FEREA/\EREEEREE

Process-Translatable Petri Nets for the Rapid Prototyping
of Workflow Processes

"Peter Pi-Te Chen “Chen-Chau Yang "Kuang-Lung Lin
epartment of Electronic Engineering
National Taiwan University of Science Technolog
. Pete@rs590.ndmce.edu.t
Graduate School of Decision
National Defense Management College
Abstract

This paper presents a method for the rapid prototyping of workflow process design usin g WPT-nets. The
OPS83 rule-based language has a similar executive strategy to WPT-nets model. H;znce, it may be simulated to
support following activities: rapid prototyping, simulation, and automatic translation into program structures. In
particular, WPT-nets are shown to be translatable into OPS83 rule-based program structures to allow users
quickly develop simulation models of the workflow processes.

Keywords: 1. Petri Nets 2. Rapid Prototyping 3. Simulation 4. Worlflo

I. Introduction

Some software dev elopments and increasing
number of being built systems can not meet
users actual needs. Current research efforts
concentrate ondeveloping a complete
method-ology with integrated support tools to
enhance the software quality, and reduce the
software cost. The rapid prototyping isa
promising method for easily specifying user
requirement, requiring less system developing
time, and its ease of refining syste
specification.

Petri nets[9] are abstract formal models of

proto-typing based on the WPT-nets shown in

Figure 1. It supports the following
activities: :

(1) Specification: To translaic the WPT-nets
into rules by using BNF graph and use them

as input specifications.

(2) Validation: WPT-nets can be analyized to

determine properties such as deadlock,
boundness, reachatility, and conservation.

(3) Evaluation: WPT-nets are the extension of
Petri nets. In WPT-nets, the deterministic
timing is associated with transitions and can

be used to discover critical aspects.

information flow characterized by controls and (4) Prototyping: A rule -based program
constraints, It is now being widely applied to skeleton[4][6][7][8] can be derived from the
rapid prototyping(5], dataflow graphs[11], WPT-nets described by production rules, so
concurrent system analysis{12] and system that programmers can easily represent

performances[10]. parallel workflo processes. The functional
This paper presents a method based on an validation cancheck out the prototype
extension of classical Petri nets for representing program structure errors, and
the specifications of workflow processes. The misunderstanding the specifications of the
user requirements are modelled into Workflow prototyping. Finally, a successfu

Process Translation nets(shorily WPT-nets), and
then translate these nets into production rules by

prototyping can also be derived from the
WPT-nets[13] if the target language is used

using BNF. A ruleparser is
implemented for checking ihe

User Requirements

syntax of the rules. If the parse
find out syntax errors, the
prod-uction rules can be refined

again. Finally, A skeleton is Fanctional
presented to translate the
WPT-nets into OPS83

rule-base program struc -tures
that can perform automa-ticaly.
The executed results can enhance

NetsTrainslation by »
Production Rule

v

OPS83
Structures

Production Rules
Refinement

&

=

the functional validation of user
requirements and rapid
prototyping integrity. The rapid

—v Prototyp Exccution

Figure 1 Rapid Prototyping based on the WPT-nets

A-186

to support the paraliel
applications[1].

(5) Execution: The rapid prototyping ensures
the correctness of the above input rules
through the parser and automatically
produces rule-based program codes.

The paper is organized as follows. Section

Il begins with model definitions. In this section,

some properties of the WPT-nets are discussed.

Section Il presents iranslation of WPT-nets

into OPS83 rule -base program structures.

Section IV presents the implementation of the

generator using our developed approach. Section

V ,discusses several problems and strategies

regarding the refinement of system

specifications. Finaly, section VI, summarized
the result and its recommends for the future
researches.

process

IL.WPT-nets

The WPT-nets are composed of seven parts: a
set of places P, a set of transitions T, an input
function I, an output function O, a inhibitor arc
mechanism i°, and a marked time 7 .
<Definition > A WPT-nets is a 7 tuple

