FEEFN+RES

TEAGSS

BEANTEAFTER A4 R BEIRE

A Hardware Memory Allocator Based on Greedy Buddy System

== —fE
[ ol AR By

David Lee
ERyR==

7T

FE
=

HET

Gwoboa Homng

HRBZFLS

Institute of computer Science, National Chung Hsing University

Abstract

In this paper, we describe a new design of memory allocator,
cailed greedy buddy system. It is based on the “second chanee™
concept which can search the buddy with half size of the requirsd
buddy if the required buddy is not available and a2 new aadress
finding strategy, called greedy routing , which can greaily
reduce the amount of small-sized memory blocks. The simulation
resuits show that our design outperforms the implementation of
[5] in the aspects of allocating much larger size of memory
wotally and generating less average number of external fragments.

&

ERERE-HBEFANKBEASTANFRABAFLERAOTARY

REMR LA 2RRE ERSNBATAREUE ARSI E
AR EEFALAATERE AFRLARASHERER IS 2AF
BERIERUIRE  FATFCHBUBALRTEAFT LR TR IR
& Chang % Cehringer LAHEA X FRREVIEZ L AR o
1. Introduction

Memory is the most important resource besides CPU in 2

computer system. based on the Von Neumana architecture, since

il of the instructions and-data should be placed on it for CPU to
ccess tiem dirsctly. High-performance memory management
igorithms have been proposed and of considerably studied. But
each of them has deteess. The buddy system{7], which allocates
memory in blocks whose leagths are powers of two, for exampie.
it is known for its high-speed operations of allocation and
dealivcadon and the simplicity of implémentation as weil, but
2130 known for the serious proolem of low memory utilizaticn. A
aumber of computer scientists{2,6.9,10.11] have focused on
impeoving its performance via sofovare implementations. The list
sased algorithms such as the “first fit” and “nexz-fit” achieve
good memory utilization but incur a time penalty associzted with
the scanning free list operation(8].

2w

[

[s there other idea to improve the performance of dynamic
memory management? The answer is affirmative. A hardware.
allocator based on buddy system was studied first by
Puttkamer{12] in 1975. It is a bit-map approach, using a
contiguous sequence of bits to map the usage of a contiguous
sequence of memory blocks. Another hardware realization of the
buddy system .also based on the bit-map approach, was proposed
by Chang and Gehringer in 1996(5). It achieves the high-speed
requirement, allocating or deallocating memory in constant time,
and also  improves the underbeily, poor memory utilization, of
the buddy system. They achieved the improvement by converting
the internal fragmentation into the external fragmentation .which
might be used in respoase 10 the subsequent memory requests. In
their scheme, the searching of the available group of contiguous
memory blocks large enough for the memory request stll
complies with the rule of standard buddy system waich results in

C-69

many smail sized availacie fragments. Thus their scheme is not
s0 powertul in the aspect of allocaiing avaiiable and large enough
contiguous memory blocks.

In this paper. we propose a new scheme of the memory
allocator called Greedy buddy system. It is based on both the
improved searching policies of the standard buddy system called
Second chance and Greedy routing. Not only is the new
scheme inherently with the capability of allocating memory in
consiant time, but also improves the underbeily of the standard
ouddy system without the serious external fragmentation. And
thus provides a considerable high possivility of granting
subsequent memory requesis,

-

2. The Memory Allocator Designed by Chang And
Gehringer

In 1996, Chang and Gehringer proposed a  hardware
impiementation of the standard buddy system with some
modifications on updating the bit-map. Their modification is
mainly on the mechanism of bit-flipper of the bit-map. The
function of the flipper mechanism is used to mark the’ bits
corresponding to the memory dacided to be allocated for the
request by other allocation mechanisms mainly
gate tree and an.and-gate tree. The or-gate tree is used o
_decide if there is an appropriate free blocks for the request and
the and-gate Tree is used to heip in acquiring the staring addrsss
of the trez memory blocks found by the or-gate ree

including a or-

<.

