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Abstract

Iconic indexing is an important tool for im-
age database. For similarity retrieval of
iconic image database, there are 3 types
of similarity. Only one of them is isomet-
ric, hence transitive. We present polyno-
mial time algorithms to find maximum sim-
ilar subpicture of two given pictures when
the similarity is isometric. For nonisometric
types, we show that the problems are NP-
complete, even when all symbols are dis-
tinct, by reducing the 3CNF satisfiability
problem to them.

Keywords. Image database, Spatial rela-
tionship, Similarity retrieval.

1 Introduction

Tanimoto introduced iconic indexing in [1].

In short, we use symbols to represent ob--

jects in image files. This allows the use
of spatial relationship of symbols for re-
trieval of images. Spatial relationship is a
fuzzy concept and is thus often dependent
on human interpretation. Thus, similarity
retrieval of images, which is one of the dis-
tinguishing functions different from a con-
ventional database, is a necessity.

Chang et al [2] introduced 2D strings for
iconic indexing. In this approach, a pic-
ture query can also be specified as a 2D

string. The problem of pictorial informa-
tion retrieval then becomes a problem of
2D subsequence matching. Chang et al [2]
then defined three types of 2D subsequence
matching and, accordingly, similarity re-
lation. The three types of similarity are
equivalent to the following coordinatewise
definitions.

Definitions. Let A and B be two icons
in P, and A’ and B’ be two icons in P,
such that A and A’ represent the same ob-
ject, and B and B’ represent the same ob-
ject. Suppose icons A and B have the co-
ordinates (1, y;), (22, ¥2) in picture P; and
the corresponding icons A’ and B’ have
the coordinates (as, b;), (as,b2) in P;. Let
A = $2_$11Ay =12 — U1, A, = a2 — a4,
and A, = by — b;. Between P, and P, we
say A and B in P, and A’ and B’ in P have
the relation of type-i, i = 0,1, 2, according
to the corresponding criterion.

type-0 A;A, > 0and AyA, >0

type-1 “A;A, >0o0r A, = A, = 0" and
DA >0o0r Ay =A, =07

type-2 A, = A, and A, = A,

For brevity, when the corresponding icons
are clear, we simply say A and B have the
relation of type-i.

Definition. Let S be a subset of icons in
picture P, and T be a subset of icons in Ps.
We say S and T are similar subpictures of
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type-i, ¢+ = 0,1, 2, respectively, if there is a
function f from S to T such that

1. f is bijective,

2. Forevery Ain S, A and f(A) represent
the same object,

3. For any pair of icons A and B in S,
A and B in P, and f(A) and f(B) in
P> have the spatial relation of type-i,
1 =0,1, 2, respectively.

Intuitively, in finding maximum similar
subpictures, the case when the symbols are
all distinct is easier than the case when the
symbols are not all distinct. Given two
iconic pictures P; and P». When symbols
are all distinct in each picture, Chang et
al reduce the problem of maximum similar
subpictures of type-0 (respectively, type-1,
type-2) to the clique problem as follows. Let
V' be the set of symbols appearing in both
P, and P,. A graph Gy(P, P,), i =0,1,2,
is constructed as follows. There is an edge
between s and ¢ if and only if they have the
relation of type-i, 1 = 0,1,2. Therefore we
have an undirected graph G;(Py, P;), and
maximum complete subgraph of G;(Py, Ps)
corresponds to maximum similar subpic-
tures of type-i, 1 = 0,1, 2.

Note that similarity of type-2 is isomet-
ric, that is, the difference in both coordi-
nates are preserved, hence transitive. For
maximum similar subpictures of type-2, we
present an O(n?) algorithm when symbols
are all distinct and an O(n®) algorithm
when symbols are not all distinct.

A related problem is called the picture
pattern matching problem: Given an iconic
picture P and an iconic pattern Q, de-
termine whether the pattern @ appears
in the picture P or not. Tucci et al [5]
showed that, when the symbols are not all
distinct, the type-0 (respectively, type-1)
picture matching problem is NP-complete.
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Note that when all the symbols are distinct,
we can construct the graph G;(P,Q) and
check if the induced subgraph G;(P,Q)[U]
is a complete graph or not, where U is the
subset of vertices corresponding to the pat-
tern (). This shows that the picture pattern .
matching problem can be solved in polyno-
mial time when all the symbols are distinct.

