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ABSTRACT 

The commonest stream cipher system uses a keystream 
generator which consists of several LFSRs combined by a 
combining function. If there exists a measure of correlation 
between the output sequence of the keystream generator 
and an arbitrary LFSR, the initial state of the LFSR can be 
reconstructed by a correlation attack, that is, the partial key 
in the LFSR is determined. W. Meier and O. Staffelbach 
proposed a correlation attack method using parity check 
equations. 

  In this paper, we discuss the algorithm and its constraints, 
and then propose some improvements: computing more 
low-weight parity check equations, accounting the precise 
number of relations of each digit, and solving the system of 
linear independent equations from digits instead of 
calculating the whole output sequence and the initial state 
of the LFSR from the relations among the digits. 

1.Introduction  

In cryptography, there are two basic types of symmetric 
encryption/decryption algorithms: block ciphers and stream 
ciphers [14][15]. Block ciphers operate on blocks of 
plaintext and ciphertext. The same plaintext block will be 
always encrypted to the same ciphertext block, using the 
same key. Stream ciphers operate on streams of plaintext 
and ciphertext one bit or byte at a time. The same plaintext 
bit or byte will be encrypted to a different bit or byte every 
time it is encrypted. That is, for a plaintext string 

Lssss …= 21  in a block cipher system, the ciphertext 
string c is obtained as follows. 

)()()( 2121 LKKKL sEsEsEcccc …=…=  

  And for a plaintext string …= 21sss  in a stream 
cipher system, the ciphertext string c is obtained as 
follows. 

…=…= )()( 2121 21
sEsEccc zz  

where the keystream ( or called ‘running key’ ) ∞z  is 
…21zz  , the actual key is K, and the state of the 

encryption device is σj which may be dependent on K, σ
j-1 and sj-1, and the function fj is used to generate zj ( the jth 
element of the keystream ) such that 

        ),( jjj Kfz σ=  

  Thus a stream cipher system keeps a stateσj in the 

memory, when a block cipher system does not. The 
essential difference between block and stream ciphers is 
the usage of memory as is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

Obviously, we can think of a block cipher as a special case 
of a stream cipher where the keystream is constant: zj = K. 
In this paper, we focus on stream cipher systems and 
correlation attacks on stream ciphers. 

    There are two different approaches to stream 
encryption: synchronous methods and self-synchronous 
methods [16][17]. In a synchronous stream cipher, as 
shown in Figure 1.2, the next state depends only on the 
previous state and not on the input so that the succession of 
states is independent of the message stream. The keystream 
is therefore generated independently of the message stream. 
Thus, if a ciphertext character is lost during transmission, 
the sender and receiver must resynchronize their generators 
before they proceed further. 
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Figure 1.1.  The difference between block and stream ciphers 
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Figure 1.2  Synchronous stream ciphers 
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In a self-synchronous stream cipher, as shown in Figure 1.3, 
each keystream character is derived from a number n of 
preceding cipher characters. Thus, if a ciphertext character 
is lost or modified during the transmission, the error 
propagates forward for n characters, but the cipher 
resynchronizes itself after n correct ciphertext characters 
have been received. 

The algorithm that generates the keystream must be 
deterministic so that the stream can be reproduced for 
decipherment. One important kind of synchronous stream 
cipher is the additive synchronous stream ciphers, where 
the characters of the keystream are from an Abelian group 
(G,+) and the ciphertext character cj is the addition of the 
keystream character zj and plaintext stream character sj 
( jjj zsc +=  , jjj zcs −=  and “-” means 
the inverse operation of “+” ) . In this thesis, we only 
discuss GF(2) , so the effects of “+” and “-” are both the 
same with XOR 
( jjjjjjj zszszsc ⊕=−=+=  ) . 

    Finite state machines are important mathematical 
objects for modeling electronic hardware. Furthermore, 
due to their recursive feature, finite state machines are 
convenient means for realizing infinite word-functions 
built over finite alphabets. Many keystream generators can 
be modeled by finite state machines. In a synchronous 
stream cipher, the keystream generator may be viewed as 
an autonomous finite state machine as depicted in Figure 
1.4. 

 

 

 

 

 

 

 

 

 

 The keystream generator as a finite state machine consists 
of an output alphabet {zj} and a state set {σj} , together 
with two functions ( φ,Ψ ) and an initial state σ0. The 
next state function φ maps the current stateσj into a new 
stateσj+1 from the state set. The output function Ψ maps 
the current state σj into an output symbol zj from the 
output alphabet. The key K may determine the next state 
function φ and the output function Ψ as well as the 
initial stateσ0. 

