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MAXIMUM LIKELIHOOD CLUSTERING FOR 3D TEXTURE SEGMENTATION:
A FIRST STEP OF SHAPE FROM TEXTURE

shE, Fxpt AFR
t R R EEHRPT

e

#HE

AW ESRFRIAGFTANTEIEA —£A
HBEENMIESEIERLL BB FFT LA
MR ERANFREFTHANRALOEEAETE
THRAEGFOHEISHA I ZHEBTE
RERTHIGE—~F KM RG GBI FT
AR AEHESHEA TR IR I RAZHE
o3 FaTEE—FHREAH-_KRFAX —BREX
¢agglomerative5-8f ik A R &4 B R.SH24F
# wmaximum-likelihood & #t sk &£ 4 % KM EEF
Bl AF&Ara3l e &R AT R EBs .

Mats: D B EEBER FTE

ABSTRACT

A common assumption of the shape from texture prob-
lem is that a perceived image mainly contains only
one type of texture with the same surface orienta-
tion. Unfortunatelly, o natural image is often com-
posed of more than one tezures. In order to solve
the shape from tezture problem in @ practical man-
ner, we need to segment 8D textured images firstly.
The dominate frequency variations of projected im-
ages are characterized by the ridge surface of continu-
ous wavelet transform. We model the ridge surface as
the quadratic polynomial plus white noise. Agglom-
erative clustering is used for merging similar blocks
according to mazimum likelihood joint probability. A
fusion technique is applied to accomplish the segmen-
tation work. Textured images synthesized from Bro-
datz’s album and several natural images demonstrate
the performance of our method.

Keywords: 8D tezture segmentation continuous wavelet

transform ridge surface mazimum-likelihood cluster-
ing
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Figure 1: One main texure in the projected images:
(a). Sunflowers [2]; (b). Steps [13].

1. INTRODUCTION

Shape from texture is an important problem in re-
covering 3D scene information from a single image by
using texture cue only [2](6]{7][9]{13]. In the literture,
almost all the shape from texture methods assume
that the projected image is mainly composed of only
one texture, as shown in Fig. 1. Surface orientation
is therefore estimated from this texture. However,
there are often more than one textures appearing
in our perceived images (see an example shown in
Fig. 5). The important problem, 3D texture seg-
mentation, is avoided and rarely discussed for previ-
ous methods except for {7][11]. In order to solve the
shape from texture problem in a practical manner,
the 3D texture image segmentation must be taken
into account. 3D textured image segmentation dif-
fers from its 2-D counterpart in that the features
commonly used in 2-D texture segmentation is no
longer suitable, the projection effects should be con-
sidered. Krumm and Shafer [7] had firstly presented
a 3D textured image segmentation approach. They
estimated the local frontal frequencies by applying
their shape from texture approach to local patches.
The local frontal frequencies were used later as the
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features for 3D texture segmentation. However, the
accuracy of their algorithm depends on the number
of patches and their sizes. In addition, their segmen-
tation results have the blocky effects.

We had also previously presented a 3D texture
segmentation approach based on a robust fitting tech-
nique to extract reliable local surface orientations as
the local features [11]. The local surface orienta-
tions are estimated based on our shape from tex-
ture method [6][9]. Dominate frequency variations
of projected images are efficiently characterized by
the ridge surface of continuous wavelet transform
(CWT). The continuous wavelet transform tuned to
various scales and rotations is particular suitable for
local frequency analysis, With the scale parameter,

we obtain the degrees of frequency variations; with

the rotation parameter, we know at which direction
the maximal frequency variations is. This is cru-
cial for 3D texture segmentation in capturing texture
variations resulted from projection effects. The ridge
surface of a continuous wavelet transform marks the
places in the spatial frequency domain where the en-
ergy is mostly concentrated [5]. The scales of a ridge
surface is derived to be a parabolic function of the
slant and the tilt angles. The surface orientation is
solved by fitting the scale of the ridge surface as a
parabola [6]. According to the local surface orien-
tations, a robust clustering was used for coarse seg-
mentation.

