct a
triple-field structure, the x86 instruction fetch
degree, the coupling rule, and the ROP degree, to
describe the fetch rule. The x86 instruction

degree is the superscalar degree of an x86
processor that is the instruction quantity, which
can be scanned parallel. The coupling rule
decides what instruction serial can be parallel
fetched into processor. The ROP degree describes
how many RISC-like instructions can be issued
maximally per cycle. These RISC-like
instructions are transferred from the fetched x86
instructions. For simple issued pipe architectures
like Pentium, M1, and M2, that do not transfer
the x86 instructions to RISC-like operations, we
tag <None> Because we concern the
performance affected by the fetch rule only, all
processors have the smooth instruction stream
input buffers, by assumptions, and the
resource-free and out-of-order execution
environments in our simulation program.

The remaining parts of this paper are organized
as follows. In section 2, we study the instruction
fetch mechanisms of several currently x86
microprocessors as background. In section 3, we
propose our multiple-x86-instruction fetch rule
model. In section 4, we show the simulation
results and give some analyses. Finally, we give
the conclusions in section 5.

2. Background

For analyzing how much performance can be
gained due to various numbers of instructions
fetched per cycle, the x86 instruction formats are
studied [3]. And the model, focusing on each
processor fetch mechanism, is built to describe
today’s x86 superscalar microprocessors on their
fetcher designs. In this model, we propose to use
the fetch rule that is to decide what the instruction
series can be fetched into the processor per cycle,
instead of the issue rule commonly seen in the
traditional performance analysis of the
superscalar microprocessors, to analyze the
performance limited by the fetch mechanism. The
analysis results can be looked as processor’s
maximum performance.

2.1 The x86 instruction characteristics

The x86 instruction lengths are variable and
range from one to fifteen bytes. The format of
x86 instructions can be composed of the prefixes,
Op-code, ModR/M byte, SIB byte, displacement,
and immediate data, as illustrated in Figure 1 [3].

The prefixes are classified to four types; the
instruction prefixes, address size prefixes,
operand size prefixes, and segment override
prefixes. Each prefix is one byte. Because the
four types of prefixes can exist or not
independently, the size of the prefix field ranges
from zero to four bytes in one regular x86

instruction. In a general case, if the prefix bytes
appear repeatedly in an instruction, the maximum
size of the prefix field can be fourteen bytes in a
legal instruction. The length of the Op-code field
is one or two bytes. The operands of an Op-code
can be two registers, one register and one memory,
or immediate data. In complex addressing modes,
the ModR/M field may imply a SIB field in the
32-bit address format of the x86 instruction. Each
of the ModR/M field and the SIB field is one byte.
If the displacement field exists, its length can be
one, two, or four bytes. Like the displacement
field, if the immediate field exists, its length also
can be one, two, or four bytes.

LI —
Inst‘ructiq‘n Prg‘ﬁxes
L

T
Opc‘pde
.

LB —
Displacement
P

LI m—
Immediate ‘
P

ModRM | SIB

T T
Uptofourprefixesof ~ Tor2byte 1byte Ibyte 1,2,ordbytesornome 1.2,0r4bytes or none

I-byte each opeode (f required) (if required)
(optional)

Fig. 1 The format of x86 instructions

Since the x86 instruction format is extremely
complex in determining its length, the circuit to
determine the instruction boundaries is a speed
critical path in an x86 microprocessor. Designing
a unit to fetch multiple instructions is a
challenging task.

2.2 Instruction-decoded complexity

For the complex instruction format, the general
decoder of the x86 instruction is more complex
than the RISC’s. The designers of today’s x86
superscalar architectures divide the x86
instructions to two groups, the complex
instructions and the simple instructions. The
classifying criteria are different in each
microprocessor. The general decoder can decode
all x86 instructions. The simple decoder only can
decode the simple instructions. By implement
results, the hardware complexity rate of the
general decoder and the simple decoder is 3:1 by
the Pentium Pro classifying criterion [15].