WPT =<P, T, I, O, i* p° 7>

where
P = { p1, P2 P3..-Pn } @ set of places, =0
T ={ ty, ts, t3,...t } @ set of transitions, m =0
[: T — P~ isthe input function
O:T — P7 is the output function
i’ is a inhibitor arc mechanism for “zero
testing” a place.
n? : is a marking on WPT, terthed the initial
marking.
7 is a function 7:T — {1, 2, ...}, attached
each transition in the net into one of the natural
numbers. T=(T1,..., T m) in whichm=1Tland
eacht ()= T4

In the WPT-nets, static construction part
consists of place and transition nodes. Place
expresses states of the co rresponding process
types and transition expresses synchronization
among processes. Place and transition are
connected by arcs, forming the directed graph.
The dynamic construction part represents the
moving of the token distributed on the places.
Each place includes one or more than one token,
but sometimes there are empty.

)

pk

Figure 2.1 The inhibitor arc extension

The token distribution on the places is
calling marking. Suppose there is at least one
token existing in the input place of transition,
then the transition as being enabled and fired.

P1

P2

Figure 2.2 A marked WPT-net
Figure 2.3 represents the WPT-net after firing
of transitiont ;. A consequence of firing
transition t; is that the transition may not be
enable again because there is no token present in

place . Another result of firing t, is that

transition t, is now enabled, as there is now at
least one token in each of the input place. In the
WPT-nets, the deterministic timing is associated
with a transition containing enabling time, firing
time, and unavailable time [12]. The timing of
the WPT-net is shown in Figure 2.4.

into OPS83

Il . Translate the WPT-nets
P1

Figure 2.3 WPT-net after firing of transition t;

firing time

t i o

enabling time unavaila le

Figure 2.4 Timing of WPT -nets

rule-base program structures

This section presents a high-level perspective
of the system design consi sting of user level,
kernel level, and user destination level.
Examples of translating the WPT-nets into the
OPS83 structures and the diagram of the system
are shown inTable 1 and Figure 3.2 respectively.
The BNF graph of the WPT-nets appeared in
Appendix.

A. Introduction to OPS83
OPS83 is a rule-based language implemenied

A-187

Table 1 The iranslation example of the WPT -nets into the OPS83 structures

The BNF of simple

A simple WPT-net WPT-net

Translate the simple WPT-net into the skeleton
of the OPS83 structures

pi*(-pj)=>pk

(P <transition_t;>
{(state"place_p;{<marking_variable>> 1 }
(state”place_p;{< marking_variable>=0})}
(write (crlf) <transition_t;> fired)

(make (substr <state> 1 inf) *vaild nil
“place_pi(compute < marking_variable > -D
“place_pi(compute < marking_variable > +1)

in C language. Its earliest prototype was jus

executing the function of the production system.

Then it is used successfully to program includes

the declaration part and the rulename part.

(a) Declaration part: It is used to declare the
memory attributed that a program will use,
and the function name adopted from other
programming language that the user might

employ.
(b) Rule part:

(P rulename
(condition-1)
(condition-2)

9

(action-1)
(action-2)

From the viewpoint of logic operation, the
relationship between rules is : use “AND” to
calculate in conditions of the same rule, but use
“OR” to calculate in conditions of different
rules.

B. Working memory of OPS83

All the dynamic materials of the OPS83 for
program execution are gathered and managed in
Working Memory(WM). Eachunit in the
working storage area is a Working Memory
Element(WME). Each WME is composed of a
time tag and a fact. The time tag is used to
represent the time order of a fact joining in the
WME. If the value is big or tends to be bigger
and bigger, it means that it has been joined or
modified recerly.

C. Inference engine of OPS83

The operation of OPS83 inference engine is
similar to production system. The OPS83 must
find out at once, in rule memoxy, all rules which
can satisfy its LHS(rulename part) after the user
implements the initial material. The rule must be
put into the Conflict Set(CS); so there is a slight
difference between the order of the inference
steps and that of the production system, The
OPS83 execution inference steps are described
as follows:
Step 1: Choose a proper rule from the CS.

Step 2: Execute
the action part of

Start this rule, and
change the
con-tents of the

.F. .T. WME.
Step 31 Data
Match match. Find out a

rule maiches LHS
and put it in the
CS.