In shom, the standard buddv svstem <an only allocate or

deatlocats N ( N=1i “’,1, wharz S is the request size or fres
claiming size) blocks of memory whiie the modified buddy
system can allocate or deallecate 2xactly S blocks of memory.
Figure 1 illustrates the operation of 2 or-gate tree. There are two
key concepts-of this mechanism. First, the zero vaive of a node
(output of or gate) indicates 2all of the bits at the bottom of the
subtree rooted by the node are 0s. Second. the availabilicy
checking is achieved by anding ail outputs of the nodes at the
. level of searching size (which is 2° in this demonstration).

The
scenario follows Figure 1. The first step of this operation is 10
snerate A temporary hit-map 11om the nodes of the level in the
or-22t¢ tre¢ corresponcing o the searching size. The second step-
is {0 set each bit corresponding to the staring address of the
subtreg rooted by the node in the or-gate tre= of the level
corresponding to the searching size to be the output value of the
root node of the subtres aad the other bits to valus 1.

<.

Figure 2 demonsirates the operaticn of an and-gate tres

The enclosed values 2re used to tind the lefimost z2ro in the
temporary  bit-map. This is achieved by the multiplexers
described in Figure 2. The main goal of the. and-gate Ires

mechanism. acquiring the starning acdress of the lefimos: 7



hERENTAEZEHEREE

available block, is achieved by gathering the outputs of
multipiexers orderly with the left input of this and-gate wee's
root node being the msb( most significant bit) of the tarast
address. Apparently, the policy of this address finding
mechanism is “first fic". ’

After deciding the starting address of the available memory
blocks, the oniy thing lett to do is o set all of the bits
corresponding to the available memory blocks o 1. Chang and
Genringer designed a tree stvle mechanism fo achizve this and
furthermore solvad the serious intemnal fragmentation grobiem in
the standard -buddy system. The mechanism they designed is in
fact a decision tree. Each node is a decision point which makes
its decision based on the inputs including the indication from its
parent . onz guiding signal line from starting address register, and
one consuiting signal line from request size reqister. The decision
made by each node passes to its two children. Each one uses the
same decision table as described in Figure 3.

3. Greedy Buddy System
3.1 Second Chance And Greedy Routing

Suppose we have a 16-block storage. Let’s conmsider the
sequence of requests to the storage based on the buddy system
modified by Chang and Gehringer . The content of the storage
bit-map is tabulated in Table 1 . We can easily check that the
modified buddy system could not allocate the contiguous
available storage blocks to the request No. 3. The reason is that
the searching size for request No. 3 is 8 blocks while the storage
does not have so many contiguous available blocks. Therefore, it
is a good idea to pause on whether we can design an enhanced
searching mechanism with capability of solving or improving the
partial blindness of the buddy searching procedure and its
corresponding bit-map updating mechanism. One approach is to
seek for a free buddy of 4 blocks-if there is no available buddy
with 8 blocks ! In other words, why don't we give the searching
ntechanism “a second chance” to search for a inferior buddy? (A

AR .
inferior buddy is a buddy of size 2' it .where R is the size of

the request.) The inferior buddies may be combined together to
fulfill the request size. Of course , we need to develop the new
checking mechanism and bit-map updating mechanism without
too much extra hardware cost and time penalty. For example, in

Table 1 if we give a *“second chance” to the request No. 3. The .

new searching mechanism will obtain the starting address of the
fourth block and finally return the starting address of the third
block based on greedy routing mechanism.

The basic idea of the “second chance” approach is to search for
an inferior buddy when the searching mechanism could not find
any available buddy whose size is the searching size of the
request. However, its size is only a half of the searching size.
Therefore, we need the help of greedy routing to expand the
starting address in the direction toward the lower address. In
order to achieve the greedy routing without incurring too much
time penalty and hardware cost , we must develop it base on the
existent searching mechanism — Or-gate tree . Figure 4
demonstrates the basic idea of greedy routing based on the
previous scenario. The request size is 3 blocks and the searching
mechanism first searches for a buddy whose size is 8 blocks.
Because there is no such buddy available, the mechanism
continuously searches for an inferior buddy(whose size is 4
blocks). Luckily, it finds one. Then the followed procedure is
first to activate the lefumost node in the and-gate tree layer
representing the inferior buddy just found. The guiding to the
activated node is based on the same principle mentioned before.
Detailed procedure is described as follows. From the root
node each node authorized from the parent node decides which

C-70

. 3
one of its children should be authorized. The decision rule is that
if the output value of its left child is 0 then its left child is
authorized otherwise its right child is authorized. In short, the
guiding path is the leftmost path whose node’s output value is 0
in the and-gate tree layer.

