PERENAHASRZEHERER

BIESERRT A REYRERES
An Image-Based 3D Object Viewer for Environment Walk-Through

Jiunn-Jia Su, Shyei-De Lee, Zhi-yi Chaio, Ming Ouhyoung

BEE ZHE

EREE

BXEEA

Communications and Multimedia Lab. \
Dept. of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

kS

AL — AR ARG ID HHSIEF R KA
& T LA F HRELE 3D Mt o R F AT BB
G988 K o 14 P95 B IE + A 1R IRIFAE T B a9 15) P 71840 3
A 2R L BELE ID Bt o FHAX C LR L BAYHE
TR BYHYEEHEPGEHE BHAITIZHRET
Windows95 £z 2 2 » £ % # Netscape Navigator &9
plug-in < & WWW £ & TR & F 460 #9 15 B0 #HHE
FIFEE -

Abstract

This paper presents an image-based 3D object viewer system.
Object Viewer, for environment walk-through. With this system,
a user can interactively observe an object from different
directions in real time, as if he moves or rotates the object with
his own hands.

Our method is first to get source images of an object from
some pre-selected viewing directions. Then intermediate images
are interpolated from these source images according to
manually-selected matching features. The actual display
sequence contains both the source images and the intermediate
ones. Furthermore, to build up an object model filé for the
object viewer, we need to remove the background from the
source images, mark up matching features, and solve the
occluding area problem for the interpolated intermediate
images.

We have implemented the system on Windows 93 both as a
stand-alone application and as a Win 32 plug-in module for
Netscape Navigator. We also implemented two authoring tools
that can help to remove the background from the source images
and to mark up matching features. Object Viewer has been
applied in several cases, and can be used in Internet
applications, like virtual malls.

1. Introduction

Traditionally, computer graphics or virtual reality systems are
mostly model-based. However, a2 major problem of the model-
based system is the trade-off between rendering time and
rendering quality. To get around this problem, some image-
based methods are used. There are some advantages for these
image-based systems, including constant rendering time and
higher rendering quality. In addition, sometimes it is difficult to
represent objects by using polygon models, for example, a hairy
teddy bear. Therefore, we chose to develop an object viewer
system using image-based rendering. This object viewing

system, or Object Viewer, allows a user observe an object
interactively from different directions in real time. Combined
with other environment walk-through systems, e.g; “Photo VR”
[TSAO96A; TSAO96B; TSAO96C], Object Viewer would be
very useful in virtual mall applications.

2. System Organization
2.1 System Arvchitecture

The method used in our Object Viewer system is view
interpolation with matching features, which is somewhat similar
to the method used by Chen and Williams [CHEN93]. However,
our method uses selected features to interpolate intermediate
images from original image data, so no depth information or
range data are required.

The whole object viewer system can be divided into two
major phases: the object model construction phase and the
object model display phase. In the object model construction
phase, source images must be collected first, then these source
images need to be processed to remove the background and to
identify matching features between two adjacent ones; the
object model display phase includes the display of source
images and interactively interpolated intermediate images. The
architecture of the object viewer system is shown in Figure 1.

user's control message
:

-] ' control scheme
:++1>| image handling o]

source : . L. display scheme |- rosults

>I(I‘ “

matching features

selection N PO | interpolation
scheme

Object Model
Display Phase

A4

Object Model
Construction Phase

Fig 1 System Architecture
2.2 The Acquirement of Image Data

The first step to construct an object model is the acquirement
of the source image data. The source images can be captured by
a camera or a camcorder, and must cover all desired view
directions, as shown in Figure 2:

B-199

PERE A EE e

t
Fig 2 Capturing object images from some directions

The basic idea of our systern is to show these source images
sequentially according to the viewing direction of a user, The
display process will be similar to the rotation of an object. The
more source images used, the better result will be because the
difference between two adjacent images are small. However, a
large volume of data will take too much memory and disk space.
One alternative method stated is: only a few source images are
obtained from some pre-selected positions, say, every 30
degrees, and then some intermediate images interpolated are
used to simulate the transition process between two source
images.