Step 4: Coming
across a “Halt”
command. To
stop inference if
the CS is empty
or actions
execuied to iis

END

Figure. 3.20PS83 execution cycle

A-188

User level

limitation. Otherwise, go back to the step and
keep on the inference. The OPS83 execution
cycle is shown in Figure 3.1.

From the generalization narrate above, the
characters between OPS83 and WPT-net are
similar. Thus, the WPT-nets are translated into
production rules, and use them to imitate, design,
or other specially related issues.

The procedure for system design includes:

Concept modelling

3

Knowledge formalization

Kernel level

Rule parsing

Generate rule-based
Source codes

User destination \ 4

Calling OPS83 and
execution results
and results

Figure 3.3 The diagram of the system design
(a) Knowledge formalization: To make the
WPT-nets into production rules and use

them as formal input specifications.

(b) Rule parsing: The rule parser checks out the
correctness of the above input rules.
Therefore, the system validation will be
enhanced.

(c) Automatic generation
According to the
correct input rules,
the system can
automaticall
produce rule -base
program file by
using a generator
80 that the |
execution of the |
production system |
will be convenient.

source code

,,,,,

IV. Applications

This section
illust ates the example
of a workflow system
described by WPT-nets
to specify process
control. The WPT-nets
consists of subsystem
A and subsystem B,

e

Subsystem B

while the translation of the WPT-nets into
program siructures concern resource conflict
which may results from detecting deadlock and
synchronization. The target language is OPS83,
a rule-based program codes. Anexample of
workflow system described by WPT -nets show
in Figure 4.1.

A. User level
According to Figure4.1, The WPT -nets are

translated into production rules by using BNF
graph(see Appendix), input the initial marking
1, and the deterministic timing of associating
with transitions shown as below.

Concept modeling:

Pz{pl’ P2, P3, P4 Ps sPs ,97}7 T‘:{tl o2,

t3 1,15}

I(t)={p7}

I(t2)={p1 .Ps}

I(t)={p:}

I(t)={p3, s}

I(ts)={ps, Ps}

O(t)={p1, p2}

O(t2)={ps ,pa}

O(t3)={ps}

O(ts)={ps}

O(is)={p7}

The input sequence of the production rules:

t:pr>p1 P2

t2:p1"Ps—>P3"P4

3:p2—>Ps

t4:p3"Ps—Pe

t5:pa"ps—>P7

Input initial marking p*:

(ph P2, P3» P4, Ps »Ps ’P7)=(0, 07 0: O’ 0: 1: 1)

The deterministic timing of associating with

Subsystem A

Figure 4.1 An example of workflow system described by WPT-net

A-189

transitons:
T(t)=2, T (1)=2, T (t3)=3, T ()=2, T (t5)=1

B. Kernel level

The input rules can be translated into
production rules. A OPS83 rule -based program
skeleton that can be designed from by
production rules shown as below(shadow parts
are filled the places, transitions and the
deterministic timing of associating with
transitions that will be generated by rule parser.).
Then the generation of the automatic rule -base
program codes will be generated.

(P <transition_name>

{(state “place_name_1 { < marking_variable_1
> 2 constant_1 }) and

(state “ransition_name_1 {<transition_timing>
= constani_2})}

-

(write (crlf) <transition_name> fired) .

(make (substr <state> 1 inf) Availd nil
Mransition_name_1(compute
<transition_timing_1> -1)
Mransition_name_2(compute
<transition_timing_2> -1)

“place_name_1(compute <marking_variable_1>
- constant_3)

place_name_2(compute <marking_variable_2>

+ constant_4)

Now, an example is used to showthe rule
parser to fetch the place and
transition nodes from the BNF of
WPT-net in the Figure 4.1, and
then fill them into the
skeleton(shown kernel level).
Finally, input the initial marking
u’, the generator will
automatically generate OPS83
source codes as follows:.