  The major purpose of designing a keystream generator is 
to prevent from an attacker to predict the output sequence z. 
So the output sequence of the keystream generator should 
satisfy some cryptographic requirements such as long 
period, large linear complexity, good auto correlation, 
uniform pattern distribution ( randomness ) , and so on. 

 

2.Linear Feedback Shift Register based  

Stream Ciphers 

Linear Feedback Shift Registers ( LFSRs ) are the 
commonest components in stream cipher systems since 
they can generate binary sequences speedily. Figure 2.1 is 
the structure of a LFSR [16][17]. 

A linear feedback shift register of length L consists of L 
stages S1 ~ SL. Each stage stores one bit. During each unit 
of time, the following operations are executed : 

(1) The content of S1 is output and forms the output 
sequence of the LFSR. 

(2) The content of Si is shifted to Si-1 , for 2 ≦ i ≦ L. 

(3) The new content of SL is calculated by 
∑

=
−+−

L

i
iLi SC

1
1  

 

 

 

 

 

 

 

 

 

So, the jth digit (bit) sj ( j > L ) of the output sequence s of 
the LFSR can be calculated from ∑

=
−−=

L

i
ijij sCs

1

. In 
GF(2), ∑∑

=
−

=
− =−=

L

i
iji

L

i
ijij sCsCs

11

. 

  We use a polynomial 
1...)( 1

1
1 ++++= −

− xCxCxCxc L
L

L
L  to record the 

structure of the LFSR. 

Definition.  The initial content of the LFSR is called the 
initial state of the LFSR. In general, the initial state of the 
LFSR is the key or a part of the key of the stream cipher 
system. 
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Definition.  The polynomial 
1...)( 1

1
1 ++++= −

− xCxCxCxc L
L

L
L  is called the 

connection polynomial of the LFSR. If the degree of c(x) is 
L, that is CL = 1, then the LFSR is nonsingular and the 
output sequence of the LFSR is periodic. 

Example.  Consider the LFSR in Figure 2.2. 

  The initial state of the LFSR of length 4 is 0, 1, 1, 0. The 
connection polynomial is 1)( 4 ++= xxxc . And for j > 
4, the jth output digit of the LFSR is 41 −− += jjj sss  . 
The output sequence is s = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 
1, …, and is periodic with period 15 . 

 

 

 

 

 

 

Theorem.  The period of a sequence generated by a 
non-singular LFSR of length L is at most 2L-1 . 

 

  Since a LFSR of length L consists of L stages, the 
number of the contents of the LFSR is 2L. The next state of 
L-zeros is still all-zeros. So, a LFSR with all-zeros as its 
initial state can only generate a sequence of zeros, and the 
period is 1. If the initial state of a LFSR is not all-zeros, 
there are at most 2L-1 possible contents of the LFSR and 
the period of the change of the LFSR’s content is at most 
2L-1. The output digit of a LFSR each step is dependent 
only on the previous state of the LFSR. So, the period of 
the output sequence of a non-singular LFSR of length L is 
at most 2L-1, too. 

 

  A sequence generated by a non-singular LFSR of length 
L is called a maximal sequence or m-sequence if its period 
is 2L-1, and the LFSR is called a maximal-length LFSR. 
Every m-sequence satisfies Golomb’s randomness 
postulates and is also a  pn-sequence. 

 

  But, how to find a maximal-length LFSR ? 

Definition.  A polynomial of degree n is called 
irreducible if it cannot be factored. 

Definition.  An irreducible polynomial of order n is 
called primitive if and only if it divides xp+1 for only a p 
which is greater than or equal to 2n-1 . 

 

  In order to examine whether an irreducible polynomial 
f(x) of degree n in GF(2) is primitive, one can compute gi(x) 
= i

n

rx
12 −

 mod f(x) for all distinct prime factors 

trrr ...,,, 21  of 2m-1 . If any gi(x) = 1, then f(x) is not a 
primitive polynomial, else it is primitive. 

 

Fact.  If the connection polynomial of a LFSR of length L 
is a primitive polynomial of degree L, then each of the 2L-1 
non-zero initial states of the non-singular LFSR generates 
an output sequence with period 2L-1 . 

