FERE/ N\ ERE eSS

Declustering Schemes with Guaranteed Performance

Chung-Min Chen
Telcordia Technologies
(formerly Bellcore)
Morristown, NJ 07960
chungmin@research.bellcore.com

Abstract

Declustering schemes reduce response time of
multidimensional range queries by distributing the
data blocks across multiple disks. Previous declus-
tering methods are mostly heuristic-based and
provide neither guarantee nor asymptotic analy-
sis of the performance. In this paper we seek
declustering schemes with guarenteed worse de-
vietion from the optimal. We devise an O(M*)
algorithm, where M is the number of disks, to
find the optimal (in worse case sense) scheme in
the class of recently proposed cyclic declustering
schemes. We also propose a new scheme based
on golden ration sequences, which can be obtained
in O(Mlog M). We show by analysis that, for
2-dimensional data, the new scheme has a worst
case response time within e factor 3 of the opii-
mal for eny query, and within a factor 1.5 of the
optimal for large queries. Furthermore, we show
that the actual performance of the new scheme is
even better than the theoretical bounds: it is at
most 1 more then the optimal for M < 22, end is
at most 4 more than the optimal for M < 550.

Keywords: declustering, multidimensional range
queries, parallel I/0.

1. Introduction

Range queries are a common class of queries
in many applications, including multidimensional
databases, image and GIS applications. In these
applications, the underlying dataset is organized
as a multidimensional grid, where each point in
the grid is a data block. A range query retrieves
a rectangular subset of the multidimensional data
space. To speed up the response time of the query,
declustering schemes are usnally used. A declus-
tering scheme distributes data blocks among mul-
tiple disks, so they can be retrieved in parallel.

Various declustering schemes have been proposed
in the literature, which include those based on
some “mapping” functions [6, 11, 7, 16, 4, 9] and

Randeep Bhatia
Bell Laboratories
Murray Hill, NJ 07974

Rakesh K. Sinha
Bell Laboratories
Murray Hill, NJ 07974

those transform the problem into a graph theory
problem with heuristic solutions [8, 14, 15, 3, 13].
While graph-based methods produce good perfor-
mance, they bear much higher computing com-
plexity than the mapping-based schemes. Yet, to
the best of our knowledge, there is no evidence
that the graph-based methods provide better per-
formance than the best mapping-based schemes
(for example [16]) for uniform grid files. Graph-
based methods are more suited for non-uniformly
distributed datasets. Among the mapping-based
schemes, the recently proposed Cyclic Decluster-
ing scheme was shown to outperform previously
known schemes [16, 17].

All of the previous schemes aim at minimizing
“average query response time”. The only excep-
tion is [5], which seeks the minimum number of
disks needed if a response time of 1 is to be guar-
anteed for all queries of round shape. In this pa-
per, we focus on declustering schemes with guas-
anteed worse case performance for rectangular
range queries on two-dimensional (2D) data.

1.1. Problem Definition

Throughout the paper we assume a 2D grid of
size Ny X Ny (i.e., Ny columns and N, rows) and
M disks. Each point in the grid is called a cell,
which is a data block to be stored in one of the
M disks. Let Ay = {0,1,...,N; — 1} (and A, be
defined similarly). Then a declustering schemne is
defined as a function f : My x My, — {0,1,... M —
1}. That is, f assigns cell (z,y) to disk number
f(=z,y).

A (rectangular) range query is denoted as Q@ =
[(=,9),1z,4,], where (z,9) is the coordinate of the
southwest corner cell of @, and I, and l, are the
horizontal and vertical side lengths of @, respec-
tively. Let f;(Q) be the number of cells in @ that
get assigned to disk number ¢ by scheme f, i.e.
7(Q) = {f(z,3) = il(z,1) € Q}|. Then the re-
sponse itme of ¢ under declustering scheme f is
defined as :

RT(f, Q) = max(fo(Q), f1(Q),- .., far-1(Q)).

A-330

We may simply use RT(Q) when f is clear from
the context. Tentatively, RT(Q) is interpreted to
be the largest number of disk seeks performed by
any of the M disks. Since seek time is the dom-
inant cost in disk I/0, RT(Q) serves as a good
indication of the elapsed time to answer Q.

