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Abstract — A novel approach to accurate Euclidean distance transformation (EDT) is presented in this
pdfper. Distance transformation (DT) is an operation of converting a binary image, consisting of object and
“non-object pixels into a distance map (or image) where the value of each pixel represents the minimum distance
Jrom the corresponding pixel to the object surface in the input image. DT has a wide variely of applications in
digital image processing. Most of the existing methods of EDT are based on mathematical morphology, which,
in nature, is not appropriate to perform the task with enough accuracy. To overcome this difficully, the rippling
model, which simulates the ripple effect in the real world, is proposéd. Based on this model, accurate EDT can
be achieved efficiently as the corresponding Voronoi diagram of the input image is jformed. That is, all the
points that have the minimum distances to one of the predefined points are, bounded by the boundary defined
by Voronoi diagram, in the same region. The minimum distance at each pixel with respect to the uniquely
defined surface points is thus encoded as the exact Euclidean distance. We have shown that the digital Voronoi
diagram as well as the Euclidean distance map can be obtained by using the proposed algorithm.

Index terms — Distance transformation, Morphology, Euclidean distance, Voronoi diagram, Digital
image processing.

registration between images, acquired from different
imaging modalities, where corresponding point
patterns are difficult to extract{4]. The brain images
registration is one of such examples, where images

. Introduction

In many applications, it is often desirable to

know the minimum distance from any given point to
the surface of an object in an image. This task can be
accomplished by the so-called  distance
transformation (DT), which generates a distance
map (or image) after performing on an input binary
image (in our work, the object surface in the binary
image is first extracted). The value of each pixel,
called distance code, in the derived distance map is
the minimum distance from the corresponding pixel
o the object surface in the input image. There are
some types of distance measure introduced in [1],
among them, Buclidean, city block, and chessboard
distances are the most commonly used. City block
and chessboard distances are based om the 4-
neighborhood and 8-neighborhood computation
respectively. They are not exact distance, however,
are easy to compute and widely developed. In this
paper, we_focus our atiention on Euclidean distance
transformation (EDT).

DT has a wide variety of applications in digital
image processing(l-2]. One example is the
skeletonization for featwre extraction and
representation]3)]. Another popular application is for

of two modalities are first segmented and the brain
surfaces are extracted. Then, DT is performed on the
surface images of one modality to derive the distance
maps. Subsequently, the registration parameters are
determined by fitting the other surface image on the
distance maps to obtain the minimum surface
distance. This technique is called surface fitting and
has been widely adopted for registration for
multimodality medical images[5, 6]. DT can also be
used to obtain the digital Voronoi diagram (or
Dirichlet tesscllation), which can be exiended to
more interesting applications. One can easily
generate a digital Voronoi diagram by following our
proposed algorithm. A large number of algorithms to
DTs have been proposed so far. Some of the works
are dedicated fo city block or chessboard distance
measure[7, 8], which are not the main concern in
this paper. For EDT, Danielsson[12] proposed
sequential algorithms which uses four passes of 3 X
3 mask operation over the image. Though the error is
quite small, true EDT is still not achieved. Yamada
proposed a parallel EDT algorithm that always yields
correct resulis{13]. Unfortunately, parallel operation
requited an expensive architecture so that not
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everyone can afford it. Another popular technique
for EDT is the mathematical morphology{1, 2, 7, 9,
10]. But as Frank and Owen claimed in their paper
[10], an accurate sequeniial Buclidean distance
transformation algorithm had not yet been presented
until their work was published. In their work,
mathematical morphology approach is adopted and
applied to accomplish the decomposition of the
global operation into local operations. However, it is
found that the approach based on mathematical
morphology is still very complicated and inefficient
in deriving the accurate Euclidean distance measure.
In this paper, we present a new approach to obtain
the true Euclidean distance map efficiently and
effectively based on the proposed rippling model
which models the ripple phenomenon in the real
environment.

The organization of this paper is as follows. In
section II, the rippling model, which accounts for
why accuraic Euclidean distance codes can be
obtained and how our idea works in continuous case,
is introduced. The digital approximation to the
rippling model and the proof of why it remains
correct in the digital images are presenied in section
II. Experimental results and discussion are given in
section IV,

ll. Rippling Model

Rippling is the physical phenomenon
occurring when the wave propagates from a single
point source. The wave propagates outward in the
circular shape with center as the source. The
developed method is based on modeling ripple effect.
In our model, each surface point of the segmented
object is considered as a ripple source. Ripple
propagation is represented by traversing all the
pixels, which construct the wave front surfaces of the
ripples, from the source points. From all surface
points, the propagation speed is the same in all
directions.