When the node, enclosed by double circle in Figure 4, is
activated. the greedy routing begins. The greedy routing takes
place in the or-gate tree layer only. It is simply a process of
propagation of the activating signals. Each activated node has the
right to activate both its left child and its immediate left nephew
only if its output value in the or-gate tree laver is 0. Each
node(bit) at the bottom of the or-gate tree layer must generate a
bit corresponding to itself based on the following rule. Each
activated node(bit) at the bottom of the or-gate tree laver
cenerates the corresponding bit with the same value as iself.
Each of the others generates bit with value 1. As a matter of fact
the goal of greedy routing is to mark the location representing the
final expanded starting address by means of generating a
temporary bit-map from which the address of' the final expanded
starting address can be easily extracted. As in Figure 4 | the final
expanded starting address is the output of the module F which is
a simple combinational circuit. The detail of moduie F is exactly
the and-gate tree along with the multiplexers shown in Figure 2

3.2 Bit-map Updating Mechanism

After obtaining the final expanded stam;-w address, it does not
guarantee that there are enough contiguous available blocks
starting from it. For example, thére are not enough contiguous
countiguous available blocks in the previous example when the
request size of request No. 3 is 6 blocks . Therefore, we must
have a simple but effective checking mechanism to tell us
whether the storage is enough or not before updating the storage
bit-map. The checking mechanism has two stages. The first stage
is to check whether the storage will overflow if we grant the
storage blocks to the request. For example, in the previous
example if the request size of request No. 2 is 14 blocks then the
storage will overflow. The mechanism for checkma this problem
is depicted in Figure 5.

The tail address is the address immediately following the tail
block of the sequence of contiguous storage blocks which will be
allocated to the request presumably. And the function of the

" simple logic circuit attached to the tail address register is to

check whether this tail address is out of boundary or not..

" If the final expanded starting address pass the first stage
checking process, i.¢. no overilow , we still cannot guarantee that
there are enough contiguous available blocks starting from the
starting address . Figure 6 shows how to efticiently generate the
output bit-map. The function of module 8 is generating a bit-map
whose first N (N is the input number) bits are set to 1s and the
rest are set to 0s. The design of module S is based on the design
of bit-map updating mechanism depicted in Figure 3.

Now we discuss the second stage of checking. Basically, the
checking process is very simple. We just first generate a
temporary bit-map which is the result of binwise anding the
storage bit-map with the output bit-map of the pseudo allocation.
Remember the or-gate tree mentioned before. We can easily
know whethier all bits of the temporary bit-map are 0 by using
bits of the temporary bit-map as the leaves of the tree. All bits of
the temporary bit-map are 0 implies the we can allocate the
storage space to the request. The reason is as foilows. Suppose
there is a bit of the temporary bit-map with value 1. This implies
that the bit at the same location in the current storage bit-map has
value | and so does the one in the output bit-map. In other words,
this allocation will allocate the storage space which has
already allocated.

esn



FERRNTAFREHERGS

Once the pseudo allocation pass the second stage checking, we
can approve the storage request by bitwise oring current storage
bit-map with the output bit-map of the pseudo allocation. And
the oring result will be the newly current storage bit-map. Finally,
we return the starting address to the request. )

It the pseudo allocation could not pass the second stage of
checking. then the request fails. Another important issue is how
we deallocate a previously allocated storage space . This ¢can be
easily accomplished by using the pseudo allocation to generate
the temporary bit-map and bitwise anding current storage bir-
map with the 1's complement of the temporary bit-map. The
result bit-map of the bitwise anding operation is the newly
current storags bit-map.

