

 1

 A Study on Parity Checks in Stream Cipher Correlation Attacks
Jun-Chu Hong , Wen-Nung Tsai , Rong-Jaye Chen

Department of Computer Science and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Email: {hongjc, tsaiwn, rjchen} @csie.nctu.edu.tw

ABSTRACT

The commonest stream cipher system uses a keystream
generator which consists of several LFSRs combined by a
combining function. If there exists a measure of correlation
between the output sequence of the keystream generator
and an arbitrary LFSR, the initial state of the LFSR can be
reconstructed by a correlation attack, that is, the partial key
in the LFSR is determined. W. Meier and O. Staffelbach
proposed a correlation attack method using parity check
equations.

 In this paper, we discuss the algorithm and its constraints,
and then propose some improvements: computing more
low-weight parity check equations, accounting the precise
number of relations of each digit, and solving the system of
linear independent equations from digits instead of
calculating the whole output sequence and the initial state
of the LFSR from the relations among the digits.

1.Introduction

In cryptography, there are two basic types of symmetric
encryption/decryption algorithms: block ciphers and stream
ciphers [14][15]. Block ciphers operate on blocks of
plaintext and ciphertext. The same plaintext block will be
always encrypted to the same ciphertext block, using the
same key. Stream ciphers operate on streams of plaintext
and ciphertext one bit or byte at a time. The same plaintext
bit or byte will be encrypted to a different bit or byte every
time it is encrypted. That is, for a plaintext string

Lssss …= 21 in a block cipher system, the ciphertext
string c is obtained as follows.

)()()(2121 LKKKL sEsEsEcccc …=…=

 And for a plaintext string …= 21sss in a stream
cipher system, the ciphertext string c is obtained as
follows.

…=…=)()(2121 21
sEsEccc zz

where the keystream (or called ‘running key’) ∞z is
…21zz , the actual key is K, and the state of the

encryption device is σj which may be dependent on K, σ
j-1 and sj-1, and the function fj is used to generate zj (the jth
element of the keystream) such that

),(jjj Kfz σ=

 Thus a stream cipher system keeps a stateσj in the

memory, when a block cipher system does not. The
essential difference between block and stream ciphers is
the usage of memory as is shown in Figure 1.1.

Obviously, we can think of a block cipher as a special case
of a stream cipher where the keystream is constant: zj = K.
In this paper, we focus on stream cipher systems and
correlation attacks on stream ciphers.

 There are two different approaches to stream
encryption: synchronous methods and self-synchronous
methods [16][17]. In a synchronous stream cipher, as
shown in Figure 1.2, the next state depends only on the
previous state and not on the input so that the succession of
states is independent of the message stream. The keystream
is therefore generated independently of the message stream.
Thus, if a ciphertext character is lost during transmission,
the sender and receiver must resynchronize their generators
before they proceed further.

)(sEc K=

Memoryless device
device with

internal memory

s1 c

sL c

K

sj cj

)(jzj sEc
j

=
),(jjj Kfz σ=

Figure 1.1. The difference between block and stream ciphers

K

)(jz cD
j

)(jz sE
j

Keystream

Generator

Keystream

Generator

K K Secure

zj zj
sj sj c

Figure 1.2 Synchronous stream ciphers

 2

In a self-synchronous stream cipher, as shown in Figure 1.3,
each keystream character is derived from a number n of
preceding cipher characters. Thus, if a ciphertext character
is lost or modified during the transmission, the error
propagates forward for n characters, but the cipher
resynchronizes itself after n correct ciphertext characters
have been received.

The algorithm that generates the keystream must be
deterministic so that the stream can be reproduced for
decipherment. One important kind of synchronous stream
cipher is the additive synchronous stream ciphers, where
the characters of the keystream are from an Abelian group
(G,+) and the ciphertext character cj is the addition of the
keystream character zj and plaintext stream character sj
(jjj zsc += , jjj zcs −= and “-” means
the inverse operation of “+”) . In this thesis, we only
discuss GF(2) , so the effects of “+” and “-” are both the
same with XOR
(jjjjjjj zszszsc ⊕=−=+=) .