2.3 Image Data Handling

Image data handling includes two tasks: the background
removal and the selection of matching features. We have
implemented tools for both of these tasks.

The reasons for background removal are:

1. Sometimes there may be a lot of textures or nther ohjects on
the background, so the viewers can not concentrate themselves
on the foreground (the object that we want to show them),

2. If we fix the object and move our camera to different
positions to get the source images, the change (or the movement)
of the background between *wo udincent source images will be
greater than the one of the foreground (since it 1= further away
from the camera). If the bachground 15 notr removed. the Jdisplay
process will not be natura! and sronth

We have developad a useful tool to aid the users to do
background remova! task. We call this tool as boundary
detector and removal. With this tool. a user can determine the
boundary of an object easily. The determined boundary data can
also be used to detect the boundaries in adjacent images

- automatically.

The second task is to select matching features of the two
adjacent images. These selected features are used to interpolate
intermediate images from source images. The matching features
of each two adjacent source images are stored in files separately.
These matching features are the basic components of the
interpolation of intermediate images, so they strongly affect the
quality of intermediate images. We also developed tools to help
users to deal with this task. After processing, these images are
then combined to form an object model file which will be used
in the display phase.

2.4 Display Method
. In the object model display phase, which is the major part of

the object viewer system, the system retrieves data from ‘the
model file and from corresponding image files and matching

features - files, and then displays the source images -and
intermediate images according to the user’s viewing direction
interactively.

The control method allows a user to treat the mouse cursor as
his own hand. When'the user moves the cursor, Object Viewer
will show the corresponding images. The result will be similar
to the rotation of objects. Thus, a user can rotate an object by a

cursor just as he rotates the object by his own hand.

We have implemented the object viewer system on two
different platforms, one is a Microsoft Windows 95 stand-alone
application and the other is the Win 32 plug-in module for
Netscape Navigator.

3. Boundary Detector

In the above, we have mentioned that sometimes the source
image data must be handled for background removal. For such a
task, the boundary between the foreground (the object) and the
background must be obtained. It will be a hard and boring task
for a user to select the boundary manually. Therefore, we
implemented a tool that can aid the user in the detection of the
object boundary. Furthermore, since the difference of two
adjacent source images may be small, the boundaries of these
two images also be similar. So, our tool can use the detected
boundary of the first images to aid the boundary detection of the
other ones. We named this tool boundary detector.

The basic idea of boundary detector is referred to “Intelligent
Scissors for Image Composition,” as proposed by Mortensen
and Barrett [MORT95], which uses dynamic programming for
boundary detection. . Boundary detection via dynamic
programming can be formulated as a graph searching problem
where the goal is to find an optimal path from the start node to
the goal node. Each pixel in the image represents a node of the
graph, and an edge between two nodes of the graph represents a
link between two adjacent pixels in the image. Here, each link is
assigned a local cost value, and optimality is defined as the
minimum cumulative cost path from a start node to a goal node.
As applied to the image boundary detection, the graph search
consists of finding a globally optimal path from the start pixel to
the goal pixel.

Since a minimum cost path should correspond to a boundary,
pixels that exhibit strong edge features should be assigned low
local costs. The local cost function is the combination of
components created from various edge features, including the
strength and the direction of the edge sections.

After the local cost function is defined, the dynamic
programming can be used to work out the graph search problem.
First, a start or seed pixel must be determined. Then, a desired
boundary from the start pixel, which is the minimum cost path
at the same time, can be choose dynamically via a free point.
The user can move the mouse cursor, and the position of the
cursor in the image will be treated as the free pixel, and the
boundary from the start pixel to the free pixel can be choose
interactively. Thus, based on these algorithms, an interactive
tool can be implemented.