In the SPEC95int trace, we analyze how many
simple instructions are executed. Figure 2
illustrates the analysis results. Most of
instructions used in SPECO95int applications are
simple, above 70%. As a result, the decoder
structure will become simpler in order to reduce
the hardware complexity.

PERL GO! CC1 TJPEG

ROP#[1] 69.22 80.94 74.09 74.01 76.46 84.97 62.23 66.14 73.51
ROP#2] 21.46 12.58 15.84 18.83 11.24 6.53 30.29 22.34 17.39
3]

LI comPRESS| M8SKSIMVORTEX AVG.

ROPH| 7.82 6.00 9.06 3.69 9. 84 7.88 4.41 9.83 7.32
ROP#{4] 1.50 0.48 1.01 3.47 2.46 0.62 3.07 1.69 1.79

Fig.2 The ROP distribution of x86 instructions in the SPEC95int traces

2.3 Today’s x86 superscalar microprocessors

Many of today’s x86 superscalar architectures
have a multi-instruction fetch unit. We study the

five microprocessors --Pentium, M1, K5, K6, and
Pentium Pro -- in two factors that are the coupling
rule; and the degrees of RISC-like operations for
out-of-order execution system or the number of
execution pipes for in-order execution system.
We illustrate these in Figure 3.

Pentium M 1(Cyrix 6x86) |K5 K6 Pentium Pro
Degree of x86 |2 2 4 2 3
instructions
The fetch rule |2 simple 2 instructions 4 ROPs |Two 2-ROP |One complex
instructions instructions |instruction and
two simple
instructions
Issue rate 2 pipes 2 pipes 4 ROPs |4 ROPs 6 ROPs

Fig. 3 The characters of todays x86 superscalararchitecture

The Pentium instruction fetch unit uses a
simple, restrictive approach [3]. Its two pipelines
do not operate entirely independently: when one
stalls, the other must stop as well, so no
out-of-order execution is allowed. The Pentium
Pro translates x86 instructions into internal
micro-operations [4][9]. Three x86 instructions
are fetched in each instruction fetch cycle, in the
best case, and are translated to five micro-ops.
These micro-ops are then passed to a 40-entry
reorder buffer and a 20-entry reservation station,
in which the out-of-order execution task takes
place. The M1 architecture is similar to the
Pentium’s, using in-order execution in two
execution-pipes [S][11]. The K5 and K6
architectures are designed in a manner similar to
the Pentium Pro using out-of-order execution.
The rule of fetching x86 instructions in the K5 is
limited to four RISC-like operations, called ROPs
[7][8]. Since most of the x86 instructions can be
converted to an ROP in the one-to-one method
[6][12], four x86 instructions can be input to the
K5 in the best case. The K6 has two x86
instruction input paths and four ROP paths to the
schedule buffer. So in the best case, there are two
x86 instructions fetched per clock cycle, and four
ROP’s can be generated.

The coupling rule is an important factor that
affects the number of input instructions per clock
cycle. The more general the coupling rule is, the
more complex the hardware needs to be. With a
simple, restrictive coupling rule, poor average
numbers of instructions are fetched per cycle. The
Pentium has a simple restrictive fetch rule as the
following [3]:

(1) Two instructions must be

instructions.

(2) Two instructions do not exist RAW and
WAW register dependence.

(3) No memory displacement and immediate
addressing exist in an instruction pair.

(4) If the instruction has the prefix, except the
branch instructions, only it can be
executed in the U-pipe.

The M1 has two in-order execution pipes like

the Pentium. But its fetch rule is not as simple

simple

and restrictive as the Pentium’s. Most x86
instructions can be executed in each pipe, and are
not limited by the paring rule. But there are three
barrier conditions as the following:

(1) Branch instructions, floating point
instructions and exclusive instructions
only can be executed in the X-pipe.