 Finite state machines are important mathematical
objects for modeling electronic hardware. Furthermore,
due to their recursive feature, finite state machines are
convenient means for realizing infinite word-functions
built over finite alphabets. Many keystream generators can
be modeled by finite state machines. In a synchronous
stream cipher, the keystream generator may be viewed as
an autonomous finite state machine as depicted in Figure
1.4.

 The keystream generator as a finite state machine consists
of an output alphabet {zj} and a state set {σj} , together
with two functions (φ,Ψ) and an initial state σ0. The
next state function φ maps the current stateσj into a new
stateσj+1 from the state set. The output function Ψ maps
the current state σj into an output symbol zj from the
output alphabet. The key K may determine the next state
function φ and the output function Ψ as well as the
initial stateσ0.

 The major purpose of designing a keystream generator is
to prevent from an attacker to predict the output sequence z.
So the output sequence of the keystream generator should
satisfy some cryptographic requirements such as long
period, large linear complexity, good auto correlation,
uniform pattern distribution (randomness) , and so on.

2.Linear Feedback Shift Register based

Stream Ciphers

Linear Feedback Shift Registers (LFSRs) are the
commonest components in stream cipher systems since
they can generate binary sequences speedily. Figure 2.1 is
the structure of a LFSR [16][17].

A linear feedback shift register of length L consists of L
stages S1 ~ SL. Each stage stores one bit. During each unit
of time, the following operations are executed :

(1) The content of S1 is output and forms the output
sequence of the LFSR.

(2) The content of Si is shifted to Si-1 , for 2 ≦ i ≦ L.

(3) The new content of SL is calculated by
∑

=
−+−

L

i
iLi SC

1
1

So, the jth digit (bit) sj (j > L) of the output sequence s of
the LFSR can be calculated from ∑

=
−−=

L

i
ijij sCs

1

. In
GF(2), ∑∑

=
−

=
− =−=

L

i
iji

L

i
ijij sCsCs

11

.

 We use a polynomial
1...)(1

1
1 ++++= −

− xCxCxCxc L
L

L
L to record the

structure of the LFSR.

Definition. The initial content of the LFSR is called the
initial state of the LFSR. In general, the initial state of the
LFSR is the key or a part of the key of the stream cipher
system.

)(jz cD
j

)(jz sE
j

Keystream

Generator

Keystream

 Generator

K K Secure Channel

c

z z
s

Figure 1.3. Self-synchronous stream ciphers

s

φ

K

σj Ψ

K

z

Figure 1.4. Keystream generators as autonomous finite state machines

K

S S

- - - -

S S . .

. .

outp

Figure 2.1. The Structure of a Linear Feedback Shift Register

 3

Definition. The polynomial
1...)(1

1
1 ++++= −

− xCxCxCxc L
L

L
L is called the

connection polynomial of the LFSR. If the degree of c(x) is
L, that is CL = 1, then the LFSR is nonsingular and the
output sequence of the LFSR is periodic.

Example. Consider the LFSR in Figure 2.2.

 The initial state of the LFSR of length 4 is 0, 1, 1, 0. The
connection polynomial is 1)(4 ++= xxxc . And for j >
4, the jth output digit of the LFSR is 41 −− += jjj sss .
The output sequence is s = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,
1, …, and is periodic with period 15 .

Theorem. The period of a sequence generated by a
non-singular LFSR of length L is at most 2L-1 .

 Since a LFSR of length L consists of L stages, the
number of the contents of the LFSR is 2L. The next state of
L-zeros is still all-zeros. So, a LFSR with all-zeros as its
initial state can only generate a sequence of zeros, and the
period is 1. If the initial state of a LFSR is not all-zeros,
there are at most 2L-1 possible contents of the LFSR and
the period of the change of the LFSR’s content is at most
2L-1. The output digit of a LFSR each step is dependent
only on the previous state of the LFSR. So, the period of
the output sequence of a non-singular LFSR of length L is
at most 2L-1, too.

 A sequence generated by a non-singular LFSR of length
L is called a maximal sequence or m-sequence if its period
is 2L-1, and the LFSR is called a maximal-length LFSR.
Every m-sequence satisfies Golomb’s randomness
postulates and is also a pn-sequence.