Our tool can aid the user to determine the boundary of a
single image. The user select a group of pixels, and our tool will
find out boundary sections between them. If all boundary

B-200

PERRE\AEREREReR

sections forms a close loop, the images will be divided into
different regions. Some of .them are background, and can be
removed.

Since the boundary sections of two adjacent images are

similar, the determine boundary of one image can be applied to -

the detection of the boundary of the adjacent images. Our tool
can load the previous detected boundary, and map it to the
second image with some processing. The user will not need to
choose all the points again. What the user need to do is to fix
some error parts. Thus, the human time is much saved. The user
can create a batch process to handle a sequence of images. After
the batch process is completed, the user correct the error parts.
Since the error rates are low, the user will not spend a lot of
time to fix them.

Fig 3 Two adjacent source images with boundary determined

The above, as Figure 3 shows, is the boundaries of two
adjacent images, where the boundary of the second image is
chosen based on the boundary of the first one. Figure 4 is the
results after the background parts are removed.

Fig 4 Two images that have been removed background

4. Intermediate Images

To reduce the amount of source images without maiming the
smoothness of the display results, the intermediate images
interpolated from the source images are necessary.

We use matching features to interpolate intermediate images
from the source ones. These maiching features are selected by
the user. A key point we must emphasize here is that the
intermediate images are not the exact images from the views
within the original views. They are just used to approximate the
images from those views.

4.1 The Extraction of Matching Features

The matching features used by the object viewer to
interpolate intermediate images are selected by the user. These
features are stored as the form of triangles. First, the user must
select corresponding points of the two images. To help the user
to select these corresponding points precisely, we strongiv
recommend that these points should be feature points such as

corners or edges. It will-be-easier for the user to -select
corresponding points from these cases.

After the corresponding points are selected, the next work is
to combine three selected points to form a feature triangle.
These feature triangles are the basic components of the
interpolation process. Thus, the selection of the feature triangles
will “highly affect "the "qualities "of interpolated intermediate
images. We strongly recommend that the following points must
be noticed when selecting these feature triangles:

1. For a large region, the triangles should be arranged radially.
2. If there are complex textures on the object, it would be better
to cover the whole portion of the textures with a single triangle.
3. Smaller triangles will get better interpolation results.

4. The triangles must cover the whole area of the object in the
image, or there will be leaks in the intermediate images.

4.2 Interpolating Intermediate Images

The method used to interpolate the intermediate images is
somewhat similar to morphing and texture-mapping. In short,
the method used is to get the feature triangles from the two
source images, transform them to the new shapes and new
positions in the intermediate images, then fill them with the
image data of the corresponding source image pixels.

The method to interpolate the intermediate images is a bi-
directional interpolation method, where the shape and the
texture data of the intermediate image come from both the
source images. The major challenge for the generation of
intermediate images is the handling of occluding areas. The
occluding areas occur when two different parts of the object are
projected onto the same position in one of the two source
images, but to different positions on the other. In such a
situation, only the part which is nearest the camera is shown in
the occluding image. In other words, the image information of
the occluded part, such as color data and position data, is lost in
the occluding image. If the object is only moved but not rotated,
the occluding problem seldom occurs. However, the occluding
problem often occurs in the rotation case.

Two forms of error will be derived from this problem; one is
the overlap, and the other is the hole. The overlap means that
two pixels in the source image will move to the same position in
the intermediate image, and the hole means that no pixel on the
source image can be used to fill up a certain position in the
intermediate image. We use the following way to solve the
occluding problem: when an occluding part appears in one
source image but disappears in the other one, the feature triangle
of the occluding part is assigned normally in the appearing
source image; but in the other source image, the feature triangle
would be assigned to be a narrow area, or a ling, or even a point.
In interpolation, when the system finds that thers is large
disparity between the areas of the two feature triangles, it will
interpolate the shape data in the intermediate image from both
source images, but interpolate the color data from only one of
the source images. The other source image will not be used
because the image data of the occluding part is lost in the other
source image. The following is an example.