Our model can be depicted by Fig. 1. Suppose
s and s, are two surface points in an image and are
taken as the sources of rippling. At the first time
instant, the waves visit all points that are r; distant
away from s, and s, due to the same propagating
speed. These points constitute two circles centered at
51 and s, respectively. If the points currently visiied
are labeled 1y, the distance codes of the points are in
fact determined (i.e., ). In continuous case, Ar can
be chosen arbitrary small so that the distance codes
represent the exact Euclidean distances from the
surface to these poinis. Suppose at another time
instant, two circles stemmed from s, and s, collide at
some point by, which is equally distant away from s,
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and s In our model, the two ripples will stop

propagating right at the meeting point b, although

ripples continue to propagate in the real world. All

meeting points generate a line L through which

ripples from both s, and s, will not pass. Therefore,

L becomes the perpendicular bisecior of ; and s,

This is slightly different from the real ripple effect,

but is just suitable for our application (i.e., Euclidean

distance transformation). The reason is that any
point, say py, lying on the same side of line L as s, is

sure to be closer to 5. This can be easily shown by

the geometric relationship shown in Fig. 1. Since

propagation speed is assumed the same for all ripples,
the precise Euclidean distance code of p, can be

simply determined by the real distance between s,

and pi (i.e., |p1 - s1]) without referring to other ripple

centers. By this way, we can reduce significant

amounts of computation.

In the proposed method, all points in the image
will be sequentially visited. The Euclidean distance
code (EDC) of any point p;, originated from surface
point s;, is determined by

EDC(p) = | p; - s | 1)

Therefore, the distance map is obtained. The surface
image can be segmented into regions that are visited
by corresponding surface points. The result is
depicted in Fig. 2. Fig. 2 in fact is the well-known
Voronoi diagram. We will present the digital
approximation fo this continuous rippling model in
the following section. An algorithm for distance
transformation will be given also. :

Fig. 1 Two ripple sources with s1 and s2 being the ripple centers.
Line L is the perpendicular bisector, so | Dy — 52| = [ D, ~ S1| .By

triangle inequality, |p, - s|+|p, - 2|>|p, - 5| - Therefore,
o= 52l =[py = £+ |2 = 1] [y - 51 -
&5

region]
/ region II

region V $ ®

Fig. 2 Voronoi diagram resulted from our rippling model. All points
in region I are visited by wave originated from s,, all points in region
1I are vjsited by wave originated from s,, and so on.
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. Digital Approximation to Ripple
Effect

In this section, we will infroduce the digital
approximation of the proposed ripple model. At first,
the required data structures are defined in subsection
A. In subsection B, some problems for digital ripples
are presented. Then, we describe how the proposed
algorithm works, and how digital ripples are
generated to approximate the continuous ones in 2-D
space in subsection C. Explicit algorithm using the
proposed data structures is also given here. In
subsection D, it is shown that the digital
approximation to ripple effect meets our requirement.
Extension to 3-D case is described in Subsection E.

A. Data Structure

In order 1o derive the exact Euclidean distance
map of a given image, we need three extra data
structures to record some information when
modeling ripple effect in digital images.

The first data structure includes the visiting
pixel list (VPL), and the next visiting pixel list
(NextVPL). VPL is used to record the coordinates of
all pixels that are currently visited and NextVPL is
for the pixels that will be visited at the mext iteration.
This data structure can be implemented as a linked
list since the number of visited pixels varies at
different time instants and for different images. The
second one, called the source map (SM), is used for
every pixel in the given image to record the
corresponding surface point from which the point is
originated. In other words, no other ripples
generated from other surface points visit the specific
pixel earlier than the ripple originated from the one
recorded in its SM. As mentioned in the previous
section, the exact Euclidean distance code can be
obtained by using Eq. (1) based on the source points
recorded in SM. The third data structure, called the
minimum flag (MF), is used to mark whether the
accurate  Euclidean distance code of the
corresponding pixel is determined. With this flag,
quite some unnecessary computation can be avoided.

B. Characteristics of Digital Ripples

Although the digital ripple is designed to
simulate the continwous ripple, the following
characteristics are still different in these two cases.

First, continuous ripples can expand by
arbitrary step size in all directions. Thus, real circles
can always be generated in any time instant,
However, in digital case, circles can only be
approximated but not exactly formed. To overcome
this problem, digital ripples are allowed to expand by

the range of a given siep size, within which the
pixels away from the surface points are visited at the
same time instant, instead of the sequential visiting
of all pixels in the continuous case. Note that the
same time insiant here, is actually a time interval
since the proposed algorithm is sequential. For
consistency with the real ripple effect, the term “time
instant” is used in lieu of “time interval” hereafter.