Tt is not hard to see that the shortest possi-
ble response time for any query € is given as
ORT(Q) = [Lﬁ—l], which we call the optimel re-
sponse time of Q. A strictly optimal scheme is
one that produces optimal response time for all
queries. It is known that strictly optimal scheme
does not exist in general, except under some strin-
gent conditions (e.g. when M = 1,2,3 or 5 or
M > N,N,) [1]. Let DEV(f,Q) = RT(,Q) -
ORT(Q). Then the problem can be stated as fol-
lows:

Given Ny, Ny, and M, find the scheme f that
minimizes

MAXD(f) = ﬁ%DEV(-f’ Q).

No non-exhaustive search solutions are known for
the problem, which is very likely to be intractable
(whether it is NP-complete, or NP-hard, remains
an open problem). Thus, instead of finding the
global optimal solution, we seek schemes with ap-
proximate performance.

In Section 2, we show how to find, in O(M*) time,
the optimal Cyclic Declustering (CD) scheme, in
the sense of worst case performance. In Section 3,
we propose a new scheme based on Golden Ratio
Sequences (GRS), which gives very good bound
on MAXD(f). The GRS scheme has the advan-
tage that it can be constructed with much lower
complexity (O(M log M)) than the search over-
head of the CD schemes. More interestingly, the
bound on MAXD(f) is independent of the grid
size; it depends only on M. Therefore, the best
scheme can be chosen solely based on the num-
ber of disks and applied to any size of dataset. In
Section 4, we compare the worst case performance
of CD and GRS schemes. We give conclusions in
Section 5.

2. Optimal
Scheme

Cyclic Declustering

Definition:([16]) A Cyclic Declustering (CD)
scheme is a scheme that maps cell (z,vy) to disk
number (z + & - y) mod M, where h, called the
skip value, is some constant between 1 and M —1
that is relatively prime to M. We use CD(h) to
denote a CD scheme that uses skip value .

Cyclic schemes are actually a special case of the
Generalized Disk Modulo scheme [6], which maps
cell (z,y) to disk number (az+by) mod M, where
e and b are some constants. Intuitively, a CD
scheme works as follows: It starts by assign-
ing to the first row (row 0) the disk numbers
0,1,...,M—1,0,1,...,M —1,... Then the disk
numbers assigned to row 4 is obtained by shifting
those assigned to row ¢ — 1 by h positions to the
left. The property that h is relatively prime to
M ensures that any M consecutive cells in any
column also contain M distinct disk numbers.

Prabhakar et al. [16] proposed two methods to
find the best skip value h with the objective of
minimizing the average query response time. One
method (called GFIB) is based on a heuristic that
uses Fibonacci number. The basic idea is that if
M = F; (the ¢'th Fibonacci number), then choose
h = F;_;. Some approximation is used if M is not
an exact Fibonacci number. While this heuris-
tic computes the skip value quickly, it does not
always give close to optimal performance. The
other method (called EXH) is simply an exhaus-
tive search that evaluates all possible values of k.
EXH gives close to optimal performance but the
search overhead is expensive. For each value of &,
there are a total of Cj *** ~C’év »*1 queries to evalu-
ate. Por each query of side lengths I, 1y, it takes
O(l; - ly) to compute the response time. Thus,
the total complexity of a brute force EXH imple-
mentation is O(MNZNZ). Usually, Nz, Ny > M
and thus the complexity could be far larger than
oM.

In the following, we describe a O(M*) procedure

‘that, given M disks, finds the optimal CD scheme

f for which M AX D(f) is the least among all CD
candidates.

Lemma 1: Given a CD scheme f = CD(k)

and a query @ = [(2,%),lssly]. Let ¢ =
[(0,0),!; mod M, 1, mod M]. Then

RT(f,Q) — ORT(Q) = RT(f,q) - ORT(a)-

Proof: See Appendix A. O

The lemma suggests that M AX D(f) can be ob-
tained by considering all possible values of g.
Since there are M? such queries and it takes
O(M?) to compute the response time of each
query, one can find M AX D(f) in O(M*), regard-
less the grid side lengths N and N,. However,
this amounts to an O(M?®) algorithm as there
could be as many as M — 1 different skip values
to consider (when M is a prime). In the follow-
ing, we describe 2 dynamic programming tech-
nique that finds the response time of all possible

A-331

queries g in O(M?) and thus reduces the total
complexity to O(M*).