(2) Branch instructions and floating point
instructions can be paired with another
instruction that can be executed in the
Y -pipe.

(3) Exclusive instructions cannot be paired
with each instruction.

The exclusive instructions include the
protected mode segment load operations, the
special register access operations, the string
operations, the push-all and pop-all operations,
and inter segment jump, call, and return
operations. [5]

The limitation of the K5 fetch rule is looser
than the limitation of other microprocessors. If
the x86 instruction is not the one requiring more
than three ROPs translated, four ROPs can be
fetched into the out-of-order execution
environment per clock cycle. In the maximum
case, four x86 instructions can be fetched in the
K5.[7]

Two x86 instructions can be fetched into the
K6 per clock cycle and are translated to four
RISC86 operations in the maximum case. Each
x86 instruction can be translated to one or two
RISC86 operations in a pair. If one of the two
sequential instructions must be translated to more
than two RISC86 operations, only one instruction
can be fetched in that clock cycle. When a control
transfer occurs, such as a JMP instruction, the
entire instruction buffer is flushed and reloaded.

(6]

The Pentium Pro allows one complex and two
simple instructions to be fetched in a clock cycle.
The complex instruction is translated into
between one and four micro-ops. The simple
instruction only is translated into single micro-op.
If none of the x86 instructions are branches or
that none of the branches are predicted taken,
code fetching will continue along some sequential
memory path. Otherwise, the prefetch streaming
buffer and the ID queue are flushed. The flushing
of the instructions causes a “bubble” in the
pipeline, resulting in a temporary decrease in
performance. [4]

3. The multiple x86 instruction fetch model

The instruction fetch unit is used to fetch
instructions from the instruction memory into the

processor, and makes those instructions to the
internal structure used for the decoder, as
illustrated in Figure4. There are two problems
explored in designing the fetch unit of the
multiple x86 instructions. One is how to
determine the instruction boundaries from the x86
instruction sequence for fetching multiple
instructions in the same time, and another is how
to assign the multiple instructions to their
accurate paths to the decoder.

i0,i1, ..
Instruction [———>
Memory |Instruction
stream

Instruction Fetch Unit

Fig. 4 The role of the fetch unit
3.1 The simple architecture of the fetch unit

To focus our mind on the problems of fetching
multiple instructions, we expose the model of the
fetching multiple x86 instruction (MIFMS86),
whose architecture is illustrated in Figure 5.

Instruction stream
from low level
memory

Fetch
rule unit

Instruction
stream

The supporting
instruction fetch unit
Fetch Unit
Instruction
Cache

Fig. 5 The architecture of the model of the fetching multiple x86 instruction
MIFM86)

Path Fetched instruction
assignment stream
network to decoders

Instruction
Indicators

The supporting instruction fetch unit is used to
keep the steady flow of the input instruction
stream to support the fetch unit speedily to get the
multiple instructions in the same time. Like the
Pentium and Pentium Pro, the supporting
instruction fetch unit is constructed with the
special buffer structure to keep the input
instruction stream. Like the K5 and K6, this unit
can be designed with the instruction pre-decoded
function to supply the pre-decoded information of
an instruction, such as the instruction type, the
instruction boundary, and the number of ROPs, to
speed up the fetch rule decision path. To focus the
problem in the instruction fetch model, we
assume that the wunit can support smooth
instruction stream for instruction fetch.

The indicating instruction unit is constructed
with the instruction input-paths, called the
instruction indicator. Each of instruction
indicators supports an instruction entry. In the
x86 superscalar microprocessors, there are more
than one instruction indicators used to determine
the starting location of the instructions in the
instruction sequence. The instruction indicators
take instructions into the fetch unit. For the

variable length characteristics of the x86
instruction, to divide the multiple instructions the
designers must use the more complex circuit. The
circuit will be a critical path because the task to
separate each x86 instructions from the
instruction sequence is hardly to be a parallel
work. So, to support higher degree of instruction
entries it is not so easy to be achieved. Some
current designs, such as the K5 and K6, use the
pre-decoder to supply the information of the
instruction boundaries to favor accomplishing this
work. We use the notation, n/, as that the number
of instruction indicators is n.