3.3 Hardware Design

Figure 7 displays the hardware implementation of the and-or-
gate tree with the function of “second chance™ in the upper part,
This Figure is a version with total storage size of 16 blocks. The
function of the multiplexer arrays is to generate the essential
control signals ( n control signals required for total storage size
of 2% blocks). The details about the arrays -are displaved at the
upper part of Figure 8 . In Figure 7 , there is an edge triggered
latch whose input line and enable line are connected to the output
of the root of the and-or-gate tree while the output line is the
seleet line of the multiplexer array M. Each time this tree
operates ,the content of this latch is initialized to 0. When the
select input of this multiplexer array M is set to 0. the
multiplexer array outputs the signal lines corresponding to the
searching size of ‘the request. The and-or-gate tree operates
similarly as the upper part of Figure 4 . At this time, if the output
of the root node of the and-or-gate tree is 0, the latch is disabled
because the enable line is also set to value 0. In this situation, any
edge triggering of the clock input will have no effect on the
current status of the entire and-or-gate tree. That is what we want
bscause  the successfully finding of a buddy whose size is the
desired searching size implies that there is no need to give it a
“second chance”. Let’s consider another situation where the
output of the root node of the and-or-gate tree is 1. In this
situation, the latch is enabled and the next clock edge triggering
will take effect. As a result, the output of the latch will turn into 1
because the input value before the clock edge triggering is 1. The
output signal lines of multiplexer arrav M will be a control
pattern corresponding to the inferior searching size of the request.
This gives a “second chance” 1o the searching mechanisin when
the result of finding a buddy with searching size fails. To sum up,
we need only one edge triggering on the clock of the latch in any
situation. And after the triggering , we can very easily acquire the
searching result by checking the output value of the root node
{that is CHECKI in Figure 7). If CHECK] is 0, the searching
succeeds. [f CHECKI is 1 , the searching fails.

So far, we know that the and-or-gate tree must be fixed to a
stable state after triggering. If the searching result is successful,
the next thing to do is to proceed greedy routing according to the
current status of and-or-gate tree. The middle and lower parts of
Figure 7 are the hardware implementations of the greedy routing
and the finding of the address of the lefimost 0 bit in the
temporary bit-map respectively. The function of each node with
hexagon shape in the routing tree (middle part of Figure 7) has
been mentioned in section 4.1.1. It’s a combinational circuit. The
truth table is described in Figure 8 . The content of the HEAD
register in Figure 7 will be the “final expanded starting address”.

Figure 9 is the hardware implementation of a 16 block sized
version of bit-map updating mechanism. The CHECK? signal is
the check result in Figure 5. The head address register at the
upper left corner contains the “finally expanded starting address”.
Each‘ three dimensional svmbol of logic gate in the Figure

C-1

represents 16 pieces of the logic gate depicted and each pisce of
the logic gates with two inputs orderly uses a pair of input iines
from the two input buses respectively to accordingly genetaie
each line of the output bus. All buses from the -sdme source
output port are connected in parallel. Function command signal
can decide whether this mechanism is performing the memory
allocation or doing the memory deallocation. Finally, we can
obuain the result of memory allocation to the request based on the
result bit.

4. Simulation and Analysis

The modified buddy system. discussed in Section 2 | just
converts the internal fragments which should be generated under
the control of standard huddy system into the external fragments
which may be used subsequently. Qther features of the modified
version are the same as those of the standard buddy system
especially in the aspect of addressing. This new feature usually
results in incapability for subsequent requests with larger request
sizes. The greedy buddy system, proposed in Section 3, improves -
such incapability without losing the good feature of the medified
ouddy system — constant operation time.

Table 2 shows a simple comparison on the efficiency of
storage allocation between the C&G version of buddy system
and the greedy buddy system.

We have focused on the differences of the behaviors of the two
systems in a very swrict way. To compare the two systems in a
more practical and general way, we generate a random series of
storage requests and storage releases to the two storage
management systems. We control the ratio of the number of the
storage requests to that of the storage releases and the largest
amount of storage each time the request can demand. The former

.represents the intensity of storage requests while the later

represents the limitation of granularity of the request size. The
reason to control the two factors is that different combination of
values of them models different feature of request source. And
the feedings of random series of storage requests and releases
based on all of the combinations can demonstrate the behavior of
each system more accurately, '

Beside the control factors, some criteria are defined to describe
the behavior of the system. Figure 10, gives an example with
concise definitions. For clarity of the description, we use the
following functions : Let BMP be a bit-map, then

HAA(BMP) = Highest allocated address in BMP ;
DAA(BMP)

SMAB(BMP) = Maximum number of contiguous available
blocks in BMP ; and o
. NEF(BMP) = Number of external fragments in BMP.
However. all of the events of storage releases happened afier

event of the last storage request do rot affect any storage requasts.
Therefore, we do not take them into consideration.