Fixing a scheme f and given a coordinate (%),
define disk distribution vectors (DDV)

Di(z,y) = [folar), filar),- .., Far-1(g1)), and

D?'(zv y) = [f0(92)1 fl(qZ)y vy fM-l(lD)]:

where g1 = [(0,0), z,9] and ¢; = [(z, 0),1,y]. It
is not hard to verify the relationships:

Di(z,y) = Di(z-1,y)+ D2(z,y), and
D2(z,y) = D2z,y-1)+ Ttz
where Ij(;) is a vector [ag,a,.. .,@p—1) such

that a; = 1 if i = f(=,y), and a; = 0 otherwise.
We use max(D1(z,y)) to denote the maximum
compouent in the vector. :

Based on the relationships, we may compute
D2(z,y), Di(z,y), and subsequently RT(z,y) =
RT(g1) = max(Dl(z,y)), forall 0 < z,y < M—1,
in a column major order. An insight look at the
above expressions reveals that, in practice, D; can
be maintained in an array of M entries (instead
of an M x M matrix), where each entry holds a
disk distribution vector of length M. Similarly,

- D2 can be maintained in a variable that holds a
disk distribution vector (instead of an array of M
disk distribution vectors).

The detailed algorithm is listed in Figurel. The
algorithm has a time complexity of O(M?), be-
cause each step in the nested for-loop requires
O(M) and a total of M? iterations are executed.
It requires O(M?) space as both variables RTY]
and D1[| require O(M?) space. The following
theorem summarizes the results.

Theorem 2: Given M disks, we may find, in
O(M*) time, the optimal CD scheme £ such that
MAXD(f) < MAXD(f"), for all CD schemes
f'. The scheme f guarantees that for all query @,
RT(f,Q) - ORT(Q)< MAX D(f), regardless of
the grid size.

3. Golden
Schemes

Ratio Declustering

Cyclic declusiering schemes require that the shift
distance (i.e., the skip value) between two con-
secutive rows be a constant. The Golden Ratio
declustering scheme is a scheme that allows the
shifts to be variable, as long as any M consecu-
tive cells in any column remain a permutation of
0,1,...,M —1. Por any M, the algorithm for ob-
taining the golden ratio sequence (GRS) and the

Algorithm Compute_Response_Time
Input: ’
int h; // skip value
int M; // number of disks
Output:
int RT[0..M-1,0..M-1];
// RT[x,y]= response time of query [(0, 0), 2, 4]
Type:
DDV int[0..M-1]; // disk distribution vector
Variable:
DDV D1[0..M — 1);
DDV D2;
Funection:
f(z,9) = (2 +h-y) mod M;
// CD scheme with skip value h
Begin
fory=0to M -1
Dify] = [0,0,..., 0];
// initialize to zero vector
fore=0to M -1
R .
D2 =|o0,0,...,0];
fory=0to M —1
{
D2 = D2+ T(54);
D1[y] = D1[y] + D2;
RT(z,y] = max(D1[y]);

}
End

Figure 1: Algorithm for computing table RT|z, y]

golden ratio declustering scheme (GRS scheme)is
as follows.

Step-1: construct M pairs (i, key;) for 0 <i< M,

where key; is the fractional part of (1%5—)

Step-2: sort the first components based on
key values. This will give a permutation on
. - 2 - .

0,1,..,M —1. This is because @173 18 an ir-
rational number and hence the keye are all dis-
tinct. (In practice, we get the same effect, for
all practical values of M, by using 32 bit preci-
sion arithmetic.) Call the resulting permutation
GRS(M).
Step-3: compute the inverse permutation, GRS~
by:

for i=0to M —1 {GRS~Y(GRS(4)) = ¢}
Step-4: the GRS-declustering scheme maps point
(z,y) to disk (z — GRS~ *(y mod M)) mod M.