The second major difference occurs when two
digital ripple collide. Tow continuous ripples always
meet at a pixel, from which the two ripple centers are
with the same distance. However, digital ripples may
expand and meet at a point with different distance
codes. Since the accurate Buclidean distance code is
desired, the minimum radius among the possible
distance codes is chosen for the visited pixel. This
will be illustrated in more details in the next
subsection,

C. Algorithm

At the first stage in this algorithm, the given
image is scanned. Meanwhile, the source map (SM),
distance code, and minimum flag (MF) at every
surface point are initialized to be the current position,
0, and 1 respectively. The linked list VPL is then
formed and used to record the coordinates of the
surface points subsequently.

The next stage is the digital approximation to
the expansion of continuous ripple. The coordinates
of visited pointed are recorded in the VPL. The
subsequent points which will be visited at the next
time instant can be obtained by searching the 8-
connected neighborhood of the points recorded in the
VPL.

During the searching process, omly the
neighborhoods within the allowed distance are
recorded in a new linked lisi, called the NextVPL.
To be more specific, assuming that at the current
time instant, the pixels being visited are shorter than
f3 away from the surface points, then at the next time
instant, all pixels which are longer than or equal to 1,
but shorter than rq+1 away from . surface points
should be visited. For instance, the step size is 1
pixel and the points with Euclidean distance shorter
than 2 pixels away from surface points are visited at
the first time instant, the points with distance shorter
than 3 pixels but longer than or equal to 2 pixels
away from the surface points are visited at the second
time instant, and so on. Hence digital ripples are
formed at each time instani. SM and distance codes

~at the visited points are set according to the SM at

those neighboring points visited at the last searching
process. There may be more than one neighboring
points (candidates) which can be used to set the SM
and distance codes. The minimum radius among the
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candidates is chosen to be the correct distance code
for the visited pixel. The SM of this visited pixel are
set accordingly to record the surface point which
expands to the visited point with the minimum
digital radius. This is achieved by delaying the
setting of MFs at the visited pixels until the end of
each iteration but not at the instant when pixels are
visited. This can be clearly seen in our algorithm.

When the searching process is finished, the
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VPL (current linked list) can be dropped and the
NextVPL, which is formed during the searching
process is adopted to replace it. This completes a
visiting iteration, and the next iteration can then be
resumed. The iterations continue until all pixels in
the given image are visited. An example when
expanding process at the third time instant is shown
in Fig. 3.

S X S @y @3 -1 -1
ool Y1 lop ol o] -1 -1 -1
@[3 @ | @ 5| ok o] -1 -1
®.f10 @3 e Ji0o @0 3 | @ Jio | @43 -1

-1 e g* o Jg | @5 @y | @ RN RIENE

-1 & M0 | @5 | O M oz | @f5 | ®0

-1 (3)3 (2)2 (1)1 X n 1 (2)2 (3)3
-1 ®f10 | @45 | Oz D1 | w 2o | 940

Fig. 3 Example of the distance map at the 3rd time instant. X denotes the surface points and the pixels with values -1 are not visited yet, ©
denotes at which time instant the pixel is visited and * denotes the colliding pixels.
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D. Proof of Accuracy

We now show why Euclidean distance codes
can be obtained accurately by using the following
mathematical induction: consider at the first time
instant, all pixels with distance codes smaller than 2
are visited, it can be easily shown that all these
points are assigned with accurate Euclidean distance
codes by tracing our algorithm. We then assume at
time instant t,, all pixels with distance codes smaller
than k+1 are assigned with accurate distance codes.
Now let us consider at time instant t,..,. We want to
make sure that all pixels visited at this time instant
are also assigned with accurate Euclidean distance

codes. The accurate Euclidean distance codes of the -

visited pixels must be within [k+1, k+2) at the
(k+1)th time instant. Since problems may arise only
at the colliding pixels and the distance codes of these
pixels can be uniquely determined as the minimum
of all competing distance codes in our algorithm, the
accurate Euclidean distance codes, which represents
the minimum' distance from the pixel to all surface
points, can also be derived at the time instant t. By
mathematical induction, all points in the surface
image can be assigned with accurate Euclidean
distance codes and hence the correctness of the
proposed algorithm is proved.

