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ABSTRACT 

Secret Sharing has been well-studied over the past decade. 

From the view point of sharing policy, these schemes can 

be classified into two types: the threshold-based scheme 

and the generalized group-oriented cryptosystem. Based on 

the systematic block code, we had designed an efficient 

general threshold-based scheme[23]. In this article, based 

on the result of previous work, we further extend our result 

to the cases of the generalized group-oriented cryptosystem. 

This scheme has several merits: (1) It allows parallel secret 

reconstruction. (2) The SD can dynamically decides the 

number of distributed secrets depending on the requirement. 

(3) The construction of the generator matrix is simple and 

efficient. (4) Users secret shares will not be disclosed after 

multiple-secret reconstruction operations. (5) The 

computation is efficient and the quantity of public values in 

our scheme is low. 

 

1. INTRODUCTION 
 

Since 1979, Shamir [2] and Blakley [3] independently 

proposed the ),( nt threshold secret sharing scheme, the 

threshold-based schemes are among the most important 

issues in cryptography and have been well studied [1-7, 

15-23, 33]. In a ),( nt  threshold secret sharing scheme, 

the secret can be reconstructed using the co-operation of t  

or more members, while the secret cannot be reconstructed 

if only 1−t  or fewer members are willing to co-operate 

[1].  

In 1994, He and Dawson [4] proposed a multistage 

secret sharing scheme in which multiple secrets could be 

shared among n participants using the ),( nt  threshold 

rule in a one-pass interaction. In 1995, Harn improved the 

He-Dawson scheme by reducing the number of public 

values [5]. Later, He and Dawson revised their scheme to 

achieve parallel secret reconstruction [6]. However, 

pnp +⋅  public values are still required in their revised 

scheme. In 1995, Harn proposed a new threshold secret 

sharing concept [7]. In this concept, there are many secrets 

to be shared among n  users and the security requirement 

of each secret is different.  

Regarding to the multi-secret sharing schemes, Jackson 

et al. had their classification [35]. In their classification, 

multi-secret sharing schemes can be classified into two 

types: the one-time-use scheme and the multiple-use 

scheme. In a one-time-use scheme, the Secret Holder (SD) 

must redistribute fresh shares to each participant once some 

particular secrets have been reconstructed. On the other 

hand, in a multiple-use scheme, the shares owned by one 

participant still remain secret to others even after multiple 

secret reconstruction operations have been performed. The 

SD, therefore, does not need to redistribute fresh shares. To 

redistribute shares is a very costly process with respect to 



  

both time and resources.  

Based on the linear block code, Bertilsson and Ingemar 

proposed their secret sharing schemes [36]. However, the 

construction of the generator matrix is complicated and 

inefficient. Also based on the systematic block codes [9-10], 

Karnin et al. proposed their secret sharing schemes [37]. 

Given the secret size and the threshold value, the bound on 

the maximun values of trustees is discussed [37]. However, 

Karnin et al.’s scheme is one-time use only. That is, the SD 

must redistribute fresh shares to participants to initiate a 

new secret sharing process after a secret reconstruction 

process. 

In 1999, based on the 

),)(2( wptwpG +−+ systematic block code, we 

proposed an efficient general threshold-based secret sharing 

scheme [23]. This general threshold-based scheme has 

several characteristics: (1) the secret sharing policy follows 

the threshold rule, (2) it allows multiple secrets to be 

distributed simultaneously, (3) the threshold value 

corresponding to different secret could be distinct, (4) each 

participant could be assigned a distinct weight value, (5) 

the weight value of each participant could be adjusted 

dynamically.  

On the other hand, there are many secret sharing 

applications-for instance the generalized group-oriented 

cryptosystem ( GGOC ) [24-29, 31-32], in which some of 

the sharing policies can not be expressed in a 

threshold-based style [27]. In GGOC , the sharing policy 

is describsed by dividing the group of users into the 

qualified sets or the unqualified subsets. Only through the 

co-operation of members of one set of the qualified subsets 

can a secret be reconstructed. In GGOC , the qualified 

subsets of users can be determined using an access 

structure 0Γ  that consists of those minimal authorized 

subgroups. This access structure 0Γ  is usually denoted in 

disjunctive normal form (DNF). For example, 

0Γ = 4321 UserUserUserUser + , where 21UserUser  

and 43UserUser  are the minimal authorized subgroups. 

This means that those groups which consist of at least 

1User  and 2User  are all qualified subsets. So are those 

groups consisting of at least 3User  and 4User .  

  For various Secret Sharing problems( the 

threshold-based problems or the general group-oriented 

cryptosystems), there have been different approaches 

proposed in the previous works. However, based on the 

same approach in our previous work [23], we will propose 

a new scheme to the generalized group-oriented 

cryptosystem. This new scheme also has several merits as 

our previous work: (1) It allows parallel secret 

reconstruction. (2) The SD can dynamically decides the 

number of distributed secrets depending on the requirement. 