 

  Since every m-sequence satisfies Golomb’s randomness 
postulates, it seems that we can take a LFSR with a 
primitive connection polynomial as a keystream generator. 
But it is not secure enough. In 1976, Abraham Lempel and 
Jacob Ziv [4] proposed to use the linear complexity of the 
keystream as a measure of the strength of a stream cipher 
system. 

 

Definition.  The linear complexity of a finite binary 
sequence s of length n, denoted as Λ(s), is the length of 
the shortest LFSR that can generate a sequence having s as 
its first n digits. And Λ(s) = 0 if s is an empty string. 

 

Fact.  Suppose that the linear complexity of a binary 
sequence s is Λ(s). As long as we observe consecutive 2
Λ(s) digits of a subsequence of s, we can calculate Λ(s) 
and the shortest LFSR which can generate s. This means 
that although the period of the output sequence s of a 
maximum-length LFSR of length L reaches to 2L-1, the 
whole sequence will be disclosed if any subsequence of 
length 2L of s is known. 

  Berlekamp and Massey [1] proposed an efficient 
algorithm to determine the linear complexity of a finite 
binary sequence s of length N. 

   From the discussions above, we know that the 
keystream generated by a maximum-length LFSR is still 
not secure enough. One technique destroying the linearity 
inherent in LFSRs is to generate the keystream by some 
nonlinear function of the stages of a LFSR. Figure 2.3 
shows the structure. The kind of keystream generator is 
called a nonlinear filter generator and the function f is 
called the filter function. 
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Fact.  The linear complexity of the keystream generated 
by a nonlinear filter generator with a LFSR of length L and 
a filtering function f of nonlinear order m is at most 

∑
=






m

i i
L

1
. 

  Adding a filter function to a LFSR may increase the 
linear complexity of the output sequence, but the period is 
at most still the same. 

  Another general technique for destroying the linearity 
inherent in LFSRs is to generate the keystream by a 
nonlinear function F of the outputs of several LFSRs. 
Figure 2.4 shows the structure. The kind of keystream 
generator is called a nonlinear combination generator and 
the function F is called the combining function. 

 

 

 

 

 

 

 

 

  Every Boolean function F(x1,x2,…,xm) can be written as 
a modulo 2 sum of distinct mth order products. The 
expression is called the algebraic normal form of F. 

 

  Fact.  Suppose that m LFSRs, whose lengths L1, L2, …, 
Lm are pairwise distinct and greater than 2, are combined 
by a nonlinear function F(x1,x2,…,xm) which is expressed in 
algebraic normal form. The linear complexity of the 
keystream is F(L1,L2,…,Lm). 

 

3. Correlation Attacks 

In conventional cryptography, pseudo-noise generators 
( pn-generators ) consist of m linear feedback shift registers 
of length Li ( i = 1 , 2 , … , m ) and a known combining 
function F ( see Figure 2.4 ). To avoid a cryptanalytic 
attack using Berlekamp-Massey algorithm, the combining 
function F should be nonlinear. 

 The initial state and feedback connection polynomial of 
LFSRi are referred to as the LFSRi part of the key. Assume 
that the feedback connection polynomials of all LFSR’s of 
length Li ( i = 1, 2, …, m ) are primitive. So LFSRi of 
length Li has 12 −iL  different possible initial states and 
the number Ri of different primitive feedback connection 

polynomials for an LFSR equals 
i

L

L

i )12( −φ
. Hence, 

there are )12( −iL
iR  possibilities for the LFSRi part of 

the key and the total number K of the keys for the 
pseudo-noise generator in Figure 2.4 is 

)12(
1

−= Π
=

iL
i

m

i
RK . 

  In a brute force attack and a worst case situation, all of 
the K keys have to be examined, which is not feasible. 

  However, there may be correlation between some of the 
inputs Si and the output Z. T. Siegenthaler [7] proposed a 
divide and conquer correlation attack method that the 
LFSRi part of the key would be found independently from 
the LFSRj parts );...,,1( ijmj ≠=  with 

approximately )12( −iL
iR  tests. So, the number of trials 

can be reduced from )12(
1

−Π
=

iL
i

m

i
R  to approximately 

)12(
1

−Σ
=

iL
i

m

i
R . 