= Deusity of allocated area in BMP :

An event generator is used to randomly generate a series of
evenis § = (E,. E.., E,, « E, ). There are n storage requests
and n storage releases. Let's denote the corresponding series of
bit-maps as (B,, B, B,, .B., ) where B, represents the bit-
map after event E_ .

"Let N be the value of ons plus the number of events, including
both storage requests and storage releases. happened before the
last storage request.

The eight criteria are as follows.

1. ADAA(Average density of allocated areg) =

g
%Zamwmn

e}



hERENATAEE

2. ASMAB(Average maximum number of contiguous available

- R
blocks) == > SMAB ( BMFI)
4 13

3. AHAA(Average highest allocated . address) =
e .

— > HAA(BMP)

1v i=l .
4 ANEF(Average number of external fragments) =
v RV ’

—:-Z NEF ( BMEF)

. r=i

3. ARatio
_ Towal _zize _been _alfocated _to_sierage _ requests

Total _size _ever _requested _ by _storage _ requests

6. TNFR = Total number of failed storage requests.

7. TNFR_MS_Limit = Total number of the failed requests due
to the insufficiency of the total available storage space of the bii-
map.

8. TNFR_AL_Limit = Total number of the failed requests due
to the incapability of the storage management sysiem. ( Judging

rule : If SMAB(BMP,) = {storag= request size] then E, is one of

such request )

Our event generator is mainly controlled by the two factors
mentioned in the first paragraph of this section. We use the
random number generating function provided by the standard C
library, denoted as randti
the random event generator.

Our simulation uses the random event generator to generate
the following models:

LAMDA = 51 where [ is an integ
MRS = T™MS / (2°") . DN = 0,1.2.3
total size of storage space.

and 0<I<20 ; and
4.3,6,7, where TMS is the

The total size of the storage, is 1 Mega blocks, that is, there are
totally 1 Mega bits in the bit-map.

Figure 12 ~ Figure 19 are the results of the simulation with
1000 storage requests. The thin lines depict the behaviors of
C&G version of buddy system while the thmk lines depict those
of the greedy buddy system.

These figures indicate that our greedy buddy system almost
outperforms the other one in every criteria except when
MRS=TMS and ADAA at 30<LAMDA<30. However, by
observing the ARatio , we find the greedy buddy system can still
support much higher ARatio to the incoming requests. The plot
of TNFR shows that the greedy buddy system can allocate
storage space to more number of requests. The TNFR_MS_Limit
indicates that the majority of the failed requests in the greedy
buddy system are caused from the limitation of the storage space.

The TNFR_AL_Limit tells us the number of failed requests of

the greedy buddy system are much smaller than that of C&G
version of buddy system. The major motivation to design the
greedy buddy system is to improve the excess number of external
fragments generated by the C&G version of buddy system.
Without any doubt, the plot of ANEF clearly shows the power of
the greedy buddy system. The main cause for this performance is
due to greedy routing.

Nevertheless, there do exist sequences of events that will
degrade the performance of the greedy buddy system. But it
seems that the kind of sequences rarely appear and almost have
no effects on the ARatio of the greedy buddy system which is a
very important index of the system's global behavior.

me{). Figure 11 illustrates the design of

C-72

SHEeE

5. Conclusions

In this paper, we have presented a concept called second
chance and a novel addressing scheme called grzedy routing
which can find and locate the first contiguous and available
blocis in'a more smart way. Furthermore, we provide a simplz
hardware design of the dynamic memory management, called
greedy buddy system, which not only consumes constant
machine cycles for all size of requests but uses the memory more
economically. As the density of logic devices on a chip increases,
it becomes more and more aitractive to map this design into
hardware and thus single instruction (three machine cycles)

allocation can be realized.

