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Abstract — With the growth of electronic commerce
(EC) on the Internet and the increase of interests in
software agenis, researches for the automated summarizing
collections are proceeding rapidly. A common view about
mining is that it is an exercise of clustering customers,
markets, products, and other objects of interest in useful
ways from large amounts of data. Database summarization
is a task that reduces a large number of actual database
tuples into a relatively small number of generalized
descriptions. Summary discovery provides the user with
comprehensive information for grasping the essence of a
focused portion from a large amount of information in a
database. In this paper, we propose a summary discovery
process based on the fuzzy Petri net model to form more
generalized tuples. We present a general type of fuzzy
Petri net as a representation form of a database summary
including fuzzy concepts. By virtue of fuzzy Petri net
model where fuzzy set hierarchies in the actual domain are
natually expressed, the discovery process yields more
accurate database summaries. The proposed method is
more efficient due to the concurrent process of summary
discovery technique.

Key Words—Data mining, fuzzy Petri net, fuzzy set
hierarchy, summary discovery.

1. INTRODUCTION

EC is rapidly growing area on the Internet. A customer
can contact with many vendors worldwide even to buy
pieces of products owing to the reduced search and
transaction costs than before. But the explosive increase
and the heterogeneous and distributed state of product or
service information made difficult not only for user to
search but for mail-order house to provide. Nowadays,
mining of database has grown more attentive in database
communities due to its wide applicability in retail business
to improving marketing strategy. As pointed out in [9], the
progress in bar-code technology has made it possible for
retail organizations to collect and store massive amounts of
sales data. A record in such data typically consists of the
transaction date and the items bought in the transaction. It
is noted that analysis of past transaction data can provide
valuable information on customer buying behavior, and
thus improve the quality of business decisions (such as
what to put on sale, which merchandises to be placed on
shelves together, how to customize marketing programs, o
name a few).

One of the most important data-mining problems is
database summarization problem. A database summary is
one of the major important types of knowledge to be
discovered. Specifically, give a database of sales
transaction, a market manager would like to discover all

summaries among items such that the presence of some
items that is belonged to one group in a transaction will
imply the presence of some ‘item of another group in the
same transaction.

Definitely, a task of database summarization is to
reduce a large number of actual database tuples into a
relatively small amount of generalized descriptions. Take a
transaction table as an example, a transaction table with
attribute scheme (Saleftem, Customer) might contains
thousands of transaction tuples such as <fresh milk,
Peter>and <guava juice, Jane>. To give a more general
description about classes of customer, these shopping
records could be reduced into a more generalized tuples
like <Juice, Marketer> This delivers an assertion that
Marketers have shopped some kinds of juice during the
past period.

Among several requirements for effective summary
techniques, we concentrate on the following ones. First, it
must be possible to represent database summaries
automatically. Secondly, it must be allowed to utilize fuzzy
knowledge, since actual domain knowledge tends toward
including fuzziness essentially.

In [11], notions of linguistic summaries with fuzzy
terms were proposed to evaluate validity measures based on
fuzzy set theory. However, conjuctive summaries, where
multiple attributes are included, are not considered. Han et
al. proposes an attribute-oriented induction method to
extract database summaries [4]. In its atiribute-oriented
induction method, each atiribute value of a tuple is
substituted with a more generalized description. After one
pass of the substitution, equivalent classes of generalized
tuples are identified and each class is then regarded as a
candidate summary. This bottom-up procedure is repeated
until satisfactory or qualified summaries are obtained. In
[6], Lee and Kim propose an interactive top-down
summary discovery process that utilizes fuzzy ISA
hierarchies as domain knowledge. In their paper, a
generalized tuple as a representational form of a database
summary including fuzzy concepts is proposed. However,
it would not be achieved efficiently since each tuple is
disposed without concurrency.

The rest of this paper is organized as follows: A
generalized tuple as a representation form of a database
summary is delivered in Section 2. Fuzzy set hierarchies
used as domain knowledge is proposed in Section 3. In
Section 4, domain knowledge representation using fuzzy
Petri net to discovery generalized tuples based on given
fuzzy domain knowledge is presemted. In Section 3, a
summary discovery process based on fuzzy Peini net is
proposed. Finally, conclusions are discussed in Section 6.