Example 1: Consider M = 6, then

GRS(M) = 0,5,2 4,1, 3

A-332

GRS Y (M) = 0,4,2,5 3,1

The figure below shows the result of applying the
GRS scheme to a 9 by 9 grid (the southwest corner
cell is taken to be the origin (0,0)).

4|5|0|112]|3{4(510
213y4is5|0]1]2|3]4
of1(2]3|4{5{0]1(2
510[1]2]|3|4]|5(0]1
3l4]5]0{1]2]314]5
1]2)13|4y5[0j1[2}3
415(0|1]2)3[4]|5]0
2t3|4)5]0[1]2]3]4
o|1]2|3)4]|5|0]1 |2

Unlike cyclic declustering schemes, GRS schemes
are more amenable to analysis due to its base on
golden ratio sequences, for which many proper-
ties have been known (e.g. [12, 10]). It can be
proved that when M is a Pibonacci number, the
GRS scheme has a very good behavior (worst case
response time within a factor of 3 and average re-
sponse time within 14%). Our simulation results
indicate that the performance of GRS schemes
varies smoothly as a function of M. So these an-
alytical results provide strong evidence that the
GRS scheme behaves very well for all values of
M. We believe that these analytical bounds are
not tight, and simulation shows the actual perfor-
mance is far better than these theoretical guaran-
tees. '

The following theorem gives a worst case bound
on the response time of a query.

Theorem 3: Let M be a fibonacci number.
Then the response time of any query € is at most
three times its optimal response time. If both di-
mensions of) are at least M in length, then the
response time of @ is at most 1.5 times its opti-
mal response time. In general, if @ has 11 M +72
rows and ¢; M + ¢; columns, where 71,¢1 > 1 and
0 < 702 < M. Then the response time of @
ig at most 1+ r—ﬂf—g times its optimal response
fime.

Proof: See Appendix B. . O

We will now state the bound on average response
time. There are several (equally reasonable) ways
to define average response time of a decluster-
ing scheme and how far it is from the optimal
response time. We found by simulation that
the relative performance of any two declustering
schemes remains the same under all these metrics.
For our analysis, we picked the following metric:

Definition: For any given dimension ¢ X r, we
consider the highest response time of a ¢ X 7

query. Then we sum these response times over
all possible values of ¢ and 7. Similarly, we com-
pute the sum of optimal response times for all
these queries. The average response time of
a declustering scheme is defined as the ratio of
the two sums. Clearly, this metric is at least one,
and a good declustering scheme should have this
metric close to one.

Since we are averaging over the set of all pos-
sible queries, the average response time depends
on the size and shape of the grid. We already
know (from Theorem 3) that the GRS scheme is
nearly optimal (even in a worst case measure) for
large queries (side-lengths > M), so we are mainly
interested in analyzing average performance of
GRS over small and medium queries. Including
larger queries will only improve the average re-
sponse time. Based on above observations, we
pick N, = Ny = M, and analyze the average re-
sponse time of the GRS scheme for all queries in
this grid.

Theorem 4: Let M be a Fibonacci number.
Then the average response time of GRS-clustering
scheme for an M x M grid is at most 1.14.

Proof: We refer interested readers to [2] as the
proof is too detailed to cover in this paper. O

Finally, we can find the metric M AX D(f) for any
GRS scheme f in a way similar to that for the
cyclic schemes. Let f be any GRS scheme, then
it is not hard to see that Lemma 1 still holds if we
substitute ¢ = [(0,0),!; mod M, 1, mod M] with

"¢ = [(0,y mod M),l; mod M, 1, mod M]. Since

there are M3 such queries, we can find M AX D(f)
in O(M*) using a similar dynamic programiming
technique.

Theorem 5: Given .M disks, the corre-
sponding GRS scheme f can be obtained in
O(M log M). We may also find MAXD(f), the
worse rtesponse time deviation from the opti-
mal among all queries, in O(M*). The bound
M AX D(F) is independent of the grid size (it de-
pends only on M).

