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ABSTRACT

Low power is a significant concern for the today’s ASIC
designs. To shorten the design time, it is very important to
correctly supply the design environment all the power
related information that is necessary. However, the
interconnect capacitance estimation is a difficult task
during the synthesis stage due to the lack of place and
route information. In this paper, we will present an
interconnect-driven design methodology. To minimize the
iterations between synthesis and layout, the proposed
approach is distinctive in that it constructs physical
hierarchy during the synthesis stage. Our optimization goal
is to minimize the power dissipation of the chip, especially
when the system is at the standby mode. Experimental data
shows that this design methodology achieved very good
results.

1. INTRODUCTION

The dominant source of power dissipation in CMOS
circuits is the charging and discharging of the node
capacitances [1,2,3], and is given by the following
equation:

P=1/2 %V * C * [ E

where V is the supply voltage, f'is the clock frequency, C;
is the node capacitance, and E; (referred as the switching
activity) is the expected number of transitions per clock
cycle. The product of C; and E; is referred to as the
switched capacitance. An estimate for the power
consumption of a logic network is obtained by summing
the power consumption over all the nodes. At the logic
level, it is assumed that V' and f are fixed, and thus, the
total switched capacitance of the circuit is assumed to be
the cost measure that is optimized.

Power optimization of VLSI circuits can be accomplished
at the various levels of design abstraction from algorithmic
and system levels down to layout levels. The optimization
at higher level can exploit a larger degree of freedom and
then have a larger impact in the power dissipation
reduction. However, the power estimation is a difficult task
at the higher level because interconnect plays a role in
determining the total chip power dissipation. The power
estimation may be inaccurate due to the lack of physical
place and route information. Since time-to-market is one of
the most important factors in the ASIC design, in order to
reduce the design time, the number of design iterations
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should be minimized. To shorten the design time, physical
place and route information must be accounted for as early
as possible.

Many design automation tools have been used extensively
in the industry and are an integral part of typical design
flow. These tools achieve good results in their own design
stages. Our goal is to provide necessary and accurate
information at each design stage. As a result, by taking
advantage of existing design automation tools and
combining their features, the proposed design methodology
is able to develop low power digital systems while
speeding up the design process. In other words, our
approach is to develop a methodology for effective and
efficient use of existing design automation tools.

This proposed design methodology has been applied to a
wireless communication chip to verify its correctness and
effectiveness. If compared with the typical ASIC design
flow, the main distinctions of the proposed approach are
elaborated as the below:

® [t tries to minimize the power dissipation when the
system is at stand-by mode. For most of usage time (at
least, above 95% of wusage time), this wireless
communication system stays at the standby mode to detect
and be ready to receive new message. In order to extend
the battery life, the power dissipation when the system is
stand-by should be as low as possible.

® [t tries to minimize the capacitances of high
switching frequency nets during the stage of logic synthesis.
By applying the procedure of quick synthesis and practical
wire load models, the approach may accurately estimate
the minimum areas of logic modules and the corresponding
capacitances of high switching frequency nets. Power
optimization tool, like Synopsys Power Compiler, may
optimize the logic design based on the estimated
capacitances.

® [t tries to let the final capacitances in the layout
stage as close to the estimated value in the synthesis stage.
During the stage of placement and routing, the logic
modules of high frequency nets are group together to form
a minimum physical block (i.e., the same size as predicted
in the synthesis stage). As a result, the final capacitance
will be as close to the estimated values. And, hence, the
number of design iterations between synthesis and layout
can also be reduced.

The rest of the paper is organized as follows. Section 2
presents the motivation of interconnect-driven design flow.



Section 3 addresses the creation of practical wire load
models. Section 4 presents the proposed design
methodology. Section 5 shows the experimental results on
the implementation of the wireless communication chip.
Finally, some concluding remarks are given in Section 6.

2.  MOTIVATION

Power optimization of VLSI circuits can be accomplished
at the wvarious levels of design abstraction. The
optimization at higher level can exploit a larger degree of
freedom and then have a larger impact in the reduction of
power consumption. Clock gating is a very common power
optimization technique at register transfer level design.
Furthermore, due to clock gating, we can distinguish the
registers, design instances, and logic modules according to
their clocks.

