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Abstract

Liver biopsy is the standard for the evaluation of liver diseases. The severity of fibrosis
obtained by biopsy test is considered io reflect the stage of chronic liver disease. However, the
current biopsy reading remains quite subjective, or at best semiquantitative. Therefore, developing
an objective and reliable image analysis system for evaluating the liver fibrosis will be a major
advance in the diagnosis and staging of chronic liver diseases. In this paper, we develop an
aulomatic image analysis system, which consists of a microscope, a computer-driven slide-driver,
and the software for image acquisition, processing and data analysis. Some image analysis
procedures, including color model selection, histogram-based normalization, clustering, moment-
persevering thresholding and ranking filter, have been developed and employed in this system for
tissue characterization. In addition, the computerized motor driver and the x-y directional stage to
move specimens, are designed and installed on an optical microscope to construct a Jully automated
system. The system is capable of computing the percentage of fibrous area to the whole liver tissue
area as an index, called computer morphometry (CM) score 1o reflect the severity of liver fibrosis.
Experimental results show that the proposed method correlates well these methods as expected,
however, is more stable and quantitative than these conventional methods.
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L Introduction employing an image analyzer. In this system

Evaluating hepatic fibrosis on pathological
sections greatly facilitates the staging and
follow-up of chronic liver disecase. The disease
severity may range from a healthy carrier to a
decompensated cirthosis. However, erroneous
assessment arises from the subjective experience
and eye measurement. With the accelerated
developments of microcomputer and moderately
mechanical control technology in recent years,
an automatic pathological section analysis
system coupled with optical microscopy plays an
increasingly important role in examining the
pathological  sections. The high-speed
computation of a microcomputer makes
analyzing the amount of images captured from
the pathological section a reality. The sensor
technology, modern charge-coupled devices
(CCD) cameras can achieve high spatial
resolution and high sensitivity measurement of
signals captured from am optical microscope.
Additionally, an accurate mechanical apparatus
collaborating with electronic conirol provides
automatic and precise section positioning
capability.  This progression motivates our
ongoing developments of an automatic system
for pathological section analysis.

Previous  studies  introduced image
analysis in the morphological assessment of
hepatic fibrosis[1]. This technique is based on
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a computer equipped with a unique sofiware
and imagery card acquires images by using a
color - video-camera placed on a light
microscope. The system includes two high
resolution video graphic array monitors: ome
used to display the resulis of regioms
segmentation and the other used to manually
follow the image acquisition by the imagery
card. The image segmentation is basically a
process of partitioning the color images by
interactive thresholding. Such a partitioning
leads to a binary image whose regions of
fibrosis appear in white and the regions of
normal cells appear in black. Determining
the threshold value depends on several factors,
e.g. the lighting of the optical microscope, the
thickness of the section and the stain
discoloration - of fibrosis. The section’s
thickness is imitially checked at regular
intervals. Each liver section assessed wsing
this system is only randomly acquired four or
five images at 10x magnification times for
image analysis. The limitation causes lower
reliability in quantifying the liver fibrosis.

This paper presents an  automatic
computer system for objectively and
quantitatively assessing liver fibrosis in each
liver section. The system is called ACM
system, which is an acronym for Automatic



Computer Morphometry system. The ACM
system consists of three subsystems: image
acquisition and section positioning subsystem,
sample-training subsystem and processing
subsystem. For each liver section, a large
number of liver images, each containing many
normal cells and liver fibrosis, must be
captured for anmalysis. To provide the
continuous image acquisition, the positioning
subsystem adopts an x-y directional stage
driven by two stepping-motors to accurately
locate a proper tissue area in the field-of-view
of the microscope for capturing images without
human intervention. Additionally, the
sample-training subsystem offers a iraining
mechanism to overcome discoloration of the
histological section.

The processing subsystem consists of
most of the software modules that make the
system operate, including the control of other
subsystems and the liver region segmentation.
In' addition, a new severity indicator of
measuring the percentage of liver fibrosis
occupied within the complete liver section
called Computer Morphometry (CM) score is
proposed in this system. Thirty-one liver
sections stained by Masson stain are recruited

for this study. These results are compared.

with other clinical assessmenis in our
experiments.