References

[11 A.A. Abonamah, "Resource Allocation Strategies for

Hypercube Architectures,” Information Sciences, voi.

64 no. 3. pp. 251-269, Oct. 1892.

R.E. Barkley and T.P. Lee, “A Lazy Buddy System

Bounded by Two Coalescing Delays per Class,” Proc. 12th

Svmp. Operating Systems Principles, vol.23, no. 5, pp. 167-

176, Dec. 1989.

B. Calder, D. Grunward, and B. Zorn, “Quantifyving

Behavioral Ditferences Between C and C++ Programs.”

Technical Report CU-CS-698-94, Computer Science Dept.

Univ. of Colorado, Jan. 1994,

JM. Chang, “A Coprocessor Architecture for Memory

Management in Object-Oriented Systems,” PhD thesis,

North Carolina State Univ.,Aug. 1993.

JM. Chang and E.F. Gehringer A High-Performance

Memory Allocator tor Object-Oriented Systems,” [EEE

Trans. Computers, vol. 43, no.3, pp.357-366, March 1996.

A. Kaufman, “Tailored-List and Recombination-Delaying

Buddy System,” 4CA Trans. Programming Languages and

Systems, vol. 6, no. 1, pp. 119-125, Jan. 1984.

K.C. Knowlton, “A Fast Storage Allocator,” Comm. 4CM,

vol. 8, pp. 623-625, Oct. 1965.

D.E. Knuth, The Art of Computer Programming Vol. 1 :

Fundamental Algorithms. Addison-Wesley, 1968.

P.D. Koch, “Disk File Allocation Based on the Buddy

System,” ACM Trans. Compuier Systems, vol. 3, no. 4, pp.

353-370, Nov. 1987.

[10] I.P. Page and J. Hagins, “Improving the performance of
Buddy Systems,” /EEE Trans. Computers, vol. 35,n0. 5. pp.
441-447, May 1986. .

{11] J.L. Peterson and T.A. Norman. “Buddy Systems,”
ACM, vol. 20, pp. 421-431, June 1977.

[12] E.V. Putikamer, “A Simple Hurdware Buddy System
Memory Allocator,” IEEE Trans. Computers, vol. 24, no.
10. Pp. 953-957, Oct. 1975.

[131 B. Zorn, “The Measured Cost of Conservative Garbage
Collection,” Software-Practice and Experience, vol. 23,no. 7,

pp. 733-756, July 1993.

2]

Bl

(61

7
(8]
(91

Comn.

‘Memory request] reauest size | Memory bit-mao
No. [ (unit: blocky |~ "SU | o high
onginal 0000CC0000CA0C00
1 3 | success 11100C0000G000C0
2 i 3 t success 11166C0011111000
3 { 8 b failure 1110C0C011111C00 }
2 i 2 { success | 1110110011111000 |
3 i 3 | faflurz | 1110140011111000 |

Table 1 A sequence of requests to the storage
managed by C&G's version of buddy system



FERENTAEEERRGEH

ungar CA&G's buday system under Greegy ouddy system

o | e e ™y emeo e oo :
1 3C0000000000C600  * : _ 000006000CC00C00 |
: 1 H 1200CG06G00CA060 3 16C00050005500C0
2 .. 3 3 15001116090C3C00 S ' $1:1CCCCO0GRSI60 .
3 3 S +000111011100060 s ! 1111111530C000C0
i ] 3 1400111031100GC5 3 1111111106823C00
2 ' S 101111°511100000 S ¢ 1111111113C00C00
3 S 1000111011101 S | 1111711111600000_ .
& 3 1000%11011101111 S - 111111111140C060 .
4 i 3 B “£GC111041100000 s T Mo
. 5 F 1GJ0111011100C00 $ | inininnieae .
HES = . 100C111011300000_ . S | 11111311111°91100 .
I @8 F T 1500111017100000 1 § | 1111111711818
R 3 F 130611131120C0C0 s | [ERERERRERKERARE]

S:success F ‘aiiure

Table 2 Demonstration of allocation undaer C&G's buddy sysiem
and under Greedy buddy system

Address of corresponding bit 0123456789ABCOEF
foprio11i1ivioincrotcionol 11it

0 : available biock 1: not available block

Bit-map befare ailocation

The size of the memory request is 3 blocks
—~~

Searching size of request is 4/;

search size(block) availability

OR-Gate
Tree 3
~

a3, 'a,"a, = 199°0*1 =0

011011111011 ;0i0ii0i01 1 111

0123453789A8CODEF Searching result:

0:Yes, there is one fragment avaiiable

as=b+¢ 1:No, there is not enough contiguous
e free memory blocks .