 But, how to find a maximal-length LFSR ?

Definition. A polynomial of degree n is called
irreducible if it cannot be factored.

Definition. An irreducible polynomial of order n is
called primitive if and only if it divides xp+1 for only a p
which is greater than or equal to 2n-1 .

 In order to examine whether an irreducible polynomial
f(x) of degree n in GF(2) is primitive, one can compute gi(x)
= i

n

rx
12 −

 mod f(x) for all distinct prime factors

trrr ...,,, 21 of 2m-1 . If any gi(x) = 1, then f(x) is not a
primitive polynomial, else it is primitive.

Fact. If the connection polynomial of a LFSR of length L
is a primitive polynomial of degree L, then each of the 2L-1
non-zero initial states of the non-singular LFSR generates
an output sequence with period 2L-1 .

 Since every m-sequence satisfies Golomb’s randomness
postulates, it seems that we can take a LFSR with a
primitive connection polynomial as a keystream generator.
But it is not secure enough. In 1976, Abraham Lempel and
Jacob Ziv [4] proposed to use the linear complexity of the
keystream as a measure of the strength of a stream cipher
system.

Definition. The linear complexity of a finite binary
sequence s of length n, denoted as Λ(s), is the length of
the shortest LFSR that can generate a sequence having s as
its first n digits. And Λ(s) = 0 if s is an empty string.

Fact. Suppose that the linear complexity of a binary
sequence s is Λ(s). As long as we observe consecutive 2
Λ(s) digits of a subsequence of s, we can calculate Λ(s)
and the shortest LFSR which can generate s. This means
that although the period of the output sequence s of a
maximum-length LFSR of length L reaches to 2L-1, the
whole sequence will be disclosed if any subsequence of
length 2L of s is known.

 Berlekamp and Massey [1] proposed an efficient
algorithm to determine the linear complexity of a finite
binary sequence s of length N.

 From the discussions above, we know that the
keystream generated by a maximum-length LFSR is still
not secure enough. One technique destroying the linearity
inherent in LFSRs is to generate the keystream by some
nonlinear function of the stages of a LFSR. Figure 2.3
shows the structure. The kind of keystream generator is
called a nonlinear filter generator and the function f is
called the filter function.

0 1 1 0 output

Figure 2.2. An illustration of a LFSR

output

LFSR

. . . .

f

. . . .

Figure 2.3. A filter generator

 4

Fact. The linear complexity of the keystream generated
by a nonlinear filter generator with a LFSR of length L and
a filtering function f of nonlinear order m is at most

∑
=






m

i i
L

1
.

 Adding a filter function to a LFSR may increase the
linear complexity of the output sequence, but the period is
at most still the same.

 Another general technique for destroying the linearity
inherent in LFSRs is to generate the keystream by a
nonlinear function F of the outputs of several LFSRs.
Figure 2.4 shows the structure. The kind of keystream
generator is called a nonlinear combination generator and
the function F is called the combining function.

 Every Boolean function F(x1,x2,…,xm) can be written as
a modulo 2 sum of distinct mth order products. The
expression is called the algebraic normal form of F.

 Fact. Suppose that m LFSRs, whose lengths L1, L2, …,
Lm are pairwise distinct and greater than 2, are combined
by a nonlinear function F(x1,x2,…,xm) which is expressed in
algebraic normal form. The linear complexity of the
keystream is F(L1,L2,…,Lm).

3. Correlation Attacks

In conventional cryptography, pseudo-noise generators
(pn-generators) consist of m linear feedback shift registers
of length Li (i = 1 , 2 , … , m) and a known combining
function F (see Figure 2.4). To avoid a cryptanalytic
attack using Berlekamp-Massey algorithm, the combining
function F should be nonlinear.

 The initial state and feedback connection polynomial of
LFSRi are referred to as the LFSRi part of the key. Assume
that the feedback connection polynomials of all LFSR’s of
length Li (i = 1, 2, …, m) are primitive. So LFSRi of
length Li has 12 −iL different possible initial states and
the number Ri of different primitive feedback connection

polynomials for an LFSR equals
i

L

L

i)12(−φ
. Hence,

there are)12(−iL
iR possibilities for the LFSRi part of

the key and the total number K of the keys for the
pseudo-noise generator in Figure 2.4 is

)12(
1

−= Π
=

iL
i

m

i
RK .