II. Awutomatic Computer Morphometry

System
As mentioned above, an automatic
computer morphometry system for

quantitatively assessing the severity of the liver
fibrosis is proposed in this paper. The ACM
system employs image processing techniques
associated with mechanical control techniques
to  continuously acquire images and
characterize them. The system diagram
depicted in Fig. 1 consists of three subsystems:
image acquisition and section positioning
subsystem, sample-training subsystem and
processing subsystem. Figure 2 presents the
processing flow of the ACM system. FEach
subsystem and the appropriate design
consideration are described as follows.

IL1. Image acquisition and section
positioning subsystens

The image acquisition subsystem consists
of a microscope (Olympus CH-2, Tokyo, Japan)
coupled with a color video camera and a color
frame grabber (IMASCAN, Imagraph, TX,
USA).. Bach stained section is placed upon a
microscopic x-y directional siage with a pair of
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zoom lens and viewed in a transmitted Light.
To obtain the consisient image quality, the
microscope light must remain constant from one
examination to another and the magnification
time remains constant at 108. Each image is
captured as 512x480 pixels with RGB color
format. In this system, a specimen with the
size 1.2cm X 0.8cm is captured into about ninety
images by wusing the section positioning
mechanism to automatically locate each itnage
ai proper position. Each pixel width in this
magnification time is about 0.00208 mm in real
world. Owing to the structure of a human eye,
all colors are seen as variable combinations of
three base color features in the so-called primary
RGB (red, green, blue) model. The color
images with RGB model are captured by the
color video camera and digitized by the 24-bit
frame grabber. This process generates a 3-D
vector for each pixel whose color features range
from 0 to 255.

The positioning subsysiem attempis to
accurately locate the area of interest of the liver
section in the field-of-view of the microscope for
acquiring images. An x-y directional stage is
designed for this purpose, consisting of a stage
driven by two pivots and a pathological section
locating fixture used to fix the liver section.
Two stepping-motors controlled by a dual 8255
controller of the subsystem are used to drive the
two pivots along a given direction. One of the
two motors moves the x-y directional stage
forward or backward and the other can move
right or left. To provide more accurate
positioning capability, the adequate rotation
steps of the motors are explored in advance.
The positioning capability can then be
automatically or manually maneuvered under
the conduct of software in ithe processing
subsystem. Figure 3 presents the graph of the
positioning subsystem.

IL.2. Sample-Training subsystem

The sample-training subsystem provides
manually iraining mechanism to extract the
powerful features for amalysis. The system
includes the training methods and a database for
storing these features. In applying the liver
tissue image segmentation, the canomical
analysis is performed to obtain the powerful
color featares for separating different liver
regions. The training features are stored in a
database for later segmentation.

The color model is a mathematical or
geometrical representation of color. Most of
the color models attempt to relate the
representation  of human color perception.
However, no general model can be applied to all
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applications. Thus, the initial step of color
image segmentation entails defining a highly
effective color model for processing the liver
tissue images. The canonical tramsform is
based on the statistical properties of the Fisher
discriminate functions to linearly project the 3-D
RGB color model to a 2-D color model whose
chromatic features are rich in powerful
information for liver tissue image segmentation.
Experimentally, threec region classes are
presented in liver tissue image: regions of the
liver fibrosis, regions of mormal cells and
background. Thus, segmenting the liver tissue
image is a 3-class data classification problem.
The liver cell region is labeled here as (7, the
liver fibrosis region as C, and the background
as ('3 for training. Assume that a set of
samples, x;,X9,...,x, e€xist with 3-D RGB
color model from some training images. Every
region class C; consists of p; training samples.
The generalization for the within-class scatter
matrix ., and the total scatter matrix S, are
defined as

Sy=2.8i ey

3
SB:%Z(IHJ’—IH)(IH,"’IIU)t (2)

i=1

where
5= —— 3 (x-m X x-m; Y, (3)
i_l xeC;
Iﬂi=—l—'ZX and I]]=‘l‘ZX “)
1 xeC; a x

The Fisher linear discrimination is then defined

as that linear function y ="y for which the
below criterion function is maximized, i.e.
sy
sy w|
In this method, the columns of an optimal W/
are the generalized eigenvectors that correspond
to their own eigenvalues in the following
equation.
Sgw; = LSy, (©6)
The largest and next large eigenvalues
can be found according to the roots of the
characteristic ~ polynomial lS B AjSW|=0‘
Generalized eigenvectors corresponding to the
two eigenvalues can then be resolved. The new
color model defined by Egq. (5) is with the

maximum ratio of between-class scatier to
within-class scatter. Here, the 2-D color model

J(W)= (%)

is defined as 1}V, color model.