2. REPRESENTATION OF DATABASE SUMMARIES

Hereupon, a generalized tuple as a representation form
of a database summary is defined. Also, we explicate the
way to evalvate the validity of a generalized tuple
concerning a given database. We suppose that all attributes
appear in a single table to avoid unnecessary complexity of
the presentation. However, this work can be applied to any
other data models where a database fuple can be regarded
as a series of attribute values.

There are many domain concepts that are too
complicated for precise descriptions to be obtained in
practice. Therefore, fuzziness (or approximation) must be
introduced in order to obtain a reasonable, yet trackable,
model. It is more natural to express such domain concepis
in terms of fuzzy sets. Consequently, a vector of fuzzy sets
is used to availingly represent a database summary.

A fuzzy set f on a domain D is defined by its
membership function ufx), where ufx) — [0, 1], is the
membership function of the fuzzy set f, u(x) indicates the
degree of membership of x in /. Since yfx) represents the
degree to which an element x belongs to a fuzzy set f; a
conventional set is assumed to be a special case of a fuzzy
set whose membership degrees are either one or zero.

An example of a generalized tuple concerning an
attribute scheme (ltem, Customer) is <juice, writer>. It
implies an assertion that “The item is juice and the
customer is writer who bought it”. Definition of a
generalized tuple is as follows: [6]

Definition 1: A generalized tuple is defined as an m-ary
tuple </, /3, ..., Jo> of fuzzy sets on an attribute scheme (4,
Ay, ..., Ay). The definition is interpreted as an assertion that
“each tuple has attribute value £}, f2, ..., f;, for attributes 4,,
Ay, ..., Am, Tespectively. Given two different generalized
tuples 8= <ﬂl:ﬁ27 . ,,flm> and &= <jﬁla fé% .- ~>f2m>: on
the same attribute scheme, g, is called a generalization of
g1, it VK, fi C foe

As pointed out in [2], a given database and a set of
possible generalized tuples are regarded as an instance
space and a pattern space, respectively. A summarization
process is to choose valid generalized tuples from a pattern
space of a given instance space. Consequently, the support
degree of a generalized tuple is determined by the sum of
database correspondence tuples. This notion is formulated
as the support degree as follows: [6]

Definition 2: The support degree of a generalized tuple g =
<1 Jro s [ on an attribute scheme (4, 4y, ..., 4,) is
defined as follows:

SD(g | C) = 8SD(g) =

€l :
ziMin[uf1 (A 1 (1A Ysenes . (r,.Am)] | C|

where ua(r4;) denotes the membership degree of an
attribute 4; of a tuple #; concerning a fuzzy set £, and |C]
denotes the cardinality of the database C. We’ll denote
SD(g | C) as SD(g) for simplicity.

Let us look at an example of support degree
computation. Suppose a generalized tuple g on an attribute
scheme (ltem, Customer) is <juice, writer>, where fuzzy
sets <juice> and <writer> and a data view C is given as

Table 1, support degree of <juice, ->, <-, writer> and <juice,
writer> is computed as follows. The first tuple #1 support
<juice, ->, <-, wiiter> and <juice, writer> as strong as 0.4,
1.0 and 0.4, respectively, since its first atiribute and second
attribute value, apple milk and Mary, belongs to fuzzy sets,
<juice, > and <-, writer>, to the degrees, 0.4 and 1.0,
respectively. Analogically, the rest tuples suppost <juice, -
>, <-, writer> and <juice, writer> are similar. As result, we
can say that <juice, -> is supported by 0.4 + 1+ 1 + 0.2 +
0.1 =2.7 tuples out of a total of five tuples, i.e., 54% of the
database table. Similarily, the generalized tuple g, ie,
<juice, writer>, is supported by 0.4+ 0+ 0.8+ 0.2 + 0.1 =
1.5 tuples out of a total of five tuples, ie., 30% of the
database table.
Table 1: The Support Strength of Example Data Tuples

Tuple ltem Customer| Juice | Writer
#1 Apple milk Mary 0.4 1.0
#2 Graph juice Lisa 1.0 0.0
#3 | Watered lemon juice | Peter 1.0 0.8
#4 Pink lady Tom 0.2 0.9
#5 Beer Norman | 0.1 0.3

Total 2.7 3.0

Tuple | Tuple #i supports <Juice, Writer> as strong as
#1 Min(04,1.0)=04
#2 Min(1.0, 0.0)= 0.0
#3 Min(1.0,0.8)=0.8
#4 Min(0.2,0.9)=0.2
#5 Min(0.1,0.3)=0.1