2.1 Clock Gating

A very common power optimization technique is clock
gating. By turning off the clock when its circuitry is not
required, designers can reduce significantly the switching
activity within the design. This technique can be applied at
the module level as well as internal to modules around
specific circuitry. While the power saved may be
considerable, the designer must be cautious in the design
of combinational logic between registers of different clock
systems.

Figure 1 shows the clock enabling circuit of the wireless
communication chip designed in the ITRI. The clock
source is divided into 6 clocks because of the low power
requirement. The clock0 is the clock source. The clockl,
clock2, clock3, clock4, and clock5 are gated clocks. Each
gated clock is enabled at different condition. Because these

6 clocks are originated from the same clock source, they
are required to remain synchronized.

2.2 Typical ASIC Design Flow

There are many opportunities to reduce power at the
register transfer level, including clock gating and other
architecture trade-offs. Once the architecture has been
decided upon, the designer moves into the implementation
phase. Here, gate level synthesis is required.

Timing driven synthesis is a common practice in today’s
ASIC implementation. As the processing technology
shrinks down to the deep sub-micron arena, the
interconnect delay on a chip dominates the gate delay and
the gate count on a chip may be as large as millions of
gates. Because the gate count is huge, in order to
synthesize the design effectively, each design must be
divided into many hierarchical blocks and synthesized
separately. Due to clock gating, we can divide the logic
modules according to their clocks. After synthesis, in the
placement & route stage, many hierarchical blocks are
flattened and grouped together to form a big physical block.
Here, back annotation of parasitic values is required to
verify that design constraints have been met. Since
time-to-market is one of the most important factors in the
ASIC implementation, the number of loops between the
synthesis and layout should be minimized.

Many design automation tools have been used extensively
in the industry and are an integral part of typical ASIC
design flow. In the following, we briefly describe the
design automation tools [4,5,6,7,8] used in our design
environment to implement an ASIC design.
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Figure 1: The Clock Enabling Circuit.



The switching activities of nodes in a circuit are reported
by the logic simulator (Cadence/Verilog PLI) and fed into
the synthesis tool. Then, we use Synopsys synthesis tool,
including HDL Compiler, Design Compiler, Power
Compiler, and Design Power, for gate level timing, area,
and power optimization. Then, Avant!//Apollo is used for
placement & route. After layout is done, the distributed
resistance/capacitance (RC) is extracted by a distributed
RC extractor (A4vant!/StarRC). Then, we use a delay
calculator (Ultima/MDC) to calculate timing delay and
generate a Standard Delay Format (SDF) file which stores
the timing delay data of the cells and the nets. The SDF file
is fed to a timing simulator (Cadence/Verilog) for
post-layout simulation.

Since low power is an important requirement for this
wireless communication chip, the circuit level netlist with
distributed RC is also fed to a power simulator
(EPIC/PowerMill) to verify that the power constraint is
met or not.

2.3 Basic Ideas

There are many techniques, which may decrease the
switching activity and/or the capacitance, to reduce the
switching power of a logic design. Logic structuring, gate
sizing, pin swapping and technology mapping are
examples of techniques that allow reduction of switching
power by manipulating the gate level netlist. Furthermore,
these techniques also have been implemented into logic
synthesis tools, e.g., Synopsys/Power Compiler. As a
result, during the synthesis stage, we may optimize
simultaneously for timing, area, and power. However, the
major challenge for us is that the power estimation may be
inaccurate due to the lack of physical place and route
information. In order to minimize the iterations between
synthesis and physical design, it is important that accurate
physical hierarchy can be predicted during the synthesis
stage.

The proposed design methodology tries to minimize the
power dissipation of the chip and the design time (i.e., the
number of iterations between synthesis and layout) at the
same time. The basic ideas behind the proposed
methodology are elaborated as the below:

®  The mismatch of the logic hierarchy and the physical
hierarchy may cause the estimated wire load far away from
the correct value. Using the “wire load model” to provide
an estimate of interconnect loading is a practical method to
solve the problem. A “wire load model” describes wire
load value according to the fan-out number of a net and the
physical size of the block that encloses the net. The design
methodology includes the method to create wire load
models and the design procedure to select the appropriate
wire load model during synthesis.