It should be emphasized that the above 3D seg-
mentation algorithms either need to estimate the lo-
cal frequencies [7] or local surface orientations [11]
as the features. Owing to the ridge surface had been
derived to be a parabola, it is reasonable for us to
model the ridge surface as a quadratic polynomial
plus white noise. This model is the one adopted by
Silverman et al. [12] and Lavalle et al. [8]. How-
ever, their model is based on the assumption that
the image or the smooth 3D surface region can be ap-
proximately represented by either linear or quadratic
polynomials. No derivation for such types of poly-
nomials is given. According to our parabolic model
of ridge surface, a ridge surface is initially divided
into several blocks. A maximum likelihood cluster-
ing is proposed to accomplish the coarse segmenta-
tion. A best pair of blocks to be merged or not is
determined by a agglomertive clustering iteratively.
Finally, all the coarsely segmented results obtained
from the multiple ridge surfaces are then fused to get
complete segmentation result.
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Figure 2: The relationship of octave and voices fol-
lows the music.

2. CONTINUOUS WAVELET
TRANSFORM AND RIDGE SURFACE

2.1. Continuous Wavelet Transform

A complex-valued function ¥ (x) in L?(R?) is a wavelet
if f2%(x)dx = 0. Let Vo .. (%) e obtained by the

translation, scaling, and rotatlon of Y(x): w(b 0)(

LY(r-g s b)) where b € R?, s > 0, and 6 € [0, 2r)
are the translatlon scaling, and rotation parame-
cost —sind

sinf  cosf

the rotation matrix of angle ¢ [1]. In our imple-
mentation, we use the 2D Morlet wavelet, defined as
¥ (%)= efko"xe=1xI"/2 iy the spitial domain, which

is i (w) = e"W=kol"/2 ip the frequency domain,
where ko is the center frequency of Morlet wavelet.
Also, following the conventional usage [5], the scale
parameter s takes the discretized values, s = 20+,
where o is the octave, v is the voice, and n is the
number of voices per octave. The relationship of oc-
tave and voices is shown in Fig. 2.

Fig. 3 shows the functional range of the Morlet
wavelet according to its tuning rotations and scales.
The more voices and rotations are used, the denser
the wavelet covers the frequency plane. The Morlet,
wavelet optimizes both the spatial resolution and the
frequency resolution simultaneously; therefore, it is
well adapted for local frequency analysis.

We adopt an idealized or monochromatic texture
model [3] to represent an image f(x) with N com-
ponents:

x) =

ters, respectively; and ry =

N
F@) = Ak cos(Tx + pr), (1)

k=1

where amplitude Ay, frequency $2y, and phase p;
are assumed to be constants. By taking the wavelet
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Figure 3: The tunning of CWT in terms of rotations
and scales.

transform of f(x) in the frequency domain, we obtain

N
WF)(b,s,0) = Z %ﬁkl(sr_gﬂk)e-j(ﬂzb"‘m).
k=1

One can then read off from these points (called ridge
points hereafter) important local parameters about
the spatial frequency §2;. The ridge points at b can
be extracted by selecting the squared-modulus lo-
cal maxima among @ and s at b. Let A/(z) contain
the neighborhood of argument z, including =z; then
(b, s0,p) is selected if

VN (s0) YN (80)  J(WF)(b,s0,00)1% 2 |(WF) (b, N(s0), N (60))|® .

The detail of our ridge surface detection algorithm is
described in [6].

2.2. Ridge Surface: A Parabolic Function

Our viewing geometry is adopted as the same as Su-
per and Bovik [13]. Let the coordinate systems of the
world (ZTw,Yw, 2w), of the surface plane (zs,ys,25),
and of the image plane (z;,y;, ;) be those depicted
in Fig. 4. The slant angle p is defined as the angle
between z; and z;, which takes non-negative values
between 0° and 90°. Furthermore, the angle between
the x; axis and the projection of the surface normal,
i.e., z;, onto the image plane is defined as the tilt an-
gle 7, which takes values between —180° and 180°.
The slant-tilt combination represents the surface ori-
entation of a planar texture.