B-201

PRERENFAEEE S ES

Fig 5 A, B are source triangles and C, D, E are interpolated
results

As shown in Figure 5, A and B are corresponding feature
rriangles in different source images, and C, D, and E are
interpolated triangles in intermediate images. The area of A is
far more than the area of B. Thus, the shape data o1 C, D, and E
are interpolated from both A and B, but their color data are
generated from only triangle A.

Figure 6 are two adjacent source images of an object model. -
After selecting feature triangles, intermediate images are
generated, as shown in Figure 7 and Figure$ respectively.

Fig 6 Two adjacent source images

Fig 7 Two adjacent images with features selected

Fig 8 Intermediate fmages
5. Plug-in Module Implementation

We have implemented our Object Viewer system both as a
Windows 95 standalone application and as a Nescape plug-in
module. Plug-ins are software programs that extend the
capabilities of Netscape Navigator in a specific way. In other
words, users can execute plug-ins on Internet via the browser.

By such a method, our Object Viewer system can -be executed
not only in Windows 95 desktop but also on Netscape Navigator
platform.

When a user opens a page containing Object Viewer plug-in,
Navigator will start up the plug-in. If the plug-in has been
installed correctly, the user now can view objects freely the
same as in Object Viewer Windows 95 standalone system.

Because of involvement of network, implementing a plug-in
module is more difficult than implementing a standalone
application. These problems include how to retrieve data stored
on the remote server, the browser dependency problem, the
cache problem and so on.

Data retrieval problem

A standalone application retrieves data and consumes them
on the same local machine. However, a plug-in module retrieves
data on the server via Internet and consumes them on the client
machine. That is, when the plug-in module needs image data, it
must issue a data request to the remote server and wait for the
data, instead of reading these data directly from the local disk.

Retrieving data from server brings some problems. Because
of waiting for data stream from the server, the plug-in module
sometimes stalls. If the network jams, users will spend a lot of
time waiting. In addition, the sequence of issuing requests is not
the same as that of responding data stream. This will introduce
some troubles in programming.

In order to solve these problems, our plug-in module
recognizes the responding data file, so the display sequence is
correct. Object Viewer shows images that have been transmitted
and allows a user to rotate object progressively. As more and
more images are gotten, a user views objects more freely. Such a
data transmitting method avoids long waiting time. In addition,
because of using intermediate images in Object Viewer, the
amount of the data that needs to be transmitted is little,
and ,therefore, Object Viewer plug-in module is suitable for
Internet.

Plug-in modules must access data on Internet via browsers
such as Netscape Navigator, and so it is restricted in data
handling. Plug-in SDK supports two modes of transferring data.
One mode is transferring files between the server and the client.
The other is transferring byte streams. However Microsoft
Internet Explorer only supports streaming mode. In this mode, it
is not convenient for the client plug-in module to utilize some
utility libraries which treat a data file as a unit. Qur object
viewer plug-in uses the utility library to handle JPEG files, and
uses file-transferring mode so that our plug-in module cannot
yet be executed in Microsoft Internet Explorer until now.

Now we are developing our Object Viewer AtiveX Control
for Internet Explorer and are approaching the completion stage.

Browser dependéiicy problem

As the above said, plug-in modules are specific to Netscape
Navigator. A plug-in module designed for running with
Netscape Navigator doesn’t always work in other browsers.
Besides, plug-in programming must follow some rigid rules
specified by Netscape. Plug-in modules have to fill a group of
function place holders which is prefixed by NPP_. In order to

B-202

FRERENTAEZEREREGE

write these place holders and to transfer parameters between
them, the programming is quite restricted. In addition, since
plug-in modules are dynamic linkage files and run in Navigator
address space, it is very difficult to debug.