(3) The construction of the generator matrix is simple and 

efficient. (4) Users’ secret shares will not be disclosed after 

multiple-secret reconstruction operations. (5) The 

computation is efficient and the quantity of public values in 

our scheme is low. 

This  article is organized as follows. In the next section, 

we briefly review the systematic block codes. In Section 3, 

we introduce our new scheme to the GGOC  problem. In 

Section 4, the computation and communication overhead is 

given. Finally, Section 5 presents our conclusions.  

 

2. INTRODUCTION OF THE SYSTEMATIC 

BLOCK CODES 

 

In this section, we briefly review the systematic block 

codes, and then the technique based on the systematic block 

codes is described. A ),( KN (with KN > ) linear 

block code over )2( mGF  is defined by a NxK  

generator matrix G  with symbols in )2( mGF  and 

mK 2< . In this paper, we denote the generator matrix as 

),( KNG , where N  is the length and K  is the 

dimension of the linear block codes. Denote 
t

KdddD ),..,,( 21=  as a vector of K  information 

symbols where sd i are in )2( mGF  and the superscript 

t  means vector transpose. Then 

),...,,( 21 nvvvGDV ==  is the corresponding code 



  

word  with sv i  in )2( mGF . 

  A systematic block code is a special type of linear block 

code where the first K  elements in a code word are 

identical to the information symbols ),..,,( 21 Kddd , and 

the last KN −  elements in the code word are denoted as 

),..,,( 21 KNccc −  and called parity symbols. In 1990, 

Ayanoglu et al. [9] designed a special type of systematic 

block code generator matrix 






=
P

I
KNG ),( , where I  

is the KxK  identity matrix, and P  is a xKKN )( −  

matrix [ ])1)(1( −− jig  with g  being a primitive element in 

)2( mGF  and mK 2< .  I and P can be represented as 

follows: 
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  Since V=GD, then we have  

 

ic = ,
1

)1)(1(

dg j

K

j

ji

∑
=

−−
 where KNi −≤≤1                   

(1) 

 

In our schemes, we require that mK 2<  to satisfy 

the non-singular requirement of matrix P  [9]. The 

)( KN − equations in (1) can, therefore, be viewed as 

linear-independent equations of indeterminants 

),..,,( 21 Kddd . If these )( KN − equations were 

presented with KKN <− )( , then we would not be able 

to uniquely determine the values for these 

),..,,( 21 Kddd . However, the remaining symbols can be 

recovered if some of these symbols sd j  are available 

such that the number of those missing symbols are smaller 

or equal to the number of equations. Based on this 

technique and hash function, we had proposed the general 

threshold-based secret sharing scheme [23]. In the next 

section, we extend our result to the general group-oriented 

cryptosystem.   

 

3. THE NEW GENERAL GROUP-ORIENTED 

CRYPTOSYSTEM USING THE 

),1)(2( pqpqG +−+  SYSTEMATIC CODE 

 

Before introducing our new scheme for the general 

group-oriented cryptosystem, we first assumed that there 

exists a two-variable one-way function ),( srf  [6] that 

maps a secret key s and a value r  to a bit string 

),( srf  of fixed length. One nontrivial property of this 

two-variable function is its one-way property. Given 

),( 1 srf , ),( 2 srf ,  …, ),( srf k , and ikir )1( ≤≤ , it is hard 

to calculate any ),( srf  for some kirr i ≤≤≠ 1, . 

The formal definition and the proof of existence of such a 

function were given by He and Dawson [6]. They also gave 

some examples of the construction of such a hash function. 

One of them is quoted as follows. Let S  be a secure 

signature scheme. For a message m , the signature with 

secure key k  is denoted by ),( mkS . Let h  be a 

universal one-way hash function whose existence is based 

on any one-to-one, one way function [38]. Let 

)),((),( yxShyxF = . Then F  is a two-variable 

one-way function.  

Next comes the description of our scheme. Our scheme 

consists of three phases: the shadow distribution phase, the 

secret broadcast phase, and the secret recovery phase. In 

the following description, we assumed that there were p  

secrets to be distributed simultaneously among n  users, 



  

and the qualified subsets are specified by the access 

structure 0Γ = qfff +++ K21 , where sf i  are 

minimal qualified subsets. The shadow generation phase, 

the secret broadcasting phase and the secret recovering 

phase are described as follows. 

 

The Shadow Distribution Phase: Before SD  distributes 

secrets to users, he first randomly select n secret shares 

),,,( 21 nsss K  and then delivers is  to iUser  over a 

secret channel. This procedure is executed only once in our 

scheme. 

 

The Secret Broadcasting Phase: 

To distribute these p  secrets with the access 

structure 0Γ = qfff +++ K21 , the SD  executes 

the following steps.  

Step 1. Randomly select q  integers ),,,( 21 qrrr K  

corresponding to the q  minimal qualified 

subsets in 0Γ .  

Step 2. Prepare the information vector D  as follows. The 

length of this vector is ,qp + where q  is the 

number of minimal qualified subsets in 0Γ . 