The relationship between the coordinate systems
of a surface plane and the image plane under the

s

ES

Figure 4: The coordinate relationship between the
image plane and the surface plane.

perspective projection model was derived in [13]:

Ts | _ 2w | secp O cosT sin T T4
ys | F | O 1 —sinT cosT i }’
(2
where

Py

Zy Z0

7 tan p(z; cos T +y;sinT) + f

(3)

Assume that the tilt angle 7 has been derived;
hence, the rotation matrix r, is known. Let x; =
[z; v:)7 and %, = [z, vs)7 be coordinates of the
image plane and of the surface plane, respectively.
Then, the new coordinate of the image plane, x, is
obtained by applying the rotation matrix r, to x;.
Substituting x; in Eq. (2) into Eq. (1) for x, we
obtain the projected texture in the image plane:

N
o) = 3 Aveos(@f 2 | 590§ |xtp. (@
k=1

Let the spatial frequencies of the surface texture be
Q. = [ug vi]; we have

N N
9(x) = Z A cos(or(x)) = Z A cos(V g ()T x+pr).
k=1 k=1

: . . (5)
Thus, the non-linear spatial frequency in the pro-
jected image caused from the perspective projection
is approximated as the gradient of the phase ¢5(x).
After substituting £ from Eq. (3) into Eq. (5), the
local spatial frequency at x is represented in terms
of the slant angle p :

[3¢k(x) 3¢k(x)] _ [Zo(ukfsecp-*vkytanp) Zoup ]
oz By - (ztanp + f)2 ctanp+ f

_ | zourfsecp (%) () )
T | (ztanp + )2 4 8zdy Sy ’
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where a¢g£x) and 6¢5(x) correspond to the frequen-

cies in the tilt and perpendicular to the tilt, respec-
tively.

Let gs(x) be the image reconstructed by restrict-
ing the wavelet transform to S. It is worth mention-
ing that gs(x) may be significantly different from
our textured image since surface properties in the
textured image could not be completely captured by
the ridge points in 8. To recapitulate what we have
derived from Egs. (5) and (6), gs(x) is approximated
by

95(x) & As cos(Vs (x) x + p), ()
where p is the phase at coordinate origin, and

[8¢5 (x) qus(x)] _ | _zousfsecp %¢s(x) Bds(x)
oz Sy (ztanp+ f)2 8zdy By

(8)

Since the variations of -Q%%x—) along the direction per-

pendicular to the tilt, 62;;%(;‘), are relatively less sig-

nificant, this term can be ignored. In this case, it
can be checked that

9¢s(x) _ 20, ussecp
o = (f)aTtwfn— 2y 9)

Since the dominant spatial frequencies of a textured
image are characterized by ridge points, it is possi-
ble to relate Q%x—) to the contents of ridge points
(x,5(x),0(x)) in ridge surface S. To recall the con-
tent of ridge point (x,s(x),0(x)): the magnitude of
the spatial frequency at x is inversely proportional
to scale s(x), and 8(x) gives the direction in which
the frequency points. Hence, if we choose ko at
(ko = |/kol],0), then the scale value s(x) of the ridge
point (x, s(x),60(x)) in the ridge surface S is given
by
Fho(1+ 2202)2
s(x) = ————
Zous secp
It is clear that the scale s(x) of the ridge surface is
a parabolic function of z, independent of y.