We show in this paper that, for picture
similarity problem of type-0 and type-1,
the problem is NP-complete even when the
symbols are all distinct. Our method is to
reduce the 3CNF satisfiability problem to
them.

2 Maximum Similar
Subpictures of Type-2

Assume that we are given two iconic pic-
tures P, and P, each containing a set of
n distinct icons. Recall that, to find a
maximum similar subpictures of type-2, we
can construct the corresponding undirected
graph Ga(Pi, P»). We show that Go(Py, P)
is a union of complete subgraphs. There-
fore, there is an efficient algorithm for find-
ing maximum similar subpictures of type-2.

Note that similarity of type-2 is transi-
tive. Let s, t, and u be three distinct icons
in P, and P,. Assume that (1) s and ¢ has
the relation of type-2, and (2) ¢ and u has
the relation of type-2. We can conclude that
s and v must have the relation of type-2. In
the graph G5(Py, P»), if there is an edges be-
tween s and ¢ and an edge between ¢ and wu,
then there must be an edge between s and .
Therefore, the graph G»(P;, P;) is a union
of complete subgraphs. Hence, by checking
the the adjacency lists, it only takes O(n)
time to identify each maximal complete sub-
graphs. Since it only takes O(n?) time to
find all relations of type-2, we have the fol-
lowing theorem.



Theorem 1 It takes O(n®) time to solve
the problem of mazimum similar subpictures
of type-2 when all symbols are all distinct.

When symbols are not all distinct, we
have the following algorithm, taking O(n®)
time, to solve the problem of maximum sim-
ilar subpictures of type-2.

The algorithm first sets the lower left cor-
ner of each iconic picture to be the ori-
gin and record the coordinates of all sym-
bols s;’s in P, and ¢;'s in P,.  We get
two lists S = {(z;,¥s;8) }1<i<n and T =
{(pj,4:t;) }1<j<n- We require that the in-
dexing is in the order of the sum of both
coordinates and, when there is a tie, in the
order of horizontal coordinates.

The algorithm then finds a maximum
subset of icons (), such that each pair of
icons in () have the relation of type-2. Sup-
pose that (z;,y:;8;) in S is matched with
(p1,qi;t;) in T in the resulting similarity
subpicture defined by . Then any icon
sy satisfying the following two conditions
must be in @: (1) (zx,yx; sx) 18 in S, and
(o, ;1) isin T, (2) py — p; = = — ; and
@~ q; = Yr — Yi, (3) s and ¢ represent the
same object.

The algorithm computes Q by superim-
position. The method is described as fol-
lows. For each (z;,v:;s;) in S, let T; be
the subset of T" whose third entry ¢; rep-
resent the same object as s;. Then, for
each (pj,gj;t;) in T;, the algorithm counts
the number of matches by superimposing
P, and P,. The superimposing is done by
identifying the coordinates (z;, y;) of P, and
(pj, q5) of Py.

To make the counting of matches efficient,
the algorithm creates another two lists from
the original lists S and T by shifting their
coordinates so that the new origins are lo-
cated at (z;,;) and (p;, ¢;), respectively. It
is easy to see that, for each (x;,v;;s;) in S
and ecah (pj;, g;;t;) in T}, it takes O(n) time

to count the matches. Since the size of S
is at most n, and the size of T; is at most
n, the counting of matches is performed at
most n? times. Therefore the above algo-
rithm is of O(n?®) time.

Theorem 2 It takes O(n®) time to solve
the problem of mazimum similar subpictures
of type-2 when symbols are not all distinct.

3 Maximum Similar
Subpicture Problem
of Type-0 or Type-1

In this section, we show that the maxi-
mum similar subpicture problem of type-0
or type-1 is NP-complete. We reduce the
3CNF satisfiability problem to them.