Cache problem

In order not to download pages every time and to speed up
the browser responding time, Navigator always caches these
pages. Similiarly, the data consumed by plug-in modules also
need to be cached. In Netscape Navigator directory structure,
there is a sub-directory called Cache,” and this is where
Navigator caches pages. To conform to the behavior of
Navigator, our plug-in also caches data in this directory.
However, the volume of this directory is restricted in Navigator
option, and we have no rights to clear the cache. Once the
amount of data requested exceeds the volume of Cache directory,
Navigator will crash. Now this problem has been brought up as
a bug of Plug-in SDK. But it will still give rise to some trouble
in our plug-in module.

Combination with Photo VR on Internet

As mentioned, we have implemented another image-based
system called Photo VR. Photo VR is an image-based
environment walk-through system. It uses textured cylinder-like
prisms or sphere-like polyhedrons as the environment maps,
where the texture data are generated from photo-realistic images.
The combination of both systems is via a natural way. When an
object is allowed for the viewer to observe via Object Viewer, a
link to the object model file is added on the scene. The object
can be selected via the mouse, and will then be shown by Object
Viewer.

The Photo VR also has a Win 32 plug-in module for
Netscape Navigator, thus the combination can be put on the
Internet. A user can first open a page containing a Photo VR
plug-in, and then wander around in the virtual scene. When an
object is selected, the Navigator forwards to another page
containing the object viewer plug-in. After the user observing
the object, he can close the page and backward to Photo VR.

Such a combination will be suitable for various applications
on the Internet, such as a virtual mall. In the case of virtual mall,
the whole scene can be a large shopping mall. Each shop can be
represented as a prism or a polyhedron, and can be shown
through Photo VR. Each exhibit item can be represented as an
object, and be displayed via Object Viewer. The other types of
media supported by WWW can provide useful assistance. For
example, the text can provide the details about the introduction
of the shop and the exhibit; the audio makes the whole page
more attractive; the URL anchors provide the users a way to get
more related information. Finally, the E-Mail function provides
a way for the user to contact with the dealer. This may become
an important part of the electronic commerce.

In addition to Photo VR, the object viewer plug-in module
can also combine with other media types, such as VRML. Since
the plug-in module is embedded in an HTML page, thus, the
link to Object Viewer plug-in can be mvoked via the way of
the anchor. For example the whole scene can be constructed by
geometry models in VRML. Such a model may be rough, and
some objects within the scene may need image data to give a
user realistic impression. In such a case, links to the object

viewer may be added onto these scene objects. Via these links,
the user can invoke the object viewer to observe these objects
more clearly.

Demonstration

The following are some snap shots of our object viewer

'system for Windows 95 stand alone application and plug-in

module.

Object Viewer 4
e e e e

Gt P ;i

Fig 10 Object viewer win32 plug-in module
6. System Performance

In this section, we will discuss the system performance of
Object Viewer. First, we will discuss the image volume data. If
interpolation for intermediate images is used, we recommend
that the a source image should be taken for every 30 degrees;
otherwise, a source image should be taken for every 15 degrees
or less. For general case, if the background is removed and
JPEG file format is used, the file size of a source image with
resolution 320%200 be no more than 30k bytes. In fact, the file
size will be smaller most of time. Thus, for one latitude with 24
source images (one source per 15 longitude degrees), the total
file size is about 700k, or less. Thus it is suitable for network
transmission. We will take some real scenes as example. The
raccoon contains 72 source images (3 latitudes, 24 images for
each), with resolution 200%200. Its total file size is about 540k
bytes. Another ant piece , theTransformation, which is a
sculpture within the scene of Taipei Fine Art Museum, contains
24 source images (1 latitude), with resolution 320%240. Its total
file size is about 440k bytes.

For two 320%240 source images, our system will need about
80 milliseconds to generate an intermediate image, on a
computer with Pentium 133 CPU, 32M RAM. Thus the frame
rate is about 15 frames per second (include source images and
intermediate images.) If the intermediate images are not used,
the frame rates is more than 235 frames per second.