       

      ),,,,,...,,( 2121 qp FFFPPPD K=  

       , where iF  = ∏
∈ ij fUser

ji srf ),( , qi ≤≤1 . 

Please notice that the multiplication operation is in 

)2( mGF .  

Step 3. Prepare the generator matrix 

),1)(2( qpqpG +−+ . Please notice that the 

generator matrix G  can be pre-computed, and a 

generator matrix with a larger dimension can be 

easily constructed by the extension of a generator 

matrix with a smaller dimension.  

Step 4. Compute GDV = . Then we have     
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Step 5. Publish 

 ),,,,,,,,( 12121
0

−+Γ qpq cccrrr KK  in an 

authenticated manner. For example, adding the 

Message Authentication Checks (MAC) [11] 

 

The Secret Reconstruction Phase: 

When those users corresponding to some minimal 

qualified subsets jf  ( qj ≤≤1 ) in 0Γ  are willing to 

recover the secrets ),...,,( 21 pPPP , then they execute the 

following steps.  

Step 1. For each iUser  ∈  jf , he computes 

),( ij srf  and contributes this value to his 

group. After all members of this group jf  have 

contributed their values, then the group computes 

jF  = ∏
∈ ji fUser

ij srf ),( .  

Step 2. Now the number of missing symbols in Equations 

(2) is 1−+ qp  which is equal to the numbers 

of Equations in (2)- 1−+ qp . So, the missing 

symbols kF , ( jkandqk ≠≤≤1 ) 

and secrets ),...,,( 21 pPPP  can be uniquely 

determined from Equations (2). Our proposed 



  

scheme satisfies the requirement of the access 

structure 0Γ .   

 

4. SECURITY AND OVERHEAD ANALYSIS 

 

We first analyze the security of our scheme from the 

following different points.  

1. Given the public values in each scheme, we can see that 

the number of unknown symbols is larger than the 

numbers of Equations in (2). So, an adversary has no 

way to derive the secrets. 

2. Now we consider the case when users want to 

co-operate to acquire the secrets. The number of 

unknown symbols in Equations (2) is qp + , while the 

number of linear-independent equations in (2) is 

1−+ qp . Therefore, users must acquire at least one 

value for those unknown symbols to derive the secrets. 

However, only through the co-operation of users 

corresponding to the minimal qualified subsets jf  

( qj ≤≤1 ) can the value of the unknown symbol jF  

be acquired. Our scheme therefore realizes the access 

structure 0Γ . 

3. Our schemes will not disclose a user’s secret shadow 

even after multiple secret reconstruction operations have 

been performed. Even though the pseudo shadows 

),( isrf  will be exposed among the co-operating 

members, the actual secret shadow is  is well protected 

by the two variable one-way function ),( isrf  where 

r  is randomly selected every time.  

 

So, our scheme is a secure realization of the access 

structure 0Γ . Next, we analyze the computation and the 

communication overhead of our scheme. To distribute 

multiple secrets among n  users in different schemes, the 

SD  will compute the pseudo shadows ),( isrf s and the 

parity symbols sc i . Since the generator matrix can be 

pre-computed, the operations involved in the calculation of 

ic  are just hashing, addition and multiplication in 

)2( mGF . On the other side of recovering the secrets, the 

co-operating users also compute their pseudo shadows 

),( isrf s, and then solve the corresponding linear 

equations in (2).  

Now we consider the number of public values in the 

different schemes in the following. The public values are 

),,,,,,,,( 12121
0

−+Γ qpq cccrrr KK . The number of 

public values excluding 0Γ  is 12 −+ qp , while that of 

its counterpart [29] is pqq ⋅+ . From the above analysis, 

we can see that our scheme is efficient. 

Finally, we present some discussion on the cheating 

detection issue. It is important for any group-oriented secret 

sharing schemes to detect cheating and identify the cheater. 

There are already numerous works on this issue [13, 20, 21, 

30]. Therefore, we will not reiterate on this issue in our 

paper. But in order to maintain users’ shadows secret 

during the cheater identification process, there are some 

points that should be examined: the SD  should use 

),( isrf  instead of is  in generating the public values for 

the cheater identification. Hence, iUser  just polls his 

pseudo shadows ),( isrf  in the cheater identification 

process, so that the secret share is  will not be disclosed. 

 

5. CONCLUSIONS 

 

In this article, based on the systematic block codes, we 

have proposed a new scheme to the general group-oriented 

cryptosystem. As in our previous work, this new scheme to 

the general group-oriented cryptosystem also has several 

merits: (1) It allows parallel secret reconstruction. (2) The 

SD can dynamically decides the number of distributed 

secrets depending on the requirement. (3) The construction 

of the generator matrix is simple and efficient. (4) Users’ 



  

secret shares will not be disclosed after multiple-secret 

reconstruction operations. (5) The computation is efficient 

and the quantity of public values in our scheme is low.  
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