When multiple instruction entries are supported,
the fetch rule is used to handle how many
instructions are selected to prepare the decoding.
The fetch rule unit is designed according the fetch
rule. It can use the permutation information of
those input instructions to make a group of
control signals. Those signals control the path
assignment network to assign and duplicate
instructions to the accurate paths. Each of the
paths connects the general or the simple decoder.
The general decoder can translate all types of the
x86 instruction to the code structures of the
internal form or the internal operations. The
symbol iC, denotes that the number of the paths
used to connect the general decoder is i. The
simple decoder is limited to translate the simple
x86 instruction to the one of the internal
operations of .the simple x86 instruction. The
simple instruction can be composed of some
limited internal operations, such as one or two
operations, defined by designers. We use the
notation, jSk, as the number of the paths of the
simple instructions where k is the limitation of the
simple instructions and j is the number of paths.
Through the path, a simple instruction will be
duplicated to k instructions, and each of the
duplicated instructions is sent to a simple decoder.
If the number of the internal operations of the
simple instruction is less than k, the k paths are
still to be assigned to the simple instruction. For
the limitations of the fetch rule, the number of the
duplicated instructions generated in a multiple
instruction fetch is limited. We use the ROP as
the unit to describe how many duplicated
instructions can be passed to the decoder in the
same time. The symbol mROP is that m
duplicated instructions are generated in a multiple
instruction fetch, in the maximum case.

3.2 The MIFM86 model

In those notations as above, we can use the
following structure to describe the fetch
mechanism, called the MIFM86 model:

(nl :<iCk, jSI, ...> | <...> : mROP).
The nl field means at most n x86 instructions

can be fetched each clock cycle, and the mROP
field means there are m simple decoding paths in
the decoders (i.e. at most m ROPs can be
generated) each clock cycle. The <iCk, jSI, ...>
list presents the permutation of the each type
fetched instructions, which is according to the
restrictions of the decoders. The iCk term means
that i complex instructions, each may be mapped
up to k£ ROPs, can be decoded in a clock cycle.
The k& may be ignored in dedicated complex
decoder architecture. Similarly, jS/ term means
that j simple instructions, each may be mapped up
to / ROPs, can be decoded in each clock cycle.
The “| ”operator stands for the OR operation. The
mROP field is described as m ROP can be
decoded in a cycle in maximum. For a
microprocessor without the instruction translation,
its mROP field is described as “None” and the
parameters, k and [, are absent. Those
microprocessors have the directed instruction
pipes to fetch and execute instructions.

3.3 Modeling Today’s x86 Microprocessors

The five today’s x86 microprocessors are
selected as examples. They are Pentium, M1, K5,
K6, and Pentium Pro. The Pentium is described
as

(2I: 1C1, 1S1 :<None>).

In this case, this model can be used to describe
the fetch rule, and cannot be used to present the
execution environments. If the complex
instruction path is used to pass the instruction
occupying one duplicated instruction paths, the
simple instruction can be fetched to the simple
instruction path. Otherwise, only one complex
instruction can be fetched.

The M1 is described as
(2I: <IC, 1S> [<1S,1C>: <None>).
The M1 series have the out-of-order execution
capability. This is accomplished by the switching
logic in the D2 stage. This further loosen the
instruction pairing restrictions because in a cycle,
even if the second instruction is a X-pipe only
instruction, it may be switched with the first
instruction, which can be executed in the Y-pipe.