Total 1.5

3. FUZZY DOMAIN KNOWLEDGE

Fuzzy set hierarchies are too fliexible of a structure to
represent data hierarchies. A fuzzy set hierarchy [6] is
defined a partial ordered set, (®, <) where @ is a set of
fuzzy sets defined on the domain D. The binary relation ¢
is the set inclusion relationship between two fuzzy sets. A
fuzzy set f; is a direct subset of another fuzzy set f; if f; < f;
and there is no other fuzzy set f such as f; < fi < /7. A fuzzy
set hierarchy is shown as in Fig. 1.
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watered mixtured juiced pure
juice juice milk milk
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watered grape papaya fresh  coffee
apple juice juice milk milk mitk

Fig. 1: A fuzzy set hierarchy on attribute drink.

As pointed out in [5], the elements of a fuzzy set can
themselves be fuzzy sets. Ordinary fuzzy sets whose
elements are atomic values are called level-1 fuzzy sets.
Fuzzy sets whose elements are level - (k-1) fuzzy sets are
called level-% fuzzy sets. Fig. 1 shows an example fuzzy set
hierarchy on drink that could be used in transaction
analysis. Note that a fuzzy set fin a fuzzy set hierarchy is a
level-k fuzzy set, if the maximal path length from f to
terminal nodes is £-1. In Fig. 1, terminal node such as grape
juice is more specialized than higher level fuzzy set, ie.,
mixtured juice, since an arrow from level-1 fuzzy set, say



grape juice, to a higher level fuzzy set, mixtured juice. The
meaning of a fuzzy set arow from level-(k-7) to level-(k+)
can be interpreted as level-(A-f) fuzzy set is a partially
specified concept of level-(f~), where i > j. Table 2 depicts
some level-k fuzzy sets obtained from Fig. 1.

Table 2: Level-k Fuzzy Sets

is a member of Juice, and papaya milk is a member of
mixtured juice, papaya milk is also regarded as a member
of Juice. By this transitivity, the membership degree of
papaya milk to Juice is determined as ®( yuice(mMixtured
juice), pmixured juice(pPapaya milk)) = (0.7, 1.0) = 0.7.
Meantime, the alternative transitivity that juiced milk is a
member of Juice, and papaya milk is a member of juiced
milk, also implies that papaya milk is regarded as a
member of Juice. Following the latter tramsitivity, the
membership degree of papaya milk to Juice is determined
as = Quuice(juiced milk), uiced mi(papaya milk)) =
®(1.0, 0.8) = 0.8. Note that as far as either of such two
transitivity relationships exists, the membership degree of
papaya milk to Juice holds. Thence the membership
degree of papaya milk to Juice is concluded as &(®(0.7,
1.0), ®(1.0, 0.8)) = 0.8. As a result of this transformation,
we have a collection of level-1 fuzzy sets as shown in
Table 3.

Table 3: Level-1 Fuzzy Sets Obtained Through Support
Fuzzication From Level-k Fuzzy Sets.

value |wateredMixtured| juiced| pure| Juice| Milk
juice | juice | milk | milk

watered apple| 1.0 0.9 00001} 1.0} 00
juice

set level membership function level

Juice {1.0/watered juice, 1.0/mixtured | 3
juice, 0.8/juiced milk}

Milk {0.8/juiced milk, 1.0/puremilk} | 3

watered juice | {1.0/watered apple juice, 2

1.0/grape juice} -

mixtured juice | {0.9/watered apple juice, 2
1.0/grape juice, 0.7/papaya
milk} .

juiced mlk {0.1/grape juice, 1.0/papaya 2
milk, 0.2/fresh milk}

pure milk {0.3/papaya milk, 1.0/fresh 2
milk, 0.3/coffee milk}

watered apple| {1.0/watered apple juice} 1

juice .

grape juice {1.0/grape juice} 1

papaya milk {1.0/papaya milk} 1

fresh milk {1.0/fresh milk} 1

coffee milk {1.0/coffee milk} 1

If two fuzzy sets have the same levels, we can directly
determine the inclusion relationship between them. If they
have different levels, the inclusion relationship between
them can not be directly determined, since the domains are
different. To overcome such obstacles, the level of a fuzzy
set can be either upgraded or downgraded by some fuzzy
set-theoretic treatments. In the transformation procedure, #-
norm operator, ®, and #-conorm operator, ®, were used to
obtain disjunctive combinations of membership degrees. In
this paper, we use Min and Max for -norm and #-conorm
operators to adjust different level of fuzzy sets to the same
through support fuzzification. But, there are also several
alternatives such as Dombi, Dubois-Prade and Yager class
for t-norm operators [12].