4. Performance Comparison

We compare the worst case performance of the
OD schemes found by the GFIB and EXH heuris-
tics and the GRS schemes. Figure 2 shows
the result. We varied the number of disks, z,
from 1 to 550. However, instead of plotting
y = MAXD(f,z), the figure plots, for each @,
Yy = maXz<m<s MAXD(f,m). This resulis in

A-333

....................

max dsviation from ORT
@
T
i)

0 f !) 1 ! { ! Il ! L Il

0 S0 100 150 200 250 300 350 400 450 500 550
number of disks

Figure 2: Worst case performance compari-
son of GRS and GFIB. The step functions
are ploited according to the cost metric ¥y =
MaT3<m<amas dev(m).

a step function that is more amenable to vi-
sual examination (The original figure that plots
y = MAXD(f,) is dificult to read as the curves
oscillates and cross-pass each other in some ranges
of).

The figure shows that, for any query Q, GRS
guarantees a response time within ORT(Q) + 1
when M < 22, ORT(Q) + 2 when M < 94,
ORT(Q) + 3 when M < 391, and ORT(Q) + 4
when M < 550 (we stopped the evaluation at
M = 550 due to the long running time for large
M). The results also suggest that the theoret-
ical bound on the worst case ratio to the opti-
mum (Theorem 3) —3 - ORT—shall occur only
for small values of ORT. Indeed, we found that,
when M < 550, it occurs only when ORT = 1.

The GFIB scheme, while giving good performance
when M is a Fibonacci number, produces less ef-
ficient performance than GRS on non-Fibonacci
numbers overall. As the figure shows, its devi-
ation from the optimum grows at a rate faster
than that of GRS, and reaches as high as 11 when
M > 525. For EXH, it produces a response fime
at most ORT(Q) + 3 when M < 223. We do not
bave results for M > 223, due to EXH’s excessive
running time to find the best skip value. Compaz-
ing GRS to EXH, we note that GRS schemes can
be obtained efficiently for large M (finding the
Golden Ratio Sequence takes only O(M log M)
in time). Even for the range of number of disks
(M < 223) where we managed to compute the
skip values for EXH scheme, GRS performs no
worse than EXH in terms of maximum deviation
from the optimum.

5. Conclusion

We look at the declustering problem for 2D range
queries. Unlike previous work, we seek decluster-
ing achemes that minimize worse deviation from
the optimal. In the class of cyclic declustering
schemes, we show how the optimal schemes (in
the worst case sense) can be found in O(M?),
given M disks and regardless of the grid size. We
also propose the golden ratio scheme, which can
be easily constructed in O(M log M). We prove
analytically that whenever M is a Fibonacci num-
ber, the golden ration scheme has close to op-
timal performance. Our simulation shows that
the performance of the golden ratio scheme varies
smoothly with M, which is a strong evidence that
our scheme has good behavior for all values of M.

Of most importance, our resulis show that both
schemes provide very good worse case perfor-
mance guarantee. In particular, the golden ratio
scheme guarantees that, for any query, the devia-
tion from the optimal response time is at most 1
when M < 22, at most 2 when M < 94, at most
3 when M < 391, and at most 4 when M < 550.

Appendix

A. Proof of Lemma 1

We divide @ into three areas as shown in the fig-
ure below.

I

b, °

M
b mod M 1 Os '__'_:I
fe——>}
Ix wmod M

It is not hard to see that Q; and Q; can be par-
titioned into ”stripes” of length M (as shown in
shaded area) , where each stripe contains M dif-
ferent disks under the Cyclic Declustering scheme
and thus contributes 1 to the respomse time.
Thus,we have

RT(Q) = RT(Q:)+ RT(Q:)+ RT(Qs)
= Ll + L2)t mod 1) + RT(Qs)
Similarly,

ORT(Q) - I"Qll"";?;l‘i"Qiil'l

A-334

= L+ [2211z mod M) + ORT(Qs

Also, it is easy to see that RT(Q3) = RT(q) (as
the response time of a query-under CD depends
only on its side lengths) and ORT(Q3) = ORT(q)
(as they have the same size). Therefore,

RT(Q)- ORT(Q) = RT(Qs)— ORT(Qs)

RT(q) — ORT(qg)

B. Proof of Theorem 3

We will only give a sketch of the proof, due to
space limitation. Interested readers may contact
the first author for a full version of the paper with
complete proofs.