 

   A few correlation attack methods were proposed after T. 
Siegenthaler showed that it is possible to independently 
reconstruct the initial state of each LFSR combined by a 
combining function with the divide and conquer correlation 
attack method if there exists a measure of correlation 
between the keystream sequence and the outputs of the 
LFSRs. In 1988, a fast correlation attack using parity check 
equations was proposed by Willi Meier and Othmar 
Staffelbach [8][9]. 

  The model is also the commonest type of keystream 
generators that consist of m LFSRs whose output 
sequences are combined by a nonlinear function F. 

  Let the correlation probability between the output 
sequence z of the keystream generator and the output 
sequence a of a LFSR be larger than 0.5 . Suppose that N 
digits of the output sequence z of the combining function 
are given, the feedback connection polynomial of the 
LFSR with t taps and length L is known, and the LFSR 
generates a sequence a. 

 

 

 

 

 

 

 

 

 

By iterated squaring of the feedback connection 
polynomial of the LFSR, an amount of linear relations will 
be generated for every digit an, and each relation contains 

Figure 2.4.  A combination generator 
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t+1 digits of the sequence a. For example, the feedback 
connection polynomial c(x) with 2 taps of a LFSR of 
length 4 is 134 ++ xx , then we know a linear relation 

43 −− += nnn aaa . By shifting the index, we can get the 

other two linear relations 13 −+ += nnn aaa  and 

nnn aaa += ++ 14  that contain an. Using the fact that in 
GF(2), c(x)j = c(xj) for j = 2i, we can get more parity check 
equations i.e. ( 134 ++ xx  )2 = 168 ++ xx  is also a 
polynomial of weight t+1. Therefore, we can generate t+1 
parity check equations for a fixed position an. 

  The average number m of the relations can be computed 
as 

)
2

(log1)(),,( 2 L
NttLNmm ⋅+==  . 

  Thus for a fixed position an, we can write the m relations 
as 

    an + b1 = 0 , an + b2 = 0 , . . . , an + bm = 0 

  where each bi is the sum of t other different positions of 
the sequence a. 

  Applying the same relations to the corresponding 
positions of the keystream z, we also get m relations as 

    zn + y1 = L1 , zn + y2 = L2 , . . . , zn + ym = Lm 

  where each yi is the sum of t other different positions of 
the sequence z. 

  The idea of Meier and Staffelbach is that the more parity 
check equations of zn held, the higher is the probability of 
zn = an. Then we use the digits of the sequence z which are 
likely to be same with the corresponding digits of the 
sequence a to reconstruct the sequence a. And the initial 
state of the LFSR is figured out. 

 

  We know that the probability p = Pr( zn = an ) and s = 
Pr( yi = bi ) = s(p,t) can be computed from the recursion: 
s(p,t) = p s(p,t-1) + (1-p)(1-s(p,t-1) ) , s(p,1) = p, we can 
calculate these probability variables : 

  p* = Pr( zn = an | exactly h out of the m relations are 
satisfied Li = 0 ) 

    hmhhmh

hmh

sspsps
sps

−−

−

−−+−
−=

))(1(1)(1
)(1

 

  Q(p,m,h) = Pr( at least h out of the m relations are 
satisfied Li = 0 ) 

          

( ) ( )∑
=

−− −−+−=
m

hi

imiimim
i sspssp ))(1(1)(1  

  R(p,m,h) = Pr( zn = an ∩ at least h out of the m 
relations are satisfied Li = 0 ) 

          ( )∑
=

−−=
m

hi

imim
i ssp )(1  

  T(p,m,h) = Pr( zn = an | at least h out of the m relations 
are satisfied Li = 0 ) 

          = R(p,m,h) / Q(p,m,h) 

Since p > 0.5 and t is even, as h grows, p* grows, that is, 
the probability of zn = an increases. Thus the idea of Meier 
and Staffelbach is proved valid. We want to choose enough 
digits of sequence z to reconstruct the sequence a, hence 
we have to determine the maximum value of h such that 
Q(p,m,h)．N ≧ L. After deciding the value of h, we search 
for the digits of the sequence z which satisfy at least h 
parity check equations as a reference guess I0 of the 
sequence a at the corresponding positions to reconstruct 
the sequence a by the relations. We can also estimate the 
average number r of errors of I0 by 

Lhmpr •)),,(T1( −= . If r << 1, these digits are 
likely correct. We can examine whether the initial state we 
calculate from I0 is correct by computing correlation and 
comparing it with the threshold which we describe in the 
previous section. If it is wrong, find the correct guess by 
testing modifications of I0 which has Hamming distance 1, 
2, … until a correct one is obtained. 