Py

{(state *pg{ x_1 > 1}) <state>)
(write (crlf) t; fired)

(make (substr <state> 1 inf)
Availd nil

“ps(compute x_1 - 1)
Apy(compute y_1 + 1)
“pa(compute y_2 + 1))

P
{(state *py{ x_1 > 1}) <state>)

{(state *ps{ x_1 > 1}) <state>}
(write (crlf) 1, fired)

(make (substr <staie> 1 inf) Availd nil
“p3(compute y_1 +2)))

C. User destination level

According to the kernel level, the results are
obtained and states of transitions are fired on
many places. From upper case, the production
system OPS83 can findoutt 4, and ts can’t
fired(executed) simultaneoudy. Namely, t, and ts
may occur deadlock (t 4 and ts are waiting each
other release resource.). Therefore, the
sequences of the transitions, places or transition
firing time can be adjusted to avoid resource
conflict. The resolutions will be discussed in
detail as follows.

V. Discussion and strategies

In the kernel level, the generator of the OPS83
source codes that can detect t 4 and t; will occu
reso-urce conflict and synchronization problems.
Several strategies are presented to handle these
issues and using the rapid prototyping method to
redesign the workflow systems.
(a) Problem 1: Resource conflict

Strategy (i): Increase resources. The resource
distribution is adjusted in the systems. For
instance, one(or several) token is added into P2,
psand p; respectively, but increasing the system
cost. The workflow system diagr am shown as
Figure 4.2.

Subsystem B

Figure 4.2 Add one token into ps, ps and p- for solving
resourceconflict between i, and 15

A-190

Subsystem A

Strategy (ii): Inhibitor arc extension. The
Muitual Exclusive Relationship(psbetweent, and
t5) is took place into inhibitor arc mechanism for
zero testing ps that can solve the resource
conflict problem and don’t need any ex tra
resource addiction however, increasing the
programming overhead. The workflow syste
diagram shown in Figure 4.3.

systems. The WPT-net model can support the
process approach to requirement s pecifications
and issuitable for carrying out the syste
simulations. The authors have shown how to
translate into rule-based program suuctures by
using the WPT-nets.

In order to estimate the accurate execution
times,[2] further researches of WPT -nets are

3}

Subsystem B

Figure 4.3 The workflow sysiem diagram of inhibitor arc taking place the
Mutual Exclusive Relationship

(a) Problem 2: Serialization issues

Strategy (i): Adjust timing. The transition firing
sequence and using deterministic timing of
associating with transitions is specified to reduce
the side effect of Mutual Exclusive Relationship
in the WPT-nets. The serialization of the syste
processing is to prevent infinite loop(so called
deadlock), shared resource conflict, or even the
system crash that no one knows. The firing
instances of deterministic timing of associating
with transitions shown in Table 2.

Strategy (il Reorganize the sysie
specifications. The main character of the rapid
prototyping is easily to simulaie the syste
behaviors, turning the processes performed
sequence and share resource. In following
example, we copy a new place ps’ from sto
take place Mutual Exclusive Relationship
between t, and ts that can reduce side effec
because of resource sharing conflict. The
reorganized system diagram shown in Figur
44,

VI. Conclusion

In this paper, the WPT-nets have been
presented for the purpose ofrule -based
prototyping activities in the field of workflow

necessary.
Another difficulty

associated with
the proposed
approach may be
the inaccuracy in
estimating the
execution times
of the workflow
processes in the

production
system. In this
paper, the

execution
sequences of
production rules
used the time tag

Subsystem A and firing
strategies of the
rule-based.

However, in real
time systems, execution time of processes must
be estimated real execution time inthe
production rules.

An effective methodology[3] depends on the
user-friendly of the supporting environment, so
current work is devoted to the implementation of
an integrated software environment which can
manage in a common database including whole
SDLC(Software Development Life Cycle).