Let the set of Boolean variables be
{z1,22,---,2}. Given a Boolean formula
® in 3CNF, say,

D=ci Ao A+ Acp,

" where for each ¢,, 7 =1,2,---,n,¢, = (J V

I5 v 13) for some distinct literals [7, 15, 5. We
can construct two iconic images P, and P
from @ as follows.

P, and P; are both of size 3n in width and
2k in height. Thus we can identify their
background as a rectangle of 3n columns
and 2k rows. The corresponding areas for
clauses, literals and variables are as follows.

e For each ¢,, we associate the 3r — 2-th
to 3r-th columns to it in both Py, Ps.

e Define ¢; and go as follows.

Ir—2 ifi=1
a(i,r)=1¢ 3r—1 ifi=2
3r ifi=3
3r ifi=1
glt,r)=¢ 3r—1 ifi=2

3r—2 ifi=3
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For each I}, we associate the g;(i,7)-th
column to it in P;, j =1,2.

e For each z;, we associate the (2i — 1)-
th row to it in P; and the 2i-th row to
it in P,. For each Z;, we associate the
24-th row to it in P; and the (2i—1)-th
row to it in P,

Then P, and P, are iconic pictures with
the above background and 3n symbols filled
in it. The symbols are I]’s, hence all dis-
tinct. For each [7, in both P, and P, it is
at the corresponding column to /] and and
at the corresponding row to the variable,
possibly a negation, of I].

Note that it takes polynomial time to con-
struct P, and P».

Example. If ® = (21 VE3VT2) A (T1 V22V
x3) with the specified order of clauses and
literals, then the corresponding P; is

L3
I3
B
5
i
i
The corresponding P is
I3
I3
3
I3
L
i

Between P, and P, the only differences
are (i) within each clause, the order of
columns for the three literals are opposite;
(i) for two complementary literals, the or-
der of rows are opposite. Therefore we have
the following properties.

Property I For the same r and ¢ # j, ]
and /7 don’t have the relationship of
type-0 or type-1.

Property II For r # s and any 4,7, if I
and [ are complementary then they
don’t have the relationship of type-0 or
type-1.

Property III For r # s and any 1,7, if
[ and [ are not complementary then
they have the relationship of type-0
and type-1.

Clearly, by Property I, any set with the
relation of type-0 or type-1 between P; and
P> has at most one literal from each clause.
Therefore its size is at most n. For brevity,
we use max;{P;, P}, i = 0,1, to denote
the maximum size of sets having the rela-
tion of type-i between P, and P,. Clearly,
max;{P;, P} <m,1=0,1.

Lemma 1 ® is satisfiable if and only if
maxo{ Py, P} =n

Proof: If ® is satisfiable, then there is a
satisfying assignment and each ¢, contains
at least one literal I] assigned true. Pick
one such literal from each clause, we get
a set S of size n. Note that for any ],
in S they are not complementary. There-
fore they have the relationship of type-0 by
Property III. Hence S has the relationship
of type-0. Therefore maxo{P;, P>} = n.

If there is a set S of size n with the rela-
tion of type-0 then S has a literal from each
¢, by Property I and pigeonhole principle.
Any two of them are not complementary by
Property II. Therefore, by assinging true to
each literal in S, ® is satisfiable.

Similarly, we have the following lemma,
too.

A-324



Lemma 2 @ is satisfiable iof and only if
max;{Py, P} =n

Therefore, we have the following two lem-
mas.

Lemma 3 3CNF-SAT <, the problem of
mazimum similar subpictures of type-0.

Lemia 4 3CNF-SAT <, the problem of
mazximum similar subpictures of type-1.

Recall that, when symbols are all distinct,
we can reduce the problem of maximum
similar subpictures of type-0 (respectively,
type-1) to the clique problem. Therefore,
both problems are in NP. We then have the
following conclusions.

Theorem 3 The problem of mazimum
stmilar subpictures of type-0 is NP-complete
even when all symbols are distinct.

Theorem 4 The problem of maztmum
similar subpictures of type-1 is NP-complete
even when all symbols are distinct.
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