Figure 1, lllustration of operation of OR-Gate Tree

Address of corresponding bit 0123456789ABCDEF
Bit-map before allocation foflof11111jal tlofoiojoioj1]4]1]

RHRR R iR
7 ] } 7
v

Generate temporary bit-map
i

v \d v
([T PRl
AND- :
Gate Tree Address of first zero

T

N

|
|
|
A
L : : i
o} d g @] i
]
i
|

'
1
i
{
i
i

3

NSl i
isififninad e ¢
[pDlhpfep [l )i «—— temporary bit-map

0123456789ABCDEF

i

R4S 4

Figure 2. lllustration of operation of AND-Gate Tree

final expanded
starting address

msbi O

>:heck result :

0: No overflow

1sb 1: Overflow

(T

[T

request size tail address
Figure 5 The checking mechanism of storage overflow

© Currant storage bit-mag:

P | szszontral addresscertrol | L | R
9! X Iafo
iy 2 I £ < f2i2
sze Y address - - - S
sontral '/-4\ controt 1 7 [} 103
R 1] B 1 Talh
1 1 o bag e
i ' 1 IEXE

e “ starung aadress

request sge v 9

i1 et 4 1 size control

msb| . R .
o > 41 [t]

-——-»('6‘. ‘m—w T
/ ; A \ '/"-\r °

-

1]
\AAS
foptfoljrinoffrirjrioloisisy]

e .

0123456789ABCCZF

Figure 3. The operation of bit-map updating mechanism

Saarching fails search  request

e mmmc e R mm— e nmm e ————— U8 2128
) 1 mso
And-gate tree il i ¢ |9
Layer >\ —_— e
// ~ : o
B et et o !
s = [
P | T
o 1 0 1 9 i1 |
r-gate tree S . ! l
Layer N J \\ | ‘i-_‘ 1
11 0 0 10 o o
AA AN A A AT
_‘\;\4-,1_1\;‘_‘ o i 0 [
1110000011111000 ] i isb
Bacause the searching of size 3 fails, we _
gwe it a second chance.
Searching succeeds ‘_:,7
_______________ : msd
----------- o o !
_ /\ ; i
And-gate tree ,5/ ; | o |
Layer [CN ~ |
A AN —
y __ ; -

Or-gate tree i pX
Laver 1 ¢ 1.0

[N A S S S
LY ,:\/J'\\ i 1Y )

/ P2 2B ;
1110000011111500

=]

i
)
e
')'\E o
) ¥
1
=1

Le
&
o

0
[ : generating
‘/‘hls bit-map

0

i

i

v

111001111111 1111
RN SRR
2 ¥ 3 T 7 P 9T RETVY VT
L H Q ; msb
Madule F Lj
[l
—t
1) 189

final exoanded starting address
Figure 4 The demonstrations of “second chance™ and greedy routing

availadle pars
Total size of storage i 32 biocks 7

i
1 6011091112C00101111411111100000
Currant hignest allocated address is bleck no. 5
Current aliocated si2e of the storage is 17 blocks :t2tal numoer of bits with value 1)

Current adocated sze of the storage
Currant dansity of allocated area = =6296%
Currant higreest ailocated agdress +1