Herein, a level-3 fuzzy set Juice is downgraded to
level-1 fuzzy sets in Fig. 1 is illustrated as follows:

Juice = {1.0/watered juice, 1.0/mixtured juice,
0.8/juiced milk}

= {@&(®(1.0, 1.0), ®(0.9, 1.0)) / watered apple
juice,
@(®(1.0, 1.0), ®0.9, 1.0), &(0.1, 0.80)) /
grape juice,

&(®(0.7, 1.0), ®(1.0, 0.8)) / papaya milk,
®(0.2, 0.8) / fresh milk}

= {1.0/watered apple juice, 1.0/grape juice,
0.8/papaya milk, 0.2/fresh milk}

To visualize the implication of support fuzzification,
Let’s consider the reason why the membership degree of
the terminal node papaya milk is determined as 0.8. Since
an arrow from papaya milk to its antecedent mixtured
juice, juiced milk and pure milk, respectively. The next
step is to scan and select fuzzy sets from these candidates
that is also a member of Juice. As a result, mixtured juice
and juiced milk are both candidates. Since mixtured juice

grape juice 1.0 1.0 01400] 10] 01

papayamilk | 0.0 0.7 1.0 { 03] 08} 06

fresh milk 0.0 0.0 02 110)] 02} 10

coffee milk 0.0 0.0 00 (03] 00]03

4. DOMAIN KNOWLEDGE REPRESENTATION
USING FUZZY PETRINET

Now we present a process to discover generalized
tuples based on given fuzzy domain knowledge. In our
summary discovery -process looks for generalized tuples in
a bottom-up and concurrent manner.

Knowledge which is concerning Petri net theory and
applications has been developed since the creation of Petri
net by C. A. Petri in 1962. The properties, concepts and
techniques of Petri nets have been developed to analyze the
flow of information which occurred concurently but with
constraints on the concurrence. An ordinary Petri net is
described as a bipartite directed graph which is composed
of several types of components: places, transitions, tokens
and directed arcs. The places and their token population
represent a system state and the transitions represent
potential events, firing, which lead to a new state. The arcs
define the state transition possibilities. Pictorially, places
are expressed as circles and transitions are expressed as
bars. A place is an input place if it has a directed arc
connecting to the transition; a place is an output place if it
has a directed arc connecting from the transition.

A Petri net represents a system when a meaning or
interpretation is assigned to the various entities in the net.
However, it may be difficult to represent data in precise
form. To overcome these situations, fuzzy production rules
have been used for knowledge representation. A fuzzy
production rule is a rule that describes the fuzzy relation
between two propositions. Let R= { R, | k=1,2, ..., n}
denote a set of fuzzy production rules. The general
formulation of the ith fuzzy production is as follows: [1]

R;: TF d, THEN d (CF = 1)

where
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1) d; and 4, are propositions associated with fuzzy
values between zero and one.

2) py is the certainty factor, 0 < g < 1.

A fuzzy Petri net model is used to represent fuzzy
production rule of a rule-based system [1]. The reader is
referred to [1}, [10] for tutorials on fuzzy Petri nets.

For representing level-k fuzzy sets, each place can
potentially hold either none or one token. If a place
contains a token, then the net is called a marked fuzzy Petri
net. The token value in a place p;is denoted by ofpy),
where afpy) €[0, 1], and it indicates that the degree of truth
of premise. Usually, a place with respect to a level-1 fuzzy
set contains either O or 1 of token value.

In Fig. 2, the premise part “The item value is cofiee
milk”, associated with fuzzy value = 1.0, and the transition
#;, the membership degree to pure milk associated with
fuzzy value = 0.3, and then the membership degree of offee
milk to pure milk associated with fuzzy value=1.0x 03 =
0.3.

The item is i
cofieemilk ~ MP2lp,)  puremi
0.3
1.0 03
Py L P,

Fig. 2: Representation of a fuzzy Petri net.

A transition #, is enabled if Vp; e (%), ofp)) 2 A, where
) is a threshold value and Ae [0, 1]. A transition # is fired
to result in removing token from its input places and
depositing one token into each of its output places.