4. Improve the Meier-Staffelbach Algorithm 

Although Meier-Staffelbach algorithm is efficient, there are 
still some defects. We will discuss these defects and 
propose improvements to lower the influence caused by 
these defects. 

 

Defect 1.  The number t of the taps should be small. 

  First, let’s consider the probability Pr( yi = bi ). It can be 
computed from the recursion: Pr( yi = bi ) = s = s(p,t) = p 
s(p,t-1) + (1-p)(1-s(p,t-1) ) and s(p,1) = p. By the 
recurrence relation, we can solve s: 

             
ptpsptps −=−−− 1)1,()12(),(  

 
2(])2,()12()1,([)12( ptpsptpsp −=−−−−−

 

                 
：

：
                          

：

：
 

     

2(])1,()12()2,([)12( 2 ppsppsp t =−−− −

 

              

...)12(1[)1()1,()12(),( 1− ++−+−=−− t pppsptps
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2
)12(1

)12(1
)12(1)1(

11 −− −−=
−−

−−−=
tt p

p
pp  

 

           

2
)12(1

2
)12(1)12(),(

1
1

tt
t pppptps −+=−−+⋅−=⇒

−
−  

  So, if t is too large, the probability Pr( yi = bi ) = s(p,t) 
will approximate to 0.5 and 

p
pp

p
sspsps

spsp hmhhmh

hmh

hmhhmh

hmh

=
−+

≈
−−+−

−= −−

−

−−

−

)5.0()5.0)(1()5.0()5.0(
)5.0()5.0(

)1)(1()1(
)1(*

. 

  This means that no matter how many parity check 
equations of a digit are held, the probability p* 
approximates to a constant p = Pr( zn = an ) if t is too large. 
Therefore the probability p* doesn’t give us more 
information than the probability Pr( zn = an ) such that 
Meier-Staffelbach algorithm becomes an exhaustive 
search. 

 

  Besides, when we want to determine the value of a 
certain digit, we need to find a parity check equation which 
contains the digit and another t digits believed to be correct. 
So it is infeasible if t is large. 

 

Defect 2.  
L
N

 should be neither too small nor too large. 

  From the formula )
2

(log)1( 2 L
Ntm ⋅+= , we know 

that if 
L
N

 is too small, the number of parity check 

equations we can get by iterated squaring of the connection 
polynomial would be small such that the accuracy 
probability of the digits which have the most parity check 
equations held would be low. 

 

  If N is too large, the number Q(p,m,h)．N ≈  L of the 
digits that we believe to be correct is small relatively. 
There may be not enough relations among these reference 
digits to determine the whole sequence a and the initial 
state of the LFSR. 

 

  Meier-Staffelbach algorithm requires the number t of 
taps of the connection polynomial to be small – typically 
less than 10 . Even t is small, there may exist some parity 
check equations with weight t+1 or less than t+1, but we 
can’t get them by iterated squaring of the connection 
polynomial. For example, suppose that the connection 
polynomial of a LFSR is 

1)( 2345 ++++= xxxxxc  . It is primitive and the 
period of the output sequence of the LFSR is 25 - 1 = 31 . 

By iterated squaring of the connection polynomial, we 
have only three parity check equations: 

1)( 2345 ++++= xxxxxc  , 

( ) 1)( 468102 ++++= xxxxxc  and 

( ) 1)( 81216204 ++++= xxxxxc  , that mean 

05321 =++++ ++++ nnnnn aaaaa  , 

010642 =++++ ++++ nnnnn aaaaa  and 

0201284 =++++ ++++ nnnnn aaaaa  respectively. But 
there are still many weight-5 parity check equations like 

09651 =++++ ++++ nnnnn aaaaa  , … etc. And there 
exists even weight-3 parity check equations like 

0121 =++ ++ nnn aaa  , 083 =++ ++ nnn aaa  , 

0285 =++ ++ nnn aaa  , and etc. 

 

  Hence W. T. Penzhorn [11][12] proposed a long division 
algorithm to compute low-weight parity check equations. 

  Suppose that the connection polynomial of the LFSR of 
length L is c(x) and the number of digits of the LFSR’s 
output sequence a we observe is N, and N ≦ 2L-1 . We 
want to compute some parity check equations of weight w. 