®  The reduction of power is larger, if the capacitances
of higher switching frequency nets are reduced. Therefore,
we will group high switching frequency nets into physical
blocks as small as possible. In other words, we will enclose
the high switching frequency nets within smaller physical
blocks so that the interconnect capacitances may be as

small as possible. Furthermore, by using wire load models,
logic synthesis tool may apply power optimization
techniques, such as logic structuring and pin swapping,
based on accurately estimated wire capacitances.

3.  PRACTICAL WIRE LOAD MODEL

The dominant source of power dissipation in CMOS
circuits is the charging and discharging of the node
capacitances. A mnode capacitance includes the pin
capacitances and the interconnect capacitance. Accurate
pin capacitance can be obtained from the standard cell
library. The interconnect capacitance estimation is,
however, a difficult task during synthesis due to the lack of
place and route information.

To shorten the design time, it is very important to correctly
supply the synthesis environment all the power related
information that is necessary during the synthesis
procedure. In the following, a procedure to create wire load
models for a specific processing technology is presented.
The created wire load model is a statistical result of
previous layouts of production chips. It is included in the
synthesis library. Then, for a brand new design, the logic
designer can use the wire load model for optimization
during the synthesis stage. According to our experience,
the difference between the wire load model and the real
layout will be confined within a small value.

3.1 Wire Load Model Definition

A wire load model [9,10,11] describes wire load value
according to the fan-out number of a net and the physical
size of the block encloses the net. It is created for specific
processing technology and layout tool. The wire load
model consists of a set of wire load tables. Each table
contains wire load data such as capacitance, resistance, and
the average wire length for a series number of fan-out.

3.2 Wire Load Model Creation Procedure

To create wire load model, we need to collect physical
blocks from many layouts of the same processing
technology and the same place & route tool. These
collected layouts are from previous production chips.

Then, we can analyze the average wire load for each
physical block. Firstly, we use Avant!/Apollo as the
placement and route tool, use Cadence/Dracula to extract
interconnect capacitance, and /pe2syn that is an in-house
program to translate the output capacitance file of Dracula
to the input format of Synopsys/Floorplan Manager. Then
the Floorplan Manager will create average wire load for
different fan-out number of every physical block.

After applying the analysis procedure to every physical
block, we further analyze all the wire load data. The wire
load increases with area and for the same area the wire load
increases with the number of fan-outs. We applied the
linear regression technique to the data and get a family of



slopes of different wire load tables.

4. LOW POWER DESIGN METHODOLOGY

To reduce iterations between logical and physical design,
wire load of nets should be estimated as close to the actual
value as possible. The wire load model creation procedure,
as described in Section 3, is a practical method to provide
an accurate estimate during the synthesis stage. By
supplying the wire load model, the synthesis tool may use
the precise wire loads to optimize the netlist for timing,
area, and power simultaneously. As a result, the number of
iterations can be minimized and design convergence can be
easily achieved.

4.1 Front-End Design Procedures

By constructing physical hierarchy during the synthesis
stage, we can effectively make use of the practical wire
load model. Figure 2 shows the procedure of front-end
design. The distinctions of our approach are elaborated in
the followings.

4.1.1 Map Logic Hierarchy to Physical Hierarchy

The reduction of power is larger, if the capacitances of
higher switching frequency nets are reduced. For the
illustrated wireless communication chip, most of its usage
time stays at the standby mode to detect and be ready to
receive new message. When the chip is at standby mode,
only original clock source clock0 is active. Therefore, we
prefer to enclose the registers and the modules, which are
driven by original clock source, within a smaller physical
block. As a result, a smaller interconnect capacitance can
be obtained.