B-203

FEEENTAEREHESEE

Object Model [No. No. Image |[No. |Volume
Name Oof of Size of of Total
Longitude jLatitude Image |Image
- |Data
Raccoon 24 3 200%200(72 533k
Transformation|24 1 320%240 |24 439k
Sunflower 24] 1 200%200 |24 214k
7. Conclusions
This paper proposes an image-based system — Object

Viewer — for users to interactively observe an object from
different view directions in real time. This system can be
executed on Microsoft Windows 95 as a stand-alone Windows
95 application or as a Win32 plug-in module for Nescape
Navigator without any special hardware support. We have also
developed authoring tools that can be used to remove the
background of the source images and mark up the matching
features. '

The advantages of our methods are as follows:
1. Since source images are acquired from some pre-selected
viewing directions, the volume of the image data is small.
Therefore it is suitable for transmition through network.
2. We generate interpolated intermediate images to approximate
the actual images for the in-between views between two
adjacent source images.
3. The user can fully control the system, and the system will
react interactively in real time.

Furthermore, this system can be combined with our Photo VR,
which is an image-based environment walk-through system. The
combination of Object Viewer and Photo VR would form a
general purpose image-based environment walk-through system,
and supports the new media type of image-based virtual reality
for WWW. This will be a very useful tool for applications in
entertainment, education, business, and so on.

8. Reference

[APPL95] Apple Computer, Quick Time VR software package,
1995.

[BEIE92} Beier, T. and Neely, S., “Feature-Based lmage
Metamorphosis,” Proceedings of SIGGRAPH '92, Chicago,
Ilinois, 1992. In Computer Graphics, 26, 2 (July 1992), ACM
SIGGRAPH, pp. 35-42.

[CHENO93] Chen, S.E. and Williams, L., “View Interpolation
for Image Synthesis,” Proceedings of SIGGRAPH 93, Anaheim,
California, 1993. In Computer Graphics Proceedings, Annual
Conference Series, 1993, ACM SIGGRAPH, pp. 279-288.
[CHEN95] Chen, S.E., “QuickTime® VR — An Image-Based
Approach to Virtual Environment Navigation,” Proceedings of
SIGGRAPH 95, Los Angeles, CA, 1995 In Computer
Graphics Proceedings, Annual Conference Series, 1995, ACM
SIGGRAPH, pp. 29-38.

[MORT95] Mortensen, E.N. and Barrett, W.A., “Intelligent
Scissors for Image Composition,” Proceedings of
SIGGRAPH °95, Los Angeles, CA, 1995. In Computer
Graphics Proceedings, Annual Conference Series, 1995, ACM
SIGGRAPH, pp.191-198.

[NETS] Netscape Communications Corporation, “Plug-In
Guide,”
<URL:http://home.netscape.com/eng/mozilla/3.0/handbook/plu
gins/pguide.htm>

[SEIT96] Seitz, S.M. and Dyer, C.R., “View Morphing,”
Proceedings of SIGGRAPH '96, New Orleans, LA, 1996. In
Computer Graphics Proceedings, Annual Conference Series,
1996, ACM SIGGRAPH, pp. 21-30.

[TASO96A] Tsao, W.K., Su, J.J.,, Chen, B.Y., and Ouhyoung,
M., “Photo VR: A System of Rendering High Quality Images
for Virtual Environments Using Sphere-like Polyhedral
Environment Maps,” Proceedings of Real-time And Multimedia
System, Taipei, R.O.C., 1996, pp. 397-403.

[TSAO96B] Tsao, W.K., Chen, B.Y., Su, J.J., and Ouhyoung,
M., “Rendering Real World Scenes and Objects for Virtual
Environment Navigation,” Proceedings of International
Computer Symposium, Kaohsiung, R.0.C, 1996, pp. 1-8.
[TSAO96C] Tsao, W.K., Rendering Scenes in the Real World
Jfor Virtual Environments Using Scanned Images, Master thesis,
Department of CSIE, NTU, 1996.

[Su97] Su, JJ., Master thesis, National Taiwan University,

1997.

B-204