E. Extension to 3-D

The extension to 3-dimensional surface
distance transformation is straightforward from the
2-D algorithm. The only difference in 3-D case is
that ripples expand in the shape of a sphere instead
of a circle, so that total of 26 neighborhood voxels
must be searched to check whether the Euclidean
distance from the ripple centers lie in the range [z,
r+1) or not, while not the 8-connected neighborhood
pixels employed in the 2-D images. It can be easily
shown that the sets of colliding points constitute
planes of perpendicular bisector.

IV. Result and Discussion

To demonstrate the correciness of our
algorithm, an image of 2-D transverse brain surface
and the obtained distance map are shown in Fig, 4 as
an example. In the following, we show why the
proposed method is superior to the others.

Mathematical morphology for 'digital image
processing, in essemce, iS mnot appropriate to
approximate FEuclidean distance mefric in the
continuous domain. For instance, the sequential
distance encoding process, starting from the given
seed points, based on the morphological operations
can not easily achieve accurate distance codes[10]
even with various of complex siructuring elements.

- ®)
Fig. 4 (2) Surface image of transverse brain. The image is inveried.
(b) The corresponding Euclidean distance map (the distance values
are multiplied by 2).

To obtain the accurate Euclidean distance
codes for all the pixels in a digital image, gray scale
morphological erosions/dilations are used with a
mask which must be at least as large as the largest
object in the input image. The elements of the mask
must also be well-predefined. This is essentially a
global operation. Since all global operations are
prohibitively costly, algorithms that consider only a
small neighborhood at a time are introduced io
simplify the computation while stll giving a
reasonable approximation to the Euclidean distance.
The four-point and eight-point sequential Euclidean
distance mapping algorithms (4SED and $SED)
were proposed by Danielsson[12). These algorithms
are based on a two-component descriptor and a two
picture scans. The errors as compared t0 Buclidean
distance are within 0.29 pixel uniis for 4SED and
0.09 pixels units for 8SED at some points.
Borgefors[11] used a four-pass algorithm io obtain
the exact Buclidean distarices at most pixels but there
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are siill some exceptions at special feature pixels.
Via combining the city block and chessboard
distance transformations to approximaie the EDT,
Frank obtained the accurate Euclidean distance
codes except when the closest point on the boundary
for the Euclidean distance is not located at the same
position as that for the city block or for the
chessboard distances[10]. If the accurate Euclidean
distance codes are to be obtained for all the pixels in
the input image, further decomposition of the
structuring element into smaller one is required in
erder to reduce the computation. Then, total of n(n +
1) / 2 gray scale erosions are needed for an image
size of (2n + 1)X(2n + 1) if the method in[10] is
adopted. For large image size, it is still too costly in
computation. Raster scan sequential algorithms for
computing EDT were implemented by Leymarie and
Levine [14]. They showed that those algorithms have
computational complexities comparable to the city
block, chessboard, and other simple chamfer DTs.
These algorithms are optimal in numerical
computation but exact Euclidean distance codes for
all the pixels in a digital image still cannot be
obtained.

The proposed method provides a more efficient

approach and has the following major advantages:

1) Accurate Euclidean distance codes can be
obtained for all the pixels in the input
image: even at the non-integer coordinates,
true accurate Euclidean distance codes can
still be derived since the ripple center of the
non-integer coordinates can be known from
their integer-coordinate neighborhoods.

2) Highly efficient: suppose the image size is n

X n It can be easily proved that the.

computation complexity for our algorithm
is only 0(112), which is just the same degree
with the size of the given image. The only

redundant computation is om the
perpendicular bisectors.

3) The idea is very simple and can be easily
implemented.

The only costs that we have to pay are the
additional memory spaces allocated for the mask of
MF and SM, and the VPL. This payment is almost
trivial as the easy access of memory with the
computer today.,

V. Conclusion

Eunclidean distance transformation is in
essence the . problem of finding the minimum
distances among various points. The idea of Voronoi
diagram is a good solution to this problem. The
proposed algorithm based on modeling the ripple

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

effect is intuitive. More importantly, the proposed
method is one of the few works that can obtain
accurate Buclidean distance codes. In addition, our
approach is superior to the others in that it is
computationally efficient and can be easily
implemented. Almost only one visit to each pixel is
needed (except at the colliding pixels) in the
encoding process. Instead, intensive computation is
required by using mathematical morphology as every
pixel has to be visited repeatedly. The experimental
results reveal that the proposed meihod is indeed
precise and efficient. It has also been well applied to
the multi-modality image fusion in brain studies.
Furthermore, parallelization of the proposed
algorithm is the theme of future research,
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