 In a brute force attack and a worst case situation, all of
the K keys have to be examined, which is not feasible.

 However, there may be correlation between some of the
inputs Si and the output Z. T. Siegenthaler [7] proposed a
divide and conquer correlation attack method that the
LFSRi part of the key would be found independently from
the LFSRj parts);...,,1(ijmj ≠= with

approximately)12(−iL
iR tests. So, the number of trials

can be reduced from)12(
1

−Π
=

iL
i

m

i
R to approximately

)12(
1

−Σ
=

iL
i

m

i
R .

 A few correlation attack methods were proposed after T.
Siegenthaler showed that it is possible to independently
reconstruct the initial state of each LFSR combined by a
combining function with the divide and conquer correlation
attack method if there exists a measure of correlation
between the keystream sequence and the outputs of the
LFSRs. In 1988, a fast correlation attack using parity check
equations was proposed by Willi Meier and Othmar
Staffelbach [8][9].

 The model is also the commonest type of keystream
generators that consist of m LFSRs whose output
sequences are combined by a nonlinear function F.

 Let the correlation probability between the output
sequence z of the keystream generator and the output
sequence a of a LFSR be larger than 0.5 . Suppose that N
digits of the output sequence z of the combining function
are given, the feedback connection polynomial of the
LFSR with t taps and length L is known, and the LFSR
generates a sequence a.

By iterated squaring of the feedback connection
polynomial of the LFSR, an amount of linear relations will
be generated for every digit an, and each relation contains

Figure 2.4. A combination generator

F

LFS

LFS

LFS

out

LFS

F

a

z

Figure 3.1. A model of Meier-Staffelbach algorithm

p = Pr(zn = an)

 5

t+1 digits of the sequence a. For example, the feedback
connection polynomial c(x) with 2 taps of a LFSR of
length 4 is 134 ++ xx , then we know a linear relation

43 −− += nnn aaa . By shifting the index, we can get the

other two linear relations 13 −+ += nnn aaa and

nnn aaa += ++ 14 that contain an. Using the fact that in
GF(2), c(x)j = c(xj) for j = 2i, we can get more parity check
equations i.e. (134 ++ xx)2 = 168 ++ xx is also a
polynomial of weight t+1. Therefore, we can generate t+1
parity check equations for a fixed position an.

 The average number m of the relations can be computed
as

)
2

(log1)(),,(2 L
NttLNmm ⋅+== .

 Thus for a fixed position an, we can write the m relations
as

 an + b1 = 0 , an + b2 = 0 , . . . , an + bm = 0

 where each bi is the sum of t other different positions of
the sequence a.

 Applying the same relations to the corresponding
positions of the keystream z, we also get m relations as

 zn + y1 = L1 , zn + y2 = L2 , . . . , zn + ym = Lm

 where each yi is the sum of t other different positions of
the sequence z.

 The idea of Meier and Staffelbach is that the more parity
check equations of zn held, the higher is the probability of
zn = an. Then we use the digits of the sequence z which are
likely to be same with the corresponding digits of the
sequence a to reconstruct the sequence a. And the initial
state of the LFSR is figured out.

 We know that the probability p = Pr(zn = an) and s =
Pr(yi = bi) = s(p,t) can be computed from the recursion:
s(p,t) = p s(p,t-1) + (1-p)(1-s(p,t-1)) , s(p,1) = p, we can
calculate these probability variables :

 p* = Pr(zn = an | exactly h out of the m relations are
satisfied Li = 0)

 hmhhmh

hmh

sspsps
sps

−−

−

−−+−
−=

))(1(1)(1
)(1

 Q(p,m,h) = Pr(at least h out of the m relations are
satisfied Li = 0)

() ()∑
=

−− −−+−=
m

hi

imiimim
i sspssp))(1(1)(1

 R(p,m,h) = Pr(zn = an ∩ at least h out of the m
relations are satisfied Li = 0)