Selecting a wire load model for a logic module is a key
factor in correctly predicting the wire capacitances during
the synthesis stage. In order to select correct wire load
model, accurately estimating the physical block size for a
logic module is very important. The correspondence may
be derived from past experience. According to previous
size for a logic module M, which has total cell arca
Cell Area(M), is equal to f,*Cell Area(M). Furthermore,
the estimated physical block size for the logic modules M;
(1 =i=n), which have total cell area > Cell Area(M,), is

equal to f,*X Cell Area(M,).

Let’s use Figure 3 (a) as an example to describe the
procedure. Figure 3 (a) is the logic hierarchy of a design.
Suppose leaf modules 4 and B are driven by original clock
source. In order to correctly select the wire load model,
designers should plan ahead to map the logic hierarchy to a
physical hierarchy. The procedure of logic synthesis is
described as below:

Step 1: Perform a quick synthesis without setting any
constraint on the leaf modules from 4 to E in order to get
the total area of standard cells inside each leaf module.

Step 2: Since leaf modules 4 and B are driven by original

Designer
System
Specification
Designer
Clock Gating
Hierarch
Physical
Verlog Hierarch
RT-Level
Design
Design Compiler
Quick
Synthests
Area
Estimation
Wire Load
: . Selection
Design Compiler
Synthests
(e Level
Design Power Netlst
Power
Analysis

Figure 2: The Front-End Design Procedures.

clock source, we prefer the physical block enclose the two
modules as small as possible. The estimated area of the
physical block is f,*(Cell Area(A)+Cell Area(B)). As a
result, we can select a wire load model according to the
estimated area. Then, we re-synthesize leaf modules A and
B with the selected wire load model to optimize timing,
area, and power simultaneously.

Step 3: Tackle the synthesis of logic module F. The
module F is the parent module of leaf modules 4, B, and C.
Therefore, the estimated area of the physical block, which



encloses module F, is as below:
fr*(Cell_Area(A)+Cell Area(B)+Cell_Area(C)).

We can select the wire load model according to the
estimated area. Then, we re-synthesize leaf module C with
the selected wire load model and link 4, B, and C to form F
also using the selected wire load model.

Step 4: Tackle the synthesis of logic module G. The
module G is the parent module of leaf modules D and E.
Therefore, the estimated area of the physical block, which
encloses module G, is as below:

fr*(Cell_Area(D)+Cell_Area(E)).

We can select the wire load model according to the
estimated area. Then, we re-synthesize leaf module D and
E with the selected wire load model and link D and E to
form G also using the selected wire load model.

TOP

(a)

(b)

Figure 3: An Example. (a) The Logic Hierarchy. (b) The
Physical Hierarchy.

Therefore, the estimated area of the physical block, which
encloses module G, is as below:

fr*(Cell_Area(D)+Cell_Area(E)).

We can select the wire load model according to the
estimated area. Then, we re-synthesize leaf module D and
E with the selected wire load model and link D and E to
form G also using the selected wire load model.

Step 5: At the top level, when the modules F and G are
linked together, the global wire load model of the top level
is used.

4.1.2 Low Power Clock Tree Design

Since the original clock source is the net of highest
switching activity, we need to construct a low power clock
network. As a result, the chip may have lower power
dissipation, especially when the chip is at the standby
mode.

We use clock tree structure to implement the clock network.
The low power clock tree is constructed that minimize the
load on the clock drivers, subject to meeting a tolerable
clock skew. The tree is built from the leaves (i.e., receivers)
to the root (i.e., source). The procedure is described below.

Step 1: In order to minimize power dissipation, we select
drivers with lower driving capability to be used at the
bottom level. The number of receivers may be driven by
each driver is calculated by the equation:

maximum number of receivers = (maximum driving
capacitance — wire load capacitance) / (input pin
capacitance of receiver)

The maximum driving capacitance and input pin
capacitance are defined in standard cell library. The wire
load capacitance is an estimated value as described in
Section 4.1.1

Step 2: After the bottom level drivers are defined, then the
input capacitance of these drivers are used as the
capacitance load for the selection of drivers of one level
above it. To reduce the power dissipation, the smallest
drivers that have enough driving capability are chosen.
Repeating this process until the clock source is reached.

4.2 Back-End Design Procedures

In the previous section, we have discussed how to control
the effects of physical layout during the synthesis stage. In
this section, we will describe how to realize the physical
layout.