The fetch rule of the AMD K5 is described as
(41:<4C3>:4ROP).
It means that up to four x86 instructions may be
passed to the decoders each clock cycle, and up to
four ROPs can be generated each clock cycle.
Because of the predecode mechanism, the AMD
K5 has virtually no pairing rules like the Pentium
series and the Cyrix M1 series. The predecode
information, which is generated when the
instruction line is loaded into the cache is used as
the instruction indicators, and the length of
instructions can be decided easily by checking the

predecode boundary bits. This greatly improves
the ability of superscalar fetching of the AMD K5
since multiple instructions can be easily identified.
The instruction pairing is only limited by the
ability of the ROP Converters (i.e. decoders).
Each the four ROP Converter can generate one
ROP per cycle. The ROP Converters can decode
any instruction that is mapped to less than or
equal to 3 ROPs. Complex instructions that are
mapped to more than 3 ROPs are decoded by the
MROM.

The K6 is described as
(2I:<1C4> | <2S2>:4ROP).
In this case, if the complex instruction path uses
less than two duplicated instruction paths, the
simple instruction path can use another two
duplicated instruction paths. Otherwise, only a
complex instruction can be fetched at this time.

The Pentium Pro is described as
(3I: 1C4, 2S1: 6ROP).
In this case, the first instruction can be a complex
or simple instruction with three duplicated paths.
If the following instructions are not the
simple-instruction with one internal operation, the
one or two instructions will be aborted to pass to
decoder, and wait another fetch in next cycle.

3.4 The Complexities of the Path Assignment
Network

The decoders can be designed as the
permutation of the basic fetch rule. In the directed
pipe architecture, there are the instruction routing
networks to pass the complex instructions to the
complex instruction decoders, as the figure 6.a.
The hardware complexity is depended on the
number of the OR operations of the MIFM86. In
the same basic fetch rule as Figure 6.b and Figure
6.c, the connection degree is 5 in two OR
operation case and is 7 in three OR operation
case.

Fetched Instruction List

Routing Network

Basic Fetch Rule
(a) The routing architecture

Fetched Instruction List

X

J Connection degree = 5

S S
(b) The routing network of the MIFMS86
(3I:<1C,28><18,1C,1S>:<None>)

Fetched Instruction List

J %\J Connection degree =7
S

C S

(c) The routing network of the MIFMS86
(3I:<1C,28><18,1C,1S><28S,1C>:<None>)

Figure 6. The Path Assignment Network of the
directed pipe architecture

In the instruction-transferred architecture, there
are the complex instruction routing network and
the duplication network between the fetched
instruction list and the basic fetch rule, as Figure
7.a. The CI routing network routes the complex
instructions to the complex instruction positions
of the basic fetch rule. The hardware complexity
of the CI routing network is also depended on the
number of the OR operations of the MIFM86.
The complex instructions and the simple
instructions may be duplicated to the one or many
simple decoders by the duplicating network. The
complex instructions may be assigned to the
dedicated decoder paths, described as the DC
switch, in Figure 7.b. The hardware complexity
of the duplicating network is depended on the
included cases of the basic fetch rule of the
MIFM86. Figure 7.c show the duplicating
network complexity with the DC switch of the
fetched rule (5I: <1C4, 3S2, 1S1>: 8ROP). Fig
7.d show the include case of this duplicating
network.

Fetched Instruction List

Basic Fetch Rule

Duplicating Network

m ROP-limited decoders

(a) The routing architecture

Fetched Instruction List

J/J/ \L

‘ CI Routing Network ‘

Jbl \L

Basic Fetch Rule

W: Complex Instruction paths

‘ DC Switch ‘ ‘Duplicating Network‘

Jl' i \L

m ROP-limited decoders
(b) The routing architecture with the DC switch

Fetch Rule : (5I: <1C4, 352, 1S1>: 8ROP)

DC Switch — _— —

8 ROP-limited decoders

(c) The duplicating network complexity with the
DC switch of the fetched rule (51:<1C4, 3S2,
1S1>: 8ROP)

Figure7. The Path Assignment Network of the
instruction-transferred architecture

4. Simulations and Analysis

The SPECint95 programs are used as the
benchmarks to simulate the selected fetch rules.
We compiled the SPECint95 programs and got
the execution traces with the Linux C compiler in
a Pentium-Pro-based PC. In this paper, because
we focus in the problems of the fetch rule, some
assumptions are made in our trace-driven
programs, as following:

(1) The supporting instruction fetch unit can
support the steady instruction stream.