 ()∑
=

−−=
m

hi

imim
i ssp)(1

 T(p,m,h) = Pr(zn = an | at least h out of the m relations
are satisfied Li = 0)

 = R(p,m,h) / Q(p,m,h)

Since p > 0.5 and t is even, as h grows, p* grows, that is,
the probability of zn = an increases. Thus the idea of Meier
and Staffelbach is proved valid. We want to choose enough
digits of sequence z to reconstruct the sequence a, hence
we have to determine the maximum value of h such that
Q(p,m,h)．N ≧ L. After deciding the value of h, we search
for the digits of the sequence z which satisfy at least h
parity check equations as a reference guess I0 of the
sequence a at the corresponding positions to reconstruct
the sequence a by the relations. We can also estimate the
average number r of errors of I0 by

Lhmpr •)),,(T1(−= . If r << 1, these digits are
likely correct. We can examine whether the initial state we
calculate from I0 is correct by computing correlation and
comparing it with the threshold which we describe in the
previous section. If it is wrong, find the correct guess by
testing modifications of I0 which has Hamming distance 1,
2, … until a correct one is obtained.

4. Improve the Meier-Staffelbach Algorithm

Although Meier-Staffelbach algorithm is efficient, there are
still some defects. We will discuss these defects and
propose improvements to lower the influence caused by
these defects.

Defect 1. The number t of the taps should be small.

 First, let’s consider the probability Pr(yi = bi). It can be
computed from the recursion: Pr(yi = bi) = s = s(p,t) = p
s(p,t-1) + (1-p)(1-s(p,t-1)) and s(p,1) = p. By the
recurrence relation, we can solve s:

ptpsptps −=−−− 1)1,()12(),(

2(])2,()12()1,([)12(ptpsptpsp −=−−−−−

：

：

：

：

2(])1,()12()2,([)12(2 ppsppsp t =−−− −

...)12(1[)1()1,()12(),(1− ++−+−=−− t pppsptps

 6

2
)12(1

)12(1
)12(1)1(

11 −− −−=
−−

−−−=
tt p

p
pp

2
)12(1

2
)12(1)12(),(

1
1

tt
t pppptps −+=−−+⋅−=⇒

−
−

 So, if t is too large, the probability Pr(yi = bi) = s(p,t)
will approximate to 0.5 and

p
pp

p
sspsps

spsp hmhhmh

hmh

hmhhmh

hmh

=
−+

≈
−−+−

−= −−

−

−−

−

)5.0()5.0)(1()5.0()5.0(
)5.0()5.0(

)1)(1()1(
)1(*

.

 This means that no matter how many parity check
equations of a digit are held, the probability p*
approximates to a constant p = Pr(zn = an) if t is too large.
Therefore the probability p* doesn’t give us more
information than the probability Pr(zn = an) such that
Meier-Staffelbach algorithm becomes an exhaustive
search.

 Besides, when we want to determine the value of a
certain digit, we need to find a parity check equation which
contains the digit and another t digits believed to be correct.
So it is infeasible if t is large.

Defect 2.
L
N

 should be neither too small nor too large.

 From the formula)
2

(log)1(2 L
Ntm ⋅+= , we know

that if
L
N

 is too small, the number of parity check

equations we can get by iterated squaring of the connection
polynomial would be small such that the accuracy
probability of the digits which have the most parity check
equations held would be low.

 If N is too large, the number Q(p,m,h)．N ≈ L of the
digits that we believe to be correct is small relatively.
There may be not enough relations among these reference
digits to determine the whole sequence a and the initial
state of the LFSR.

 Meier-Staffelbach algorithm requires the number t of
taps of the connection polynomial to be small – typically
less than 10 . Even t is small, there may exist some parity
check equations with weight t+1 or less than t+1, but we
can’t get them by iterated squaring of the connection
polynomial. For example, suppose that the connection
polynomial of a LFSR is

1)(2345 ++++= xxxxxc . It is primitive and the
period of the output sequence of the LFSR is 25 - 1 = 31 .