For example, given the connection polynomial c(x) = x4 + x 
+ 1, we want to compute weight-3 parity check equations, 
and choose νmax = 14 . When j = 13, we obtain a 

remainder x2 which is a single term. So 2xxx ++ 1314  
is a parity check equation and 0121 =++ ++ nnn aaa  . 
When j = 12, we also obtain a parity check equation 

xxx ++ 1214  which means 
092 =++ ++ nnn aaa  . 

 

  If w > 3, we may obtain more than one parity check 
equation in the Step 3 each round. In the above example, if 
we want to compute weight-4 parity check equations, and 
choose νmax = 14, we obtain 9111314 xxxx +++  and 

561314 xxxx +++  when  j = 13 . 

 

Compute Weight-3 Parity Check Equations 

  Since there exists at most one i such that jxx max +ν  
+ xi is a parity check equation, if we want to compute 
weight-3 parity check equations, Step 3 of Penzhorn’s long 
division algorithm can be modified as follows. 

Step 3.  Use long division to divide jxx max +ν  by c(x) until a 
single-term remainder xi is obtained. And 

ij xxx max ++ν  is a parity check equation. 

 

  However Penzhorn’s long division algorithm is not 
efficient to compute weight-3 parity check equations. If we 
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make some preparations, we can speedily determine the 
value of i if there exists such an i ≦ N. 

 

  Each digit an can be expressed as a linear combination of 
the initial state LSS ~1  : 

LnLnnn SeSeSea ,2,21,1 ... +++= . And ei,n is the nth 
output digit of the LFSR with the initial state of all 0’s 
except Si = 1 . Therefore, the coefficients 

nLnn
eee ,,2,1 ...,,,  can be determined easily. If 

ij xxx max ++ν  is a parity check equation, then 
0=++ −+−+ iνnjnn maxmax

aaa ν  and 

0=++ −+−+ iνnd,jnd,nd, maxmax
eee ν  for 1≦d≦N. As 

long as we record and sort >< nLnn
eee ,,2,1

...,,,  for 

all n ≦  N in preparation, when given a set of 

>< iLii
eee ,,2,1 ...,,, , we can speedily search for the 

value of i or determine whether there exists such i ≦ N 
using binary search in time complexity O(logN). 

  The formula )
2

(log1)( 2 L
Ntm ⋅+=  is to calculate 

the ‘average’ number of the relations of each digit. Many 

digits have more than )
2

(log1)( 2 L
Nt ⋅+  relations. The 

maximum value of h which satisfies Q(p,m,h)．N ≧ L is 
usually too small such that the number of the reference 
digits which have at least h parity check equations held is 
much more than L. Therefore, in practice we should not 
adopt the value of h from the above formula, and we 
distinctly count the number of held parity check equations 
of each digit, and then determine the maximum value of h 
such that the number of digits which have at least h parity 
check equations held is equal to or greater than L. 

  Let’s look at the result of a simulation program to 
compare the modified version with the original 
Meier-Staffelbach algorithm. We set the probability Pr( zn 
= an ) = 0.75 and the connection polynomial 

1)( 37100 ++= xxxc  which is primitive, and decide to 
observe 20,000 digits. The program randomly chooses an 
initial state, calculates the 20,000-digit output a of the 
LFSR and the combining function’s 20,000-digit output 
sequence s which is correlated to a with a probability 0.75, 
and then counts and records the number of parity check 
equations held of each digit. We run the program 10,000 
times and we found we got better results. Due to the 
limited space the results are not shown here. 

  In the original Meier-Staffelbach algorithm, according 

to the formula )
2

(log1)( 2 L
Ntm ⋅+=  , the 

maximum value of h which satisfies Q(p,m,h)．N ≧ L is 
16 . 

In our simulation result, the original Meier-Staffelbach 

algorithm chooses all correct reference digits in only 917 
times of 10,000 simulations because the value of h we 
determine is too small such that we choose too many digits 
as the reference digits. 

The modified Meier-Staffelbach algorithm chooses all 
correct reference digits in 9,798 times of 10,000 
simulations. 

The modified Meier-Staffelbach algorithm we proposed 
chooses fewer digits as the reference digits to prevent from 
error digits. But it isn’t always successful to calculate the 
initial state from the relations among the reference digits. 