(2) The resources of the out-of-order
environment are unlimited.

(3) The serializing instruction is fetched
separately in a cycle.

(4) When the branch instruction to be
predicted as taken is fetched, it is the last
instruction of the fetched multiple
instructions in this cycle.

(5) One x86 instruction can be decoded into
as few as one ROP, or it can be decoded
into several ROPs, depending on its
complexity.

4.1 Background Simulation Results

First, the traces of the SPECint95 applications
is run in no any fetch rule limitations, described
as the nature bound fetch rule, to get the
unbounded properties. The results are as Figure 8.
The rate of ROP/ x86 is 1.33, which shows that

most of the x86 instructions are mapped one ROP
in our ROP conversion table. The average degree
of x86 instructions fetched in a cycle is 5.54,
which shows that using six instruction indicators
is a moderate design for those applications. The
average degree of ROP is 7.35, which shows that
the eight duplicated-instruction paths are enough
to pass the internal operations to be executed.

DEGREE PERL GO GCC 1JPEG LI COMPRESS MS8KSIM VORTEX AVG
x86 506 822 443 478 4.68 6.51 542 5.24 5.54
ROP 695 10.16 6.05 638 6.39 7.98 7.7 7.15 735

Fig. 8 The simulation results of the SPECint95 applications in
the nature bound fetch rule.

In order to study the limit of instruction fetch in
x86 architecture, we simulated fetching from one
to thirty-two instructions per clock cycle. We
assumed all the decoders are complex decoders
capable of generating up to four ROPs per cycle,
described as the nature bound fetch rule with the
port limitations. The results are shown in Figure
9.

2535
§§ ffffffffffffffff
= 45 [NN
e B = ot
& 35 A R
ol B B
20
S AT DIl .>:.:
B¢ Tl ..:5:39:
41' T
— N vV~ QN — N N~ O~ Ny —
_____ AN AN AN AN AN on

Max. number of instructions fetched per clock cycle

Figure9. The simulation results of the nature
bound fetch rule with the fetch port
limitations.

From Figure 9, we found that when the
maximum number of instructions fetched per
cycle increases, the average instruction fetch rate
eventually reaches a saturation point. Therefore,
fetching too many instructions is not necessary.
This result is due to the limitation of a basic block
instruction length. In Figure 9 there are two
points worth noting. The first is the fetch ports
n=5 and the second is n=13. The average fetch
rate increases significantly when n < 5. The
average fetch rate of n=13 is approach to 5, and it
increases very slowly thereafter.

4.2 Simulation Results
Processors

of Today’s X86

Following the section 3 descriptions, we use
the SPECint95 traces to simulate the fetch unit to
get the performance of the multiple instruction
fetch. The factors of the instruction execution
environment are not considered. They are
assumed as the very large resource capacity and
the out-of-order execution environment to
simplify the fetch rule discussion. In those
conditions, the simulation results can be seen as
the maximum performance case of the

superscalar processor, which are only affected by
fetch rules. That can give some suggestions to
define the fetch rule, and take the trade-off
between the fetch rule and the hardware
complexity. The simulation results are described
as Figure 10. The K5 has a competitive capability.
The fetch rule of the K5 is less restrictive. It only
limits the number of internal operations to four
ROPs. So, the input degree of fetched instructions
is four instructions per cycle, in the best case.
Each of the decoders is connected with four
duplicated-instruction paths and can translate all
x86 instructions. From our point of view in the
fetch rule, the fetch rule of the K5 is the best. The
result of the Pentium is less satisfactory than the
MT1’s, because the fetch rule of the Pentium’s is
more restrictive. The result of the K6 is almost
equal to the M1°’s. This shows that we can use the
fetch rule of the K6’s instead of the MI’s,
because the fetch rule of the K6 is simpler and
more restrictive than the M1’s. There may be
lower hardware complexity in the K6. The fetch
rule of the Pentium Pro is like the M1°’s, but one
more simple instruction path limited in one
internal operation is added. The simulation results
of the Pentium Pro show that such addition is
effective in increasing the fetch degree of the
multiple instructions.