By iterated squaring of the connection polynomial, we
have only three parity check equations:

1)(2345 ++++= xxxxxc ,

() 1)(468102 ++++= xxxxxc and

() 1)(81216204 ++++= xxxxxc , that mean

05321 =++++ ++++ nnnnn aaaaa ,

010642 =++++ ++++ nnnnn aaaaa and

0201284 =++++ ++++ nnnnn aaaaa respectively. But
there are still many weight-5 parity check equations like

09651 =++++ ++++ nnnnn aaaaa , … etc. And there
exists even weight-3 parity check equations like

0121 =++ ++ nnn aaa , 083 =++ ++ nnn aaa ,

0285 =++ ++ nnn aaa , and etc.

 Hence W. T. Penzhorn [11][12] proposed a long division
algorithm to compute low-weight parity check equations.

 Suppose that the connection polynomial of the LFSR of
length L is c(x) and the number of digits of the LFSR’s
output sequence a we observe is N, and N ≦ 2L-1 . We
want to compute some parity check equations of weight w.

For example, given the connection polynomial c(x) = x4 + x
+ 1, we want to compute weight-3 parity check equations,
and choose νmax = 14 . When j = 13, we obtain a

remainder x2 which is a single term. So 2xxx ++ 1314
is a parity check equation and 0121 =++ ++ nnn aaa .
When j = 12, we also obtain a parity check equation

xxx ++ 1214 which means
092 =++ ++ nnn aaa .

 If w > 3, we may obtain more than one parity check
equation in the Step 3 each round. In the above example, if
we want to compute weight-4 parity check equations, and
choose νmax = 14, we obtain 9111314 xxxx +++ and

561314 xxxx +++ when j = 13 .

Compute Weight-3 Parity Check Equations

 Since there exists at most one i such that jxx max +ν
+ xi is a parity check equation, if we want to compute
weight-3 parity check equations, Step 3 of Penzhorn’s long
division algorithm can be modified as follows.

Step 3. Use long division to divide jxx max +ν by c(x) until a
single-term remainder xi is obtained. And

ij xxx max ++ν is a parity check equation.

 However Penzhorn’s long division algorithm is not
efficient to compute weight-3 parity check equations. If we

 7

make some preparations, we can speedily determine the
value of i if there exists such an i ≦ N.

 Each digit an can be expressed as a linear combination of
the initial state LSS ~1 :

LnLnnn SeSeSea ,2,21,1 ... +++= . And ei,n is the nth
output digit of the LFSR with the initial state of all 0’s
except Si = 1 . Therefore, the coefficients

nLnn
eee ,,2,1 ...,,, can be determined easily. If

ij xxx max ++ν is a parity check equation, then
0=++ −+−+ iνnjnn maxmax

aaa ν and

0=++ −+−+ iνnd,jnd,nd, maxmax
eee ν for 1≦d≦N. As

long as we record and sort >< nLnn
eee ,,2,1

...,,, for

all n ≦ N in preparation, when given a set of

>< iLii
eee ,,2,1 ...,,, , we can speedily search for the

value of i or determine whether there exists such i ≦ N
using binary search in time complexity O(logN).

 The formula)
2

(log1)(2 L
Ntm ⋅+= is to calculate

the ‘average’ number of the relations of each digit. Many

digits have more than)
2

(log1)(2 L
Nt ⋅+ relations. The

maximum value of h which satisfies Q(p,m,h)．N ≧ L is
usually too small such that the number of the reference
digits which have at least h parity check equations held is
much more than L. Therefore, in practice we should not
adopt the value of h from the above formula, and we
distinctly count the number of held parity check equations
of each digit, and then determine the maximum value of h
such that the number of digits which have at least h parity
check equations held is equal to or greater than L.

 Let’s look at the result of a simulation program to
compare the modified version with the original
Meier-Staffelbach algorithm. We set the probability Pr(zn
= an) = 0.75 and the connection polynomial

1)(37100 ++= xxxc which is primitive, and decide to
observe 20,000 digits. The program randomly chooses an
initial state, calculates the 20,000-digit output a of the
LFSR and the combining function’s 20,000-digit output
sequence s which is correlated to a with a probability 0.75,
and then counts and records the number of parity check
equations held of each digit. We run the program 10,000
times and we found we got better results. Due to the
limited space the results are not shown here.