Figure 4 displays a testing liver tissue
image. Ninety blocks of interest of an image,
each coniaining 5 x 5 pixels, are selected herein
to demonsirate the capability for separating the
three region classes by using Y;Y, color model.

The ninety blocks of interest are equally divided
into three classes: liver fibrosis, normal cell and
background. The mean of the color features of
the ninety blocks are determined. Figure 5
presenis these scatter plots based on the 1}7,

color features and original RGB color features.
As this figure demonstraies most of the data
points of foreground (including the liver cell and
liver fibrosis) and background can be divided by
using the }] color feature. Moreover, the T,

color features can effectively segment most data
points of liver fibrosis regions and liver cell
regions. Consequently, these parameters W/
are stored in the database for later image
segmentation.

IL.3. Processing subsystemn

Processing tasks such as control of the
subsystem, image acquisition and data analysis
are all performed on a personal computer. The
liver section positioning process is generally
time consuming since the driving speed of
mechanical stage is rather slow and can not be
improved with the present setup. Thus, the
system must be accelerated by facilitating the
color image segmentation. The processing
system is designed to provide an efficient
processing capability by incorporating several
image analysis procedures, including the color
model transform, pattern classification and
statistical amalysis method. Figure 6 depicts
the compleie color image segmentation
algorithm. The control of subsystem, region
segmentation method and data analysis method
are discussed in detail as follows:

I1.3.1. Conirol of the subsysiems

The processing subsystem controls the
entire processing flow of the ACM system.
Initially, a trained image is selected to include
the three above-mentioned regions that are
manually acquired to train the parameters of the
canonical transform via the sample-training
subsystem.  The parameters of canonical
transform are stored in a database for later
region segmentation. Then, the processing
subsystem drives the positioning subsystern to
acquire images within the liver section of test
specimens for analysis. The areas of fibrosis
and the areas of normal cells of each acquired
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image are counted by partitioning the three
regions by an automatic thresholding method in
the processing subsystem. This processing
continues until all images have been analyzed.
11.3.2. Image Segmentation

Each liver tissue image acquired from liver
section is initially transformed to };¥, color

model using the training features stored in the
above database. The histogram modification is
then performed on the tissue image to normalize
the range of the ¥] and ¥, distributions, thereby

making the further processes consistent. The Y

color feature is used to separate the original
image into two region classes that are
foreground and background. Then, seperating
foreground into fibrosis and normal regions is
based on the thresholding of the ¥, color feature.

Finally, a rank filter is used to filier out the
smaller fragments and smoothen the contours of
segimented objects.

Pre-processing--- Bach color image with RGB
format is transformed into one image with 1Y,

color model. The ramp histogram transform is

then performed to normalize its color distibution

[2). The transform is represented as follows:
' P/

P =L 7
where p’ and ¢’ represent the output and input
pixel color values, respectively, p” is the
maximum allowable color values, N is the
square root of the total number of pixels in the
image, and H,(q") is the value of the cumulative

distribution of Y,¥, color features at g .

Region segmentation-- The separation of three
region classes is performed by an atuomatic
theshold selection scheme called moment-
preserving thesholding. The moment-preserving
threshold involves selecting a threshold value
such that all below-threshold gray values in

original image f are replaced by Z, and all
above-threshold gray values replaced by Z.

Afterwards the first three momenis of image f
are still preserved in the resulting bilevel image
g The thresholding method is discussed as
follows.