4.2.1 Floorplan

The mismatch in physical and logical hierarchy may cause
many number of iterations between synthesis and layout. In
order to shorten the design time, the logic hierarchy and the
physical hierarchy must be consistent.

Let’s use the logic hierarchy in Figure 3 (a) as an example.
In order to minimize the lengths of interconnections, the
logic modules that have strongly relation had better been
placed in the same physical block. For example, logic
module 4, B and C are placed in the same physical block,
and logic modules D and E are placed in the same physical
block. Furthermore, since 4 and B are driven by original
clock source, we prefer the physical block enclose them as
small as possible. Figure 3 (b) shows the physical
hierarchy of the logic hierarchy in Figure 3 (a).

After the physical floorplan is done, we can start the



placement & route process. The command “group” of
placement & route tool may be used to instantiate logic
modules or instances in a physical block.

4.2.2 The Synthesis of Clock Trees

A procedure to construct a low power clock tree for
original clock source is described in Section 4.1.2. We use
Avant!/Apollo to implement the clock tree during the layout
stage. After cell placement, we supply the number of levels,
the number of fan-outs at each level, and the driver type at
each level to the Avant!/Apollo. According to the given
clock tree structure, it will perform the clock routing, and
update the netlist.

Since the gated clocks originated from the same clock
source, they need to synchronize with each other. In order
to minimize the skew among the gated clocks, their
propagation delays must be as close to the propagation
delay of original clock source. Therefore, we supply the
propagation delay of original clock source to the layout
tool to implement the other clock trees (i.e., the clock trees
of gated clocks).

5.  EXPERIMENTAL RESULTS

We used a wireless communication chip as an example to
test the effectiveness of the proposed design methodology.
This test chip is implemented using 0.35um CMOS
technology [12].

Because of the low power requirement, the system clock is
divided into 6 clocks. Each clock is enabled at different
condition for power saving. The architecture of the clock
enabling circuit is the same as the concept of gated-clock
for low power. Because these 6 clocks are originated from
the same clock source, they are required to remain
synchronized. When the system is at the standby mode, all
the gated clocks in the chip are disabled (i.e., only system
clock is active). On the other hand, the chip will have peak
power consumption when all 6 clocks are active.

Condition chipl chip2 power
reduction
standby _mode 0.162 0.173 6.3%
mA mA
peak 20.76 20.92 0.8%
mA mA

Table 1 : Power Dissipation Reduction Percentage
Using The Proposed Design Methodology.
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Figure 4 : The Final Layout of the Test Chip.

Figure 4 shows the final layout of our experiment. The
rectangle pointed by an arrow is the region of logic
modules clocked by clock(. Table 1 presents power
dissipation reduction with the proposed design
methodology. The column chip! is the chip implemented
with the proposed design methodology. The column chip2
is the chip implemented without the proposed methodology
(i.e., only with typical timing-driven ASIC design flow).
The row standby mode shows the power dissipation at the
standby mode, and the row peak shows the peak power
dissipation. The results of power dissipation are simulated
and reported by EPIC/PowerMill under the conditions of
3.3 volts of voltage and the typical timing corner.
Experimental data shows that, with the proposed design
methodology, the standby mode power dissipation is 0.162
mA and the peak power dissipation is 20.76 mA; while
without the proposed design methodology, the standby
mode power dissipation is 0.173 mA and the peak power
dissipation is 20.92 mA. In other words, the proposed
design methodology have 6.3% power dissipation
reduction in the standby mode and have 0.8% power
dissipation reduction in the peak power dissipation,
respectively.

6. CONCLUSIONS

In this paper, we presented an interconnect-driven low
power design methodology for a wireless communication
chip. This approach may be easily incorporated into
existing ASIC design flow. Our goal is to minimize the
power dissipation and shorten the design time at the same
time. The goal is achieved by providing necessary and
precise power information at each design stage. The main
distinction of the proposed approach is that the physical
hierarchy will be constructed during the synthesis stage.
Experimental data shows that it achieved very good results,
especially in the standby mode power dissipation
reduction.
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