First, we establish some properties on the permu-
tation of golden ratio sequences. In general, given
a permutation ¢ over {0,1,2,...M — 1}, we can
define the o-declustering as mapping point (4, j)
to disk (i — o~ *(j mod M)) mod M. The inverse
permutation ¢~ is constructed from o the same
way that GRS~ is constructed from GRS (see
Section 3). It is not hard to see that the GRS
scheme is a o-declustering scheme. It turns out
that the performance of a o-declustering scheme
is closely related to the distribution of elements
in o.

Definition: Let R be any interval (i.e., set of
consecutive numbers) in {0,1,2,...,M —1}. R
can be a "wrap-around” interval, e.g. [M—3, M —
2,M —1,0,1]. The geps of R in ¢ are defined
as following: mark the positions of elements of
R in 0. For each of the |R| marked positions,
count the number of elements to the next marked
position. Por the last marked position, compute

its distance to the first marked position assuming -

that the sequence o is cyclic. These |R| numbers
are defined as the gaps of R in 0.

Bxamples

Let M =13, ¢ = 0,5,10,2,7,12,4,9,1,6,11,3,8
and R = {11,12,0,1}. Then the marked posi-
tions (of R in o) are {0,5,8,10}, and the gaps
are {5,3,2,3}. It is easy to see that the sum of
all the gaps is always equal to M.

The following theorem states that the response
time of @ under o-declustering scheme can be
characterized in terms of gaps of R in 0.

Theorem 6: Consider a range query Q with »
rows and ¢ columns, where r,c < M. Let R be
the set of row-indices of Q, and let {g1,92,..., 9}
be the set of gaps of R in o. Sort the gaps in
non-decreasing order 2o that g1 < g2--- < ¢.

Then the response time of @ under o-declustering
scheme is at most the maximum value of j such
that g1 +g2+---+9g; <c

What the theorem is saying is that in order to
minimize the response time of), we want a per-
mutation ¢ such that most of the gaps for @ are
reasonably large. Finding such a permutation
is a very well studied problem in mathematics
and theoretical computer science [12, 10]. The
GRS sequences are such permutations based on
Fibonacci numbers and golden ratios.

Definition: The Fibonacci numbers are defined
as follows: Fo = 0,F; = 1, and recursively
Fp, = Fr_q1+ F_; for k > 2. (The sequence
is 0,1,1,2,3,5,8,13,21,34,55,89,144, 233,..).
The golden ratio, 7_5{3 ~ 0.618, is the limit of

Fruoz
By

The following theorem states that when M
is a fibonacci number, the GRS sequence on
{0,1,..., M — 1} has very well distributed gaps.

Theorem 7: [10] Let M = Fy, and GRS(M)
be the Golden ratio sequence on {0, 1,..., M —1}.
Then for any (possibly wrap-around) interval R
(in [0, M — 1]) of length F; + s, where 0 < s <
F;_1—1, the gaps of R in GRS(M) are following:

o s gaps of length Fy_; each
e F;_3+ s gaps of length Fy_;;q each
e F,_y — s gaps of length Fr_;.2 each

So, while the gaps are not of equal length, they
can take at most one of three different values,
which are, roughly, within a factor of 2.6 of each
other.

The following lemma follows directly from Theo-
rems 6 and 7.

Lemma 8 Fix M =, F; and GRS(M)-
declustering scheme. Let @ be any query with
Fi+srows (0 < s < F;_; — 1) and ¢ columns,
where both the number of rows and columns are
at most M then

(]

rT(Q)<{ °F [e=t], ife> oFis
- . c—8Fu—i—(Fi—2+8)Fu—s
25 + F. —2 + F;,..;i, To— i1

ife>sFr_;+ (F'_z -+ S)Fk_g+1

(Please note that the first bound is larger than
the second bound, which, in turn, is larger than
the third bound. That is, we have better bounds
for larger values of c.)

A-335

Finally, Theorem 3 follows from the following
three lemmas, which can be proved using The-
orems 6, 7 and Lemma 8.

Lemma @: Let M be a fibonacci number, and
@ be a query such that both dimensions of Q are
at most M. Then the response time of Q is at
most three times its optimal response time.