(10)

3. 3D TEXTURED IMAGE
SEGMENTATION ALGORITHM

Our segmentation algorithm is directly performed on
the ridge surfaces of a textured image. The scale val-
ues of a ridge surface is derived to be a parabola in
Eq. (10). It is thus reasonable for us to model the
ridge surface as a parabolic polynomial plus zero-
mean white Gaussian noise of constant variance. This
modeling is similar to the data-generation model by
using linear polynomial or quadratic polynomial for
an image (8][12]. However, the linear or quadratic
polynomial model for an image is purely an assump-
tion. Their approaches will fail if high-order polyno-
mial is needed for modeling.
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3.1, Coarse Segmentation by Maximum Like-
lihood Clustering

We first divide each ridge surface into blocks and
utilize a region-based clustering to accomplish a 3D
segmentation problem. Agglomerative clustering is
adopted to achieve coarse segmentation iteratively.
During each iteration, a pair of blocks should be de-
termined to be merged or not. The merge criterion is
modeled as the maximum likelihood joint probabil-
ity on the ridge surface. At the end of agglomerative
clustering, the number of clusters is generated if no
merge is necessary.

The joint likelihood of a ridge surface S given
K clusters of the ridge surface and the model coef-
ficients of the parabolic functions corresponding to

_ their clusters, and the noise variances in these clus-

ters, is defined as

p(S|C1,CQ, ...,CK,al,ag, o QF,01, 02, ...,JK)

K N .' . .
=1] 11 (2ro?) T ~ea;p[fél($(”3) - fak(z,])),zl

g
k=1 (1,)€Cs k

H (s(i:j) - fak(i»j) )2]’
(i) EC ok

(11)
where a; and o, denote the coefficients of fitted
parabolic function and the noise variance, respec-
tively, for the cluster C; with the number of ridge
points N(Cx). s(i,7) is the scale value of the ridge
point at the location (¢, j) whereas f,, (7, 7) is the fit-
ted value of the parabolic function at (4, j). Fit the
scale values of a ridge surface to a parabola is simply
a least-squares problem. To simplify analysis, the
variances o of noises for all block €, (1 < k < K)
are assumed to a equal constant o.

According to the maximum likelihood clustering
model, the best pair of blocks to be merged is de-
termined if Eq. Fll is maximized. Let C,, and C,
be two blocks, and S¢,, ¢, be the partial set of ridge
surface S containing Cy, and C,,. The joint likelihood
of the ridge surface over S¢,, ¢, given the estimated
parameters &, , is defined as

11

(1.7)€S¢em, cn

p(scm.cnlam-n) = 9 o

(12)
The pair of blocks, Cp, and C, (for 1 < m,n <
K), maximizes the joint-likelihood probability in Eq.
(12) will be selected as the best pair of blocks to be
merged. After the maximum likelihood clustering, a
coarse segmentation is obtained for each ridge sur-
face.
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3.2. Fusion

A textured image after CWT may be characterized
with more than one ridge surfaces. The coarsely
segmented results of all the ridge surfaces should
be combined to-get a complete segmentation result.
This combination help us to generate new clusters
by fusing the features of different ridge surfaces and
to delete fragmentations if a cluster’s area is small
enough. The Lu et al’s fusion method [10] had
been successfully used in 2D texture segmentation to
fuse segmentation results come from differnet high-

frequency channels of discrete wavelet transform. There-

fore, this fusion technique is employed for the similar
purpose about the clustering problem in 3D texture
segmentation. The fusion step is a re-labeling pro-
cess by updating the labels of pixels of two to be
fused coarsely segmented results. The only parame-
ter needed is the size of a cluster considered to be not
a “true” cluster. In the 3D texture segmentation, it
is easy to decide since a region having apparent pro-
jection effects usually occupy a large enough area.

3.3. Fine Segmentation

After the coarse segmentation and fusion steps, the
“true” number of clusters is obtained. Each cluster
is then fitted to a parabolic function since it cor-
responds to a ridge surface. For every un-classified
pixel, it is assigned to be a specific cluster if its scale
values is most close to the fitted parabola correspong-
ing to the specific cluster. If a pixel does not belong
to any ridge surface, it can not be assigned to any
clusters. In this case, a connected component tech-
nique is then used to classify these hole regions ac-
cording to local spatial relations.