Given an image f with » pixels whose
color chromatic value at pixel (x,) is denoted by
JGLy).  Let the ith moment m; of f be defined

as

m=(VH)3 T ), =23 ©®
x ¥
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Moments can also be computed from the
histogram of fin the manner,

m =(UmY 1z
J

P (9)
=ZDj(Zj ),J =0,1,..,255.
i

where »; is the total number of pixels in the
image with color chromatic value z; and

pj=n;[/n. Wealso define B and P as the

fractions of the blow-threshold pixels and the
above-threshold pixels in f | respectively, then
the first three moments of g are just

m; =20 (2;), =0, (10)
]

This selection of threshold is based on the
following equation:

m; =m;.=1,23. an
To obtain the desired threshold values, Eq. (11)
can be solved to find F) and £, and then the

threshold 7 can be selected so that
B=0/n)) n

zZ;st
Once the Ry, P and f are determined, the
desired segmentation for the input ¥, and ¥,

feature images can be readily accomplished.
Post-processing ---- Since using moment-
preserving thresholding on the ¥; and Y, color

model does not resolve the spatial relationship
among pixels, the subsequent image will be
ragged in shape on the tissue contour or with
scattered small fragments. To remedy this
problem, a rank filter is designed to filter out the
fragments and smoothen the contours of objecis.
The principle of designed rank filter is based on
voting logic. The rank filter in our cases is
represented as follows:

(12)

w, for L,>T
= 13
Y@ {X(x) otherwise (13)
Where

Y(x)= the class of pixel x in the output image,
X(x)= the class of pixel x in the input image,

W, = the h’th class considered here,

L= 4.

4= {x1X(x-u)=W,;,VueB},i=1,23.

L= mflx‘L,.t

For each pixel x in the image, the new

class label of x is determined based on a voting
process with the 5 x 5 mask B depicted in Fig. 7.
In the region of B, if the majority of the

neighbors of x, exceeding 65%, belongs to class
W;, then the label of x is updated to W,
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otherwise if is unchanged.

I1.4. Statistic Analysis

Total pixels of normal cells and fibrosis
in the entire liver section are recorded to
calculate the severity index referred to as CM
score. The CM score is the percentage of liver
fibrosis regions with respect to the whole liver
section area. Equation (14) expresses the CM
score as follow:
area of the regions of liver fibrosis (14)
tatal area of whole liver tissued

CAd score =

II. FExperimental Result and

Discussion

This study has successfully developed an
ACM system to quantitate the fibrosis of liver
section. The system integrates the techniques of
mechanical control together with color
microscopic image analysis. In this system, all
programs are coded by Visual C++ version 1.5
with a Pentium 60 computer under MS-
Windows 3.1 environment. The proposed
system provides object-oriented programming
and a user-friendly interface for training the
sample data. The average processing time of
each image, including the acquisition, tissue
positioning and image analysis, is about 12.5
seconds.

Thirty-one liver sections with Masson stain
are collected for examining the accuracy of
assessment and the system’s reliability. These
sections are obtained from thirty-one patients
where sixteen of them are with chronic hepatitis
B, twelve have chronic hepatitis C, and three are
alcoholics. To demonstrate the accuracy of

region segmentation, two liver tissue images

taken from different liver sections are illustrated.
Figures 8 summarize these results. Figure 8(b)
presenis the segmented images. Each
segmented region is represented by one of three
specific colors. Blue denotes liver fibrosis, red
presents normal cell and white denotes
background.  Finally, the edge maps are
overlaid to illusirate the segmentation’s
accuracy, as indicated in TFig. 8(c).
Experiments with the set of thirty-one sections
reveal that the resulis are more than 95%
consistent with the human estimation in the area
ratios.

In the recent decade, Knodell er al. 3]
propose a popular score widely used to measure
liver fibrosis. According to the physician’s
observation, the score system fecords five
numerical scores which are 0: no fibrosis; 1:

fibrons portal expansion, 3: bridging fibrosis; 2:

between score 1 amd score 3, 4: cirrhosis.