Number of the average fetch instructions
4

3 Ox86
2 t

1 HROP
0 . " : n

Pentium M1 KS K6 Pentium Pro

Fi

g. 10. The simulation results of the fetch rules of the five today’s
x86 microprocessors

5. Conclusion

The x86 architectures have complex instruction
formats, which include the variable lengths, the
complex operations, and the complex addressing
modes. The design of the fetch unit for the
multiple-instruction input becomes the critical
work to enhance the microprocessor performance.
In this paper, the model of the multiple x86
instruction fetch (MIFM86) is defined to study
the fetch rules problems of the
multiple-instruction fetch. In the MIFMS86
architecture, the fetch unit is divided into the
instruction indicator, the fetch rule unit, and the
path assignment network. By the fetch rule,
instead of by the issue rule, the problems of the
multiple instruction fetch are discussed. The
simulation results of the SPECint95 applications
show that a six-instruction indicator with eight
duplicated-instruction paths may be a moderate
selection to design the x86 fetch unit. The
simulation results of the fetch rules for the five

current x86 processors show that the more
restrictive fetch rule and the simpler hardware
expansion can be selected to enhance the
performance of the instruction fetch.

[Reference]

[1] Dezso Sima, ”Superscalar Instruction Issue,”
IEEE Micro, September/October 1997,
PP.28-39

[2] Michael Slater, “The Microprocessor Today,”
IEEE Micro, December 1996, PP.32-44

[3] Intel Corporation, Pentium Processor User’s
Manual Volume 3: Architecture and
Programming Manual, 1993.

[4] Tom Shanley, Pentium Pro Processor System
Architecture, Mind Share, INC., 1997.

[5] Cyrix Corporation, “Cyrix 6x86 Processor
Abbreviated Data Book Version 1.1

[6] AMD Corporation, AMD-K6 MMX
Enhanced Processor Data Sheet, June 1997.

[7] Dave Christic, “Developing The AMD-K5
Architecture,” IEEE Micro, April 1996, PP.
16-26.

[8] AMD Corporation, AMDS5KS86 Processor
Technical Reference Manual, March 1996.

[9] Linley Gwennap, “Intel’s P6 Uses Decoupled
Superscalar Design,” Microprocessor Report,
Vol. 9, No. 2, February 16, 1995.

[10] SPEC95 Benchmark Suite Release 1.0,
1995.

[11] B. Ryan, “M1 Challenges Pentium,” Byte,
Jan. 1994, PP.83-87.

[12] Michael Slater, “K6 to Boost AMD’s
Position in 1997,” Microprocessor Report,
Vol. 10, No.14, October 28, 1996.

[13] Albert Yu, “The Future of
Microprocessors,” IEEE Micro, December
1996, PP.46-53.

[14] Steven Wallace and Nader Bagherzadeh,
“Modeled and measured instruction fetching
performance for superscalar
microprocessors,” IEEE Tran. On Parallel
and Distributed Systems, Vol. 9, No. 6, June
1998, pp. 570-578.

[15] R-Ming Shiu, Jih-Ching Chiu, Shin-Ki
Cheng, and Jyh-Jiun Shann, “The Design of
the Decoding Unit with High Issue Rate for
an X86 Superscalar Microprocessor,” The
IEE Proceedings Computers and Digital
Techniques, Vol. 147, Issue 2, March 2000,
pp- 99.