If a transition has more than one input places or ouiput
places, then the modeled rule is called a composite fuzzy
production rule. If the premise protion or consequence
portion of a fuzzy production rule contains “and” or “or”
connectors, then it is called a composite fuzzy production
rule.

The composite fuzzy production mle can be
distinguished into the following rule-types applied to
compute the membership degree.

Type 1: IF d; THEN d;. (CF = 1).  eldi) = old)) x ().

Type 2: IF d;; AND... AND d;,, THEN d,. (CF = ). o(dp)

=Q((oAdp), .., Adm))x(p1)).

Type 3: IF dy OR ... OR d;, THEN d, (CF = ). aldp)=
(.Ra(djl)x(ul)v EEREY ddﬁ)x(fln))

Type 4:<(Concurrent) IF dy THEN dyy AND ...AND d,

(CF = ). addion) = oA ) x (1), m=1,2, ..., n.

Type 5: (Exclusion) IF d; THEN d OR ... OR dp, (CF

=), odim) = oldis) x (), m=1,2,...,n.

5. A SUMMARY DISCOVERY PROCESS

Suppose that we have a collection of transaction records
of a large database C whose attributes are lem and
Customer as shown in Table 4. Two fuzzy set hierarchies
on ltem and Customer are also given as shown in Fig. 3.

Table 4: An Example Collection of Customer Transaction
Log

ftem [Customer?; ltem |[Customer; liem [Customer

Az Bsq Asq B3, Asy Bss

Ass Bsy A3z Bss Ass B3

Asq Bs; Az B3y Azt Bss

Az B3y Asq B3y Az Bsg

Az B34 Asy Bsy As B34

Asq B34 Asq B3; Az Bsq

Asq B3¢ Asy B3y Az Bsy

Ass B3¢ Aszq Bss Ass B3y

Az Bsy Asz Bss Ass Bsy

Az Bss Assz B3y Az B3y

Ass B3, Ass Bsy Ass B3z

Az B3y Asy Bsy Az B3y

As B3 Asq Bss Asq Bsy

Assz Bs: Aszy Bss Ass Bss

Az Bgsa Ase Bss Az B3y

As2 Bs; Aszs B3y Az By

Ass Bss Az Bsy Ass B3y

Az B3 & Ass B3y 4 Az Bsr

i
Attribute: ftem

Fig. 3: Fuzzy set hlerarchles for attnbute Item and
Customer.

Table 5 depicts some level-k fuzzy sets obtained from
Fig. 3. To respresent level-k fuzzy sets on the same domain
in the relational form, semantic relations are then elicited
from Table 5 as shown in Table 6 [7]. If the domain of an
arbitary attribute is a continous interval, a semantic relation
partitions the domain into disjoint subintervals and assigns
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a representative membership degree to each subinterval [7].

Table 5: Level —k Fuzzy Sets

set label Membership function level
A {1.0/A21, 0.8/A, 0.7/A23} 3
A2 {0.6/A2, 1.0/A23, 1.0/As6} 3
Az {1.0/Az1, 0.8/A35} 2
Ao {0.9/A35, 1.0/A33, 0.9/A34} 2
Aoz {0.8/A35} 2
Asq {1.0/Az} 1
Asa {1.0/A32} 1
Aszz {1.0/As3} 1
Az {1.0/Az4} 1
Aas {1.0/Ass} 1
Az {1.0/Ass} 1

Set label Membership function level
By ‘| {0.9/B21, 0.9/B35} 3
B {1.0/Bx, 0.8/Bsg} 3
Bis {0.9/Bss, 1.0/Bs7} 3