4. EXPERIMENTAL RESULTS

Some natural images synthesized from Brodatz’s al-
bum [4] and come from MIT VisTex database are
used to demonstrate the performance of our method.
Fig. 5(a) is an image composed of two Brodatz’s
textures, D101 and D102, inclined to zero tilt angle
and different slant angles. Figs. 5(b) and (c) are
real-world textured images with one main textured
region and the background. Fig. 5(d) is also an
real-world image but with three different textures:
windows, a brick wall, and a pavement. The window
and the brick wall regions have the same surface ori-
entations but have the different frequencies, where
the pavement has the surface orientation different
from the other two regions. These segmentation re-
sults are shown in Fig. 5 with boundaries superim-
posed on original textured images. It is found that
our algorithm correctly separate different textures.
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For Figs. 5(b)-(c), the buildings and the ladders are
successfully extracted, whereas the other parts with
less perspective effects are regarded as backgrounds.
Experimental results demonstrate the ability of our
method in segmenting 3D textured images.

5. CONCLUSIONS

The ridge surfaces of continuous wavelet transform
are shown to be powerful in characterizing texure
variations. It is reasonable to represent the ridge
surfaces as quadratic polynomial since a ridge sur-
face had been derived to be a parabola. By utilizing
this merit, the clustering process is modeled as the
maximum likelihood clustering by using agglomer-
ative clustering to merge similar blocks. To notice
that the proposed method does not need to estimate
local (original) frequencies or local surface orienta-
tions as the local features. Start with 3D texture
segmentation, solving the shape from texture prob-
lem becomes practical.

For some textured images with less regular prop-
erty, this method may fail to accurately determin
the true number of clusters. This is due to the ridge
surface can not be efficiently used to describe the
dominate frequency variations of projected images.
This problem can be sovled to some extent by a ro-
bust fitting technique [11] to select the best subset
of ridge points to represent the dominate frequency
variations.
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(c). Scene-2

{d). Scane-3

Figure 5: Segmentations with boundaries superim-
posed.

7]

(8]

(9]

[10]

[11]

(12]

B-186

analysis: Extraction of instantaneous frequen-
cies”, IEEE Trans. Inform. Theory, Vol. 38, No.
2, 1992, pp. 644-664.

W. L. Hwang, C. S. Lu and P. C. Chung, " Esti-
mation of Planar Surface Orientation Through
the Ridge Surface of Continuous Wavelet Trans-
form”, To appear in IEEE Trans. Image process-
ing, 1997,

J. Krumm and 8. Shafer, "Segmenting textured
3D surfaces using the space/frequency represen-
tation”, Spatial Vision, Vol. 8, No. 2, 1994, pp.
281-308.

S. M. LaValle and S. A. Hutchinson, “A
Bayesian Segmentation Methodology for Para-
metric Image Models”, IEEE Trans. Pattern
Anal. Machine Intell., Vol. 17, No. 2, 1995, pp.
211-217.

C.S. Lu, W. L. Hwang, H. Y. Mark Liao, and
P. C. Chung, ”Shape from texture based on the
ridge of continuous wavelet transform”, IEEE
Conf. Image processing, Vol. I, 1996, pp. 295-
298.

C. 8. Lu, P. C. Chung and C. F. Chen, “Un-
supervised Texture Segmentation Via Wavelet

. Transform”, Pattern Recognition, Vol. 5, pp.

729-742, 1997.

C.S.Lu, W. L. Hwang, and P. C. Chung, ”Seg-
mentation of 3D Textured Image Using Con-
tinuous Wavelet Transform, To appear in IEEF
Conf. Image Processing, 1997.

J. F. Silverman and D. B. Cooper, “Bayesian
Clustering for Unsupervised Estimation of Sur-
face and Texture Models”, IEEE Trans. Pattern
Anal. Machine Intell., Vol. 10, 1988, pp. 482-
495.x

B. Super and A. C. Bovik, "Planar Surface
Orientation from Texture Spatial Frequencies”,
Pattern Recognition, Vol. 28, No. 5, 1995, pp.
729-743.