 In the original Meier-Staffelbach algorithm, according

to the formula)
2

(log1)(2 L
Ntm ⋅+= , the

maximum value of h which satisfies Q(p,m,h)．N ≧ L is
16 .

In our simulation result, the original Meier-Staffelbach

algorithm chooses all correct reference digits in only 917
times of 10,000 simulations because the value of h we
determine is too small such that we choose too many digits
as the reference digits.

The modified Meier-Staffelbach algorithm chooses all
correct reference digits in 9,798 times of 10,000
simulations.

The modified Meier-Staffelbach algorithm we proposed
chooses fewer digits as the reference digits to prevent from
error digits. But it isn’t always successful to calculate the
initial state from the relations among the reference digits.

For example, suppose that the connection polynomial is
c(x) = x7 + x + 1 . We observe 127 digits of the output
sequence z of the combining function:
011111010110001000111011100000000111111000100101
010011001000000111000110111110011101000110110001
0011100001011000110000010100110 .

 By iterated squaring of the connection polynomial, we
know these parity check equations:

076 =++ ++ nnn aaa , 01412 =++ ++ nnn aaa ,
02824 =++ ++ nnn aaa , 05648 =++ ++ nnn aaa

and 011296 =++ ++ nnn aaa . Only 104z has 11
relations held. No digit has more than 11 relations held.
And 55z , 65z , 68z , 76z , 100z , 105z and 113z
have 10 relations held respectively. Then we choose these
digits and determine the corresponding positions (55a ,

65a , 68a , 76a , 100a , 105a and 113a) of the
output sequence a of the LFSR as a reference. Although we
choose more than 7 digits, only 20a , 57a , 98a ,

121a , 90a , 43a and 86a can be calculated from the
relations of the reference digits. Therefore, in this case, the
initial state cannot be determined by the modified
Meier-Staffelbach algorithm.

As we discuss before, each digit an can be expressed as a
linear combination of the initial state LSS ~1 :

LnLnnn SeSeSea ,2,21,1 ... +++= . It is known that a
system of L independent linear equations in L unknowns
can be solved. Hence if we select L independent digits of
the sequence a, we are able to solve LSS ~1 directly by
Gaussian elimination rather than calculating the whole
sequence a to determine LSS ~1 by the relations. On
the contrary, if less than L independent digits are selected,
we cannot determine LSS ~1 exactly and have to guess
some of them. And if we select some dependent but wrong
digits, the system of linear equations may have no solution.
With the concept, we know that the key point of choosing
digits is not to enlarge the number of chosen digits but to
select enough (at least L) independent digits. And we
should be able to calculate the value of a digit from the
digits those are dependent with it. Hence, superfluous
dependent digits are not only useless for solving the system
of linear equations but may also hamper the system from
having solution.

Our improved algorithm is then as follows.

 8

Step 1. Calculate the number of parity check equations
held of each digit.

Step 2. Determine the coefficients nLnn
eee ,,2,1

...,,,
of each digit an’s linear combination of the
initial state LSS ~1 .

Step 3. According to the number of parity check
equations held of each digit, we select L
independent digits of the sequence z with
relations held decreasingly. Use these digits as a
reference guess I0 of the sequence a at the
corresponding positions. Then solve the system
of L independent linear equations to determine

LSS ~1 .

Step 4. Find the correct guess by examining
modifications of I0 having Hamming distance 0,
1, 2, …, by the correlation between the
sequence and the output sequence of the LFSR
with the initial state we calculated.

5. Conclusions

In this paper, we discuss the requirements of a keystream
generator in a stream cipher system and the structure and
properties of an LFSR. The output sequence of an LFSR
has a large period and is unpredictable. But it is easy to
attack a LFSR using Berlekamp-Massey algorithm. So
most stream cipher systems adopt the nonlinear
combination generators that consist of several LFSRs.
Correlation attacks are the most popular methods used to
attack a stream cipher system. Willi Meier and Othmar
Staffelbach proposed a fast correlation attack method using
parity check equations. An important design criterion
requires that there should be very low correlation between
the keystream of the combining function and the output
sequence of an arbitrary LFSR of short length otherwise
Meier-Staffelbach algorithm could be used to attack the
stream cipher system.