B {1.0/Bz4, 1.0/Bsa} 2
Bao {0.5/B33, 1.0/Bss, 1.0/Bss} 2

Baq {1.0/B3} 1

Bs> {1.0/B32} 1

Bas {1.0/B33} 1

Bay {1.0/B34} 1

Bss {1.0/B3s} 1

Bsg | {1.0/Bs6} 1

Ba7 {1.0/B37} 1
Table 6: Semantic Relation Representation Fuzzy Sets in

the Fuzzy Set Hierarchies
For Attribute Iltem
Ttem AZI Azz A23 AI] .412 w

A 1.0 0.0 0.0 1.0 0.0 1.0

Az 0.8 0.9 0.0 0.8 0.5 1.0

Ass 0.0 1.0 0.0 0.7 0.5 1.0

Asy 0.0 0.9 0.0 0.7 0.5 1.0

Ass 0.0 0.0 0.8 04 0.6 1.0

Ass 0.0 0.0 0.0 0.0 1.0 1.0

For Attribute Customer

Item ! Bn B22 Bl] Bn B13 W

By 1.0 0.0 0.9 0.0 0.0 1.0

By 0.0 0.0 0.9 0.0 0.0 1.0

By 1.0 0.5 0.9 0.5 0.0 1.0

Bay 0.0 1.0 0.0 0.7 0.0 1.0

Bas 0.0 1.0 0.0 0.7 0.0 1.0

Bis 0.0 0.0 0.0 0.0 0.7 1.0

By; 0.0 0.0 0.0 0.0 0.9 1.0

Fig. 4 shows the fuzzy Petri net representation for the
summary discovery. By virtue of bottom-up summary
discovery process, in the first instance, a transaction record
<ds;, B3> is accessed. The budget of accumulation
frequency and support degree (SD) of a fuzzy set 43 and
B, runs to the degrees, 1 and 0.0185, respectively, since
the number of tuples are enumberated to be fifty four in
iransaction file.

Meantime, each transition ¢ from max transition 7,, to 4
is trigered. By the transitivity, transition #, is fired, the
budget of accumulation frequency of level-1 fuzzy set, ie.,
Ajy, to level-2 fuzzy set, i.e., Ay, is obtained to the original
order, 0, plus the token value 1.0 x y(#;) = 1.0. Note that
the token value from input place 4s of transition 1,
multiplied by () is greater than the one of output place
Ay . In such instance, the original token value of output
place of selected transition f; is substituted for minimum

token value of its input place multiplied by 4(z)).

APy AuBy AgB, AnB, AnB, A8,

SFF FF b LT ST F b
|

Ay Ay \ A8, A8, A8, A8, AB, A8, B, 8,
Wt by, R ‘S:nAg%«?&-?:”l?-ruﬁ.@ &y ]j‘x
Y

Ay A Ay 14 8y P Bz’
Wf 2 3%%9 gs ,_g A '\6
gl g A P P & 6,6, 6, 5, &,

Fig. 4: The fuzzy Petri net representation for the summary
discovery.

B}’I

In Fig. 5, after completely accessing data records from
transaction file, we can conclude that the identity trade of
customer, Bj;, who shopped class of item, 4,,, most
frequent. In particular, the identity trade of customer, By,
had oftentimes shopped class of item, 4.

Then, the total number of disk access is the number of
transitions, i.e., specialized phases, multiplied by the
number of disk accesses to read database tuples in C. Let us
denote the number of transitions is a constant. As a result,
the complexity of the summary discovery is O(n), where n
is the size of total tuples in C. Thus, we claim that the
cost of our summary discovery process increases linearly
along with the number of database tuples

B
i 3
ANLBY> : :
Thanpis :03mn2
) ¢ . [ eart.ans :o.341667
e ; 12,8115 £ 03761111 i
< i A12,812> £ 01693445
&, &; & & . {fansis oo i §
e 5
\

@‘ & &5 &l &5 & &1 & &3 &4 @S @S @7

Fig. 5: After accessing data records from transaction file
completely, we can conclude that the identity trade of
customer, B, who shopped class of item, 4,,, most
frequent.

6. CONCLUSION

In the Internet base electronic market, in customer
profiling, characteristics of good customers are identified
with the goals of predicting who will become one and
helpmg marketing departments targer new prospects. Data
mining can find patterns in a customer database that can be
applied fo a prospect database so that customer acquistion
can be targeted appropriately.

In this paper, we have presented data mining technique,
a summary discovery process based on the fuzzy Petri net
model to form more generalized tuples. The proposed
method is more flexible than the one presented in [4] by
reason of the capability to deal with fuzzy domain
knowledge. The proposed method is more efficient than the
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one presented in [6] due to the concurrent process of
summary discovery technique.

We have defined a general type of fuzzy Petri net as a
representation form of a database summary including fuzzy
concepts. By virtue of fuzzy Petri net model where fuzzy
set hierarchies in the actual domain are natually expressed,
the discovery process yields more accurate database
summaries. Fuzzy set hierarchies makes it possibile to
decrease unnecessary hypothesis derivations without
missing any potentially generalized tuples.
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