For example, suppose that the connection polynomial is 
c(x) = x7 + x + 1 . We observe 127 digits of the output 
sequence z of the combining function: 
011111010110001000111011100000000111111000100101
010011001000000111000110111110011101000110110001
0011100001011000110000010100110 . 

  By iterated squaring of the connection polynomial, we 
know these parity check equations: 

076 =++ ++ nnn aaa  , 01412 =++ ++ nnn aaa  , 
02824 =++ ++ nnn aaa  , 05648 =++ ++ nnn aaa  

and 011296 =++ ++ nnn aaa  . Only 104z  has 11 
relations held. No digit has more than 11 relations held. 
And 55z  , 65z  , 68z  , 76z  , 100z  , 105z  and 113z  
have 10 relations held respectively. Then we choose these 
digits and determine the corresponding positions ( 55a  , 

65a  , 68a  , 76a  , 100a  , 105a  and 113a  ) of the 
output sequence a of the LFSR as a reference. Although we 
choose more than 7 digits, only 20a  , 57a  , 98a  , 

121a  , 90a  , 43a  and 86a  can be calculated from the 
relations of the reference digits. Therefore, in this case, the 
initial state cannot be determined by the modified 
Meier-Staffelbach algorithm. 

As we discuss before, each digit an can be expressed as a 
linear combination of the initial state LSS ~1  : 

LnLnnn SeSeSea ,2,21,1 ... +++= . It is known that a 
system of L independent linear equations in L unknowns 
can be solved. Hence if we select L independent digits of 
the sequence a, we are able to solve LSS ~1  directly by 
Gaussian elimination rather than calculating the whole 
sequence a to determine LSS ~1  by the relations. On 
the contrary, if less than L independent digits are selected, 
we cannot determine LSS ~1  exactly and have to guess 
some of them. And if we select some dependent but wrong 
digits, the system of linear equations may have no solution. 
With the concept, we know that the key point of choosing 
digits is not to enlarge the number of chosen digits but to 
select enough ( at least L ) independent digits. And we 
should be able to calculate the value of a digit from the 
digits those are dependent with it. Hence, superfluous 
dependent digits are not only useless for solving the system 
of linear equations but may also hamper the system from 
having solution. 

Our improved algorithm is then as follows. 
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Step 1.  Calculate the number of parity check equations 
held of each digit. 

Step 2.  Determine the coefficients nLnn
eee ,,2,1

...,,,  
of each digit an’s linear combination of the 
initial state LSS ~1 . 

Step 3.  According to the number of parity check 
equations held of each digit, we select L 
independent digits of the sequence z with 
relations held decreasingly. Use these digits as a 
reference guess I0 of the sequence a at the 
corresponding positions. Then solve the system 
of L independent linear equations to determine 

LSS ~1 . 

Step 4.  Find the correct guess by examining 
modifications of I0 having Hamming distance 0, 
1, 2, …, by the correlation between the 
sequence and the output sequence of the LFSR 
with the initial state we calculated. 

 

5. Conclusions 

In this paper, we discuss the requirements of a keystream 
generator in a stream cipher system and the structure and 
properties of an LFSR. The output sequence of an LFSR 
has a large period and is unpredictable. But it is easy to 
attack a LFSR using Berlekamp-Massey algorithm. So 
most stream cipher systems adopt the nonlinear 
combination generators that consist of several LFSRs. 
Correlation attacks are the most popular methods used to 
attack a stream cipher system. Willi Meier and Othmar 
Staffelbach proposed a fast correlation attack method using 
parity check equations. An important design criterion 
requires that there should be very low correlation between 
the keystream of the combining function and the output 
sequence of an arbitrary LFSR of short length otherwise 
Meier-Staffelbach algorithm could be used to attack the 
stream cipher system. 

  We show that it is easy to find low-weight parity check 
equations no matter how many taps of the LFSR are. In 
particular, all weight-3 parity check equations, if exist, can 
be obtained. We also adopt another strategy to choose 
digits as a reference. Viewing each output digit of the 
LFSR as a linear combination of the initial state, we choose 
exactly L independent and most likely correct digits, and 
solve the system of linear equations to determine the initial 
state rather than calculating the whole output sequence and 
the initial state of the LFSR from the relations among the 
reference digits. Therefore, our algorithm can avoid the 
situation where the reference digits are not enough to 
calculate the initial state in Meier-Staffelbach algorithm. 
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