Lemma 10: Let M be a fibonacci number,
and @ be a query such that one dimension of Q
is at most M and the other dimension is at least
M. Then the response time of @ is at most three
times its optimal response time.

Lemma 11: Let M be a fibonacci number,
and @ be a query with 74 M +r; rows and ¢1 M +c;
columns, where r1,¢; > 1 and 0 < 73,¢0 < M.
Then the response time of Q is at most 1+ a3
times its optimal response time.

References

[1] K. Abdel-Ghaffar and A. E. Abbadi. Opti-
mal allocation of two-dimensional data. In
Proceedings of the Internetional Conference
on Dataebase Theory, 1997.

[2] R. Bhatia, R. K. Sinha, and C. M. Chen.
Declustering Using Golden Ratio Sequences.
Bell Laboratories, Murray Hill, NJ, Jan
1999. Technical Memorandum (a short ver-
sion to appear in ICDE 2000).

C. Chang, B. Moon, A. Acharya, C. Shock,
A. Sussman, and J. Saltz. Titan: a high-
performance remote-sensing database. In
Proc. of 13th Int’l Conf. on Data Engineer-
ing, pages 375-384, Bermingham, U.K., Apr.
1997.

[4] C.M. Chen and R. Sinha. Raster-spatial data
declustering revisited: an interactive naviga-
tion perspective. In 15th Int. Conf. on Data
Engineering, 1999.

[5] L.T. Chen and D. Rotem. Declustering ob-
jects for visualization. In Proc. of 19th Int’l
Conf. on Very Large Data Bases, pages 85—
96, Dublin, Ireland, Aug. 1993.

[6] H.C. Du and J.5. Sobolewski. Disk allocation
for cartesian product files on multiple disk
systems. ACM Trans. on Datebase Systems,
7(1):82-101, 1982.

3

—_—

[7] C. Faloutsos and P. Bhagwat. Declustering
using fractals. In Proc. of 2nd Ini’l Conf.
on Parallel end Distributed Information Sys-
tems, pages 18-25, San Diego, CA, Jan. 1993.

(8] M.T. Fang, R.C.T. Lee, and C.C. Chang.
The idea of declustering and its applications.
In Proc. of 12th Int’l Conf. on Very Large
Date Bases, pages 181-188, Kyoto, Japan,
Aug. 1986.

[9] H. Ferhatosmanoglu and D. Agrawal. Con-
centric hyperspaces and disk allocations for
fast parallel range searching. In Proc. of 15th
Int. Conf. on Date Engineering, pages 608-
615, 1999,

[10] A. Ttai and Z. Rosberg. A golden ratio
control policy for a multiple-access channel.

IEEE Transactions on Automatic Control,
AC-29:712-718, 1984.

[11] M.H. Kim and S. Pramanik. Optimal file dis-
tribution for partial maich retrieval. In Proc.
of 1998 ACM SIGMOD Conference, pages
173-182, Chicago, IL, Jun. 1988.

[12] D.E. Knuth. The art of computer program-
ming Vol. 3. Addison-Wesley, Reading, MA,
1973.

[13] S. Kou, M. Winslett, Y. Cho, and J. Lee.
New GDM-based declustering methods for
parallel range queries. In Int! Deatcbase
Engineering and Applications Symposium
(IDEAS), Aug. 1999,

[14] D.R. Liu and S. Shekar. Partitioning simi-
larity graphs: a framework for declustering
problems. Information Systems: An Inter-
national Journal, 21(6):475-496, Sep. 1996,

[15] B. Moon, A. Acharya, and J. Saltz. Study
of scalable declustering algorithms for paral-
lel grid files. In Proc. of 10th Int’l Parallel
Processing Symposium, pages 434-440, Hon-
olulu, Hawaii, Apr. 1996.

(16] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal,
and A. E. Abbadi. Cyclic allocation of two-
dimensional data. In 14th Int’l Conf. on Data
Engineering, pages 94-101, Orlando, FL, Feb
1998.

[17] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal,
and A.E. Abbadi. Efficient retrieval of mul-
tidimensional datasets through parallel 1/0.
In 5th Int. Conf. on High Performance Com-
puting, Dec. 1998.

A-336