Obviously, it is not precise, moreover, it suffers
from the clinical expert’s subjective observation.
Jimenez et al proposed an alternative approach
named colorimetric method [4]. In this method,
the Sirius red and the Fast green are used to bind
collagen and non-collagenous proteins. Then,
the  spectrophotometer  accumulates  the
absorption spectrums of collagen and non-
collagenous protein to define the percentage of
fibrosis as the following equations.
ng collogen ng collogen
ngtaial proteirs g collogen+ g noveallagenons s
ngadkxgm—mmng/mmm( 16)
absorbqn;e 630 nm (17)
The Knodell’s score, colorimetric method
and CM score are used to assess thirty-une
liver tissue sections. The validity of CM score
in measuring liver fibrosis is verified by
comparing with the Knodell’s score and
colorimetric method. The Pearson correlation

coefficient, Iyys between the CM scores and

colorimetric scores is also computed by
Z(X - X)(Y -Y)

JZ(X X)2 JZ(Y _¥)?
N-1
where the two severity score values are
recorded by X and Y.

Figure 9 .depicts the correlation
relationship between the results of CM scores
and colorimetric method, which is the linear
regression line with 95% confidence level.  As
this figure indicates, CM score is highly
correlated with the one by colorimetric method.
The correlation coefficient is 0.9014 (p<0.0001).

The validity of the CM score is also
evaluated by comparing with the ranking of the
Knodell’s score. Two physicians determine the
Knodell’s ranking of each patient according to
their observations and paiient’s medical records.
The ANOVA and point-bisexual correlation
analysis is used to compare means of the CM
scores according to the number of ranks in the
Knodell’s score. The test resulis demonsirate
rank 0; 1.800+0.860, rank 1: 4.5167+1.246,
rank 2: 6.6571+1.829, rank 3: 12.3975+3.358
and rank 4: 19.0444%10.495. A convenient
nonparametric measurement called Spearman
rank coefficient is used to test the correlation
between the ranking of CM scores amd
Knodell’s score. The coefficient is given on the
basis of Eq. (19).

sy

noncollagenous proteins =

(18)
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6y d;
r =1—-Z;—’ (19)
n(n°-1)

where the two seis of values are ranked from 1 to
n and dis the difference in ranking for each

pair of observations. The correlation is 0.9136
(95% confidence level and p<0.001). A similar
test is also used to transfer the colorimetric
scores into five scores. Consequently, the
Spearman tank coefficient between the
colorimetric method and Knodell’s score is only
0.8191 (95% confidence level and p<0.01).
These results demonstrate that CM score is
much more correlated with the Knodell’s score
conventionally used in clinical diagnosis.

V. Conclusion

The paper presents a reliable and
powerful ACM system to effectively deal with
the fibrosis quantification of liver section.
The proposed system provides functions of
auto-driving, auto-acquisition, image
processing and data analysis to quantitatively
assess the severity of liver fibrosis. Some
problems due to tissue discoloration are
naturally overcome by the designed mechanism
of sample-training. The positioning
subsystem equipped with an x-y directional
stage driven by two stepping-motors can locate
the interested tissue area properly in the field-
of-view of the microscope for image
acquisition. The processing subsystem
coordinates all subsystems to provide the
automatic assessment capability.
Additionally, the proposed image analysis
procedures can effectively separate liver tissues
into three different regions and then compute
the statistics of liver fibrosis.

Experimental results demonstrate that the
proposed CM score is a highly reliable
indicator for the severity of liver fibrosis.
Among the threc adopted methods in this
paper, Knodell’s score is the easiest and most
subjective, thereby making it prone to generate
intra and inter-observer errors due to variation
in human observations. The colorimetric
method is an alternative to assess liver fibrosis.
However, the cumbersome steps of
deparaffinning and staining cause the loss of
tissue during wash procedure and generally
suffer from elution error of the stained tissue.
Since the tissue has been destroyed, it is also
impossible to reproduce the assessment
parameters of even 1 observe the original
specimens again. The CM score generated by
ACM system is the most objective and fastest
among the three methods. Only 14.5 minuies
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are required to process a liver section with size

of 1.2x 0.8 cin® which is digitized into ninety
512x480 color images. The inspection
covers the complete area of the prescribed
section that significantly improves the current
scoring based om partial samples. The
processing speed also satisfies the requirement
for clinical practice. The systemn is
implemented in a Pentium 60 personal
compuier with 2 user-friendly interface by
object-oriented  programming techniques.
The proposed system can be readily extended
to the other pathological analyses by using the
visual programming hierarchy.
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Fig 6. Flow chart of image processing.
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