Appendix
The BNF graph of the WPT-nets

<IR>::=<TN>:<IP><0.8><0.P>
<T.N.> ;= <N><n>

<N> u=“A" | “Z71“a" | ..1Z"

<n> =171 0997 1A LML
<ILP>::=P<nl>[<AS><IP>]
<nl>:=3141...1998

<A.8> =N

<0.8> ="-"
<O.P>::=P<n2>[<A.S><0P>]
<n2>:=3141..1998

<L.R.> is Input Rule

<T.N.> is Transition Name

<L.P> is Input Place

<A.S.> is “And”operation Symbol
<0.8.> is Output Symbol

A-191

<0.P.> is Output Place

Table 2 The firing instances of deterministic timing of associating with transitions

Transition fired time

Place

(P1P2P3 P4 Ps Ps P7)
Time=0 (0,0,0,0,0,1, 1)
waiting
Time=1 (0,0,0,0,0,1, 1D
Time=2 (1,1,0,0,0,1,0)
waiting
waiting
Time=3 (1,1,0,0,0,1,0)
Time=4 (1,0,0,0,1,1,0)
Time=5 (0,0,1,1,1,0,0)
waiting
Time=6 (0,0,1,1,1,0,0
Time=7 (0,0,0,1,1,2,0)
waiting
Time=8 (0,0,0,0,0,2,2)

63 t tp s

_— N !
]
]
'
'

s
e %,

Subsystem B

Subsystem A

Figure 4.4 The new system diagram of copying a new place ps’ from ps

REFERENCES

[1] Boujarwah Abdulaziz and Aiseif Nadia and
Saleh Kassem, “Modelling the semantics of
multitasking facilities in concurrent C using
Petri Nets,” Information and Software
Technology, Vd. 38,Iss. 1, pp. 3 -9, Jan.
1996.

[2] Perkusich Angelo and De Figueiredo Jorge,
“G-nets: a Petri Net based approach for
logical and timing analysis of complex
software system,” Journal of Sysitem and
Software, Vol. 39 Iss. 1, pp. 39-39, Oct.
1997.

[3] Rakeh Agrawal, Michael J. Carey and
LawrenceW. Mcwy, “The performance of

alternative strategies for dealing with
deadlocks in database management systems,
” IEEE Trans., Software Eng. Vol. Se-13, no.
12, pp. 1384-1363, Dec.,1987.

[4] Lee Brownston, Robert Farrell, Flaine Kant,
and Nanvy Martin, “Programming expert
systems in OPS5, A introduction to rule
based programming, “ Addison-

Wesley publishing comparny, inc., 1985.

[5] Giorgio Bruno and Giuseppe Marc hetto,

“Process-Translatable Petri Nets for the
Rapid Prototyping of Process Control
Systems,” IEEE Trans. On Sofiware Eng.
Vol. SE-12, no. 2, 346-357, Feb. 1986.

[6] Jenn-Nan Chen, “Verification and

A-192

translation of distributed computing system
software design,” Phd. Dissertation, June
1987, Northwestern University.

[71 Jenn-Nan Chen and Pi-Te Chen,”Diagnosis
systemn for automatic detection of deadlock
in asynchronous concurrent distributed
computing systems : using Timed Petri Net
with stacks,” Proc. Internati nal IEEE Conf.
on COMSAC, pp.658-664,1990.

{8] J. Duggan, and J. Browne, “ESPNET:
expert-system-based simulator of Petri
nets,” IEE Proc., Vd. 135, Pt.D, no. 4, July
1988.

[9] Peterson J. L., Petri Net theory and the
modelling of systems, Prentice-Hall,
Englewood Cliffs, Nj., 1981.

[10}Jan Magoit, “New NP-complete problems in
performance evaluation of concurrent
system using Petri Nets,” IEEE Trans
Software Eng. Vol. Se-13, no.5, pp. 578-581,
May 1987.

[11]Krishna m. Kavi, Billy P. Buckles and U.
Narayan Bhat,”Isomorphisms between Petri
Nets and dataflow graphs, “ IEEE Trans
Software Eng. Vol. Se-13, no. 10,
pp. 1127-1134, Oct. 1987.

[12]C. Y. Wong, t. s. Dillon and K. E. Forward,
“Concurrent, real time systems :a
systematic approach using timed Petri
Nets,” Computer System Science and Eng.
Vol. 2, no.3,pp. 1 -124, July 1987.

[13]Yao Weili and He Xudong, “Mapping Petri
Nets to concurrent programs in CC*™”
Information and Software Technology, Vol
39, Iss. 7, pp. 485-495, July, 1997.

A-193