 We show that it is easy to find low-weight parity check
equations no matter how many taps of the LFSR are. In
particular, all weight-3 parity check equations, if exist, can
be obtained. We also adopt another strategy to choose
digits as a reference. Viewing each output digit of the
LFSR as a linear combination of the initial state, we choose
exactly L independent and most likely correct digits, and
solve the system of linear equations to determine the initial
state rather than calculating the whole output sequence and
the initial state of the LFSR from the relations among the
reference digits. Therefore, our algorithm can avoid the
situation where the reference digits are not enough to
calculate the initial state in Meier-Staffelbach algorithm.

 REFERENCES

[1] J. L. Massey, “Shift-register synthesis and BCH
decoding,” IEEE Transactions on Information Theory,
Vol. IT-15, 1969, pp. 122-127.

[2] Edward J. Groth, “Generation of binary sequences

with controllable complexity,” IEEE Transactions on
Information Theory, Vol. IT-17, No. 3, May. 1971, pp.
288-296.

[3] Abraham Lempel, “Analysis and synthesis of
polynomials and sequences over GF(2),” IEEE
Transactions on Information Theory, Vol. IT-17, No. 3,
May. 1971, pp. 297-303.

[4] Abraham Lempel, and Jacob Ziv, “On the complexity
of finite sequences,” IEEE Transactions on
Information Theory, Vol. IT-22, Jan. 1976, pp. 75-81.

[5] Edwin L. Key, “An analysis of the structure and
complexity of nonlinear binary sequence generators,”
IEEE Transactions on Information Theory, Vol. IT-22,
No. 6, Nov. 1976, pp. 732-736.

[6] T. Siegenthaler, “Correlation-immunity of nonlinear
combining functions for cryptographic application,”
IEEE Transactions on Information Theory, Vol.
IT-30, No. 5, Sep. 1984, pp. 776-780.

[7] T. Siegenthaler, “Decrypting a class of stream ciphers
using ciphertext only,” IEEE Transactions on
Computers, Vol. C-34, Jan. 1985, pp. 81-85.

[8] Willi Meier, and Othmar Staffelbach, “Fast correlation
attacks on stream ciphers,” Advances in
Cryptology-EUROCRYPT�88, Lecture Notes in
Computer Science, Vol. 330, Springer-Verlag, 1988,
pp. 301-314.

[9] Wille Meier, and Othmar Staffelbach, “Nonlinearity
criteria for cryptographic functions, ” Advances in
Cryptology-EUROCRYPT�89, Lecture Notes in
Computer Science, Vol. 434, Springer-Verlag, 1989,
pp. 549-562.

[10] Kencheng Zeng, Chung-Huang Yang, Dah-Yea Wei,
and T.T.N. Rao, “Pseudorandom bit generators in
stream-cipher cryptography,” Computer, Vol. 24, Feb.
1991, pp. 8-17.

[11] W. T. Penzhorn, “Correlation attacks on stream ciphers:
computing low-weight parity checks based on
error-correcting codes,” Fast Software Encryption,
FSE�96, Lecture Notes in Computer Science, Vol.
1039, 1996, pp. 145-158.

[12] W. T. Penzhorn, “Correlation attacks on stream
ciphers,” AFRICON, 1996., IEEE AFRICON 4th, Vol. 2,
1996, pp. 1093-1098.

[13] Solomon W. Golomb, Shift register sequences,
Holden-Day, 1967.

[14] Douglas R. Stinson, Cryptography : theory and
practice, CRC Press, 1995.

[15] Bruce Schneier, Applied cryptography second
edition : protocols, algorithms, and source code in C,
John Wiley & Sons, 1996.

[16] Alfred Menezes, Paul van Oorschot, and Scott
Vanstone, Handbook of applied cryptography, CRC
Press, 1997.

[17] Thomas W. Cusick, Cunsheng Ding, and Ari

 9

Renvall, Stream ciphers and number theory, Elsevier
Science B.V., 1998.