Cument numbar of 9 ciotks = max(2.2.4.1,1,5)= 5 blocks

Current numbper of eaternal fragments = number of available pans = &

Figure. 10 Example



hERENFAEERHEEeE

Moduie S
msb M Plselect
f . elect |
! i Cal : —m— —ea— ‘
mpr— . vo=a‘bc ‘md it . Y ed b
; \\7‘ S MUX \—-—34—0'41 MUX . A ¥
. U : R " : &
T > : } —_— =
; & : :3E°: . ; : o
PN ' gl ' : ——wler— ! ; ——/ ! .
' o3 Mux " 3 o° 2
H L———ut . 3
| 35 Bn i P MUK T
! CoLd _a ) i —_— :
. T » H
wo o T A (e s Seh een sed) Po—e— ] - e oz
L lad:Ualiias L bas ta) Lol im2 we M 02 - a® c size
;«—wmuxo.,_'*‘*'—"—*' ot MUX 7
; N\ : ! : !
H \ K P | msb | s4
0001111100000000 = 1110000000000000 XOR 1111111100000000 i : i ; ; : - !
AT = e ~ — \. ; ,-_“_,',c,..—/ ; o ' .
. 1 " ' i
3 => ModuieS=> 1110000000000000 Xy, . 2w MU a:\lo—f"—w MUX ‘:4‘/,‘, =
27 XOP => 0001111100000000 —_— ; /
5 AT \ =
8 @> Module S 3> 1111111100000000 = .
g —_—
N o T e
. oF e 1
Figure & The generation of the output bit-map of pseudo allocation W MUX K s
it
. : 'sb o
a3 . .
5. )
s t L LATCH 5
CHECKH . die | (imitializ: 0 SXER A
% ! . ,;:n;:lgb‘h (initialized to 0 each tme) , ; MULTIPLEXER ARRAYS TR T P 1 8 = NSO
=, i : ! v!mglw N tX 40 X X 1906 0:
' . -
2= abd + (a+0jd : D— - = e 2t s 10 ! 3t Xxto 10
0% m e e W T o 1 1 1t Xloo 1
pe DA At N A — |
— i — v 1 LI 1 0;11)('
i et 1 10 Xi 1100 x!
— HEAD sizg TAIL
1w '.u;gz :;12_
i f
—_—1 et : {
v ° s b o
PN i o
g Sa < : : b——emee  CHECK2= t4 (13 + 12+ 11 + t0)
.. b n3 I 3 )
— - - - - Py t : '
|32 wiiin bam;!pn o2 |oufme o, fa® o + : - :
: — = h2 | 2 e
VULTPLEIER ARRAYS i ) ; i i
3 i y "
H +
- [ no st P
H i
iono 0 | io®
3 L i i
. Figure 8 The details of the operating elements
v e
-
oaca

- )
-~ = ommo 5

/ -
. L H e L C ke sbdiond

o i

24
(o
lsd
4
s ]
L

X
xS IR
TA vy ‘
. Al
|
S 12

result bit © o

1: failure Riad
. 1: MUX chooses left input tunct ammand © 1: perform memory allocation
select: 0: MUX chooses right input ction ¢ © Q: perform memory release

T - - . Figure 9 The bit-map updating mechanism

C-714



wee . . - . .o e N

[CLURCT
e .,

Undtme
L

o

f[\ ,“V: /:' r"r\;' /\\' o C ~
Y AN AT LI N AR I A

2 o L < w9 Eeis [T K
wns e qusy T ousn T pusig ) gune M e T poson |V gussa Tl puvnﬂ"‘

e Mblie d Dy Straray e« Guredy Raddy Tuaiegy

Fie. 12

LT

THIR St

ot 2 e

L I o . . - ..

LI

e )

0
AU 1§ " ~nl'. X e ik W 1'~l$ ‘T w;
LIS Far ime | (rasy s l g Jreas 1 atwnng (e | ot | pasnze

: Unditied Raddy Swairgy : Groedy Fruddy Twsieqy

Fig. 1

AW

oxn - . " :
LA & W W i 2y e W (2 C]
unt € ims | prusm ) pusmy | s 1 pasm ] s T4 g '] pussa T rson

*Waditied Dndsy Sirateqy -

* Greedy fluddy Suetegy

Fig. 14

1a4aen
)

ML
Saw blace

a0k

Frves

arap

s2a290

DT

N

e

1249t

WA

Launa o Ea 13 3
uns Foen time | grus | rusn ) puma ‘

sl e s ]
HaSE | et uwmﬁfuumq I nmmq1

L Watied fioddy Sviaqy

1Gor ety Boddy Shateqy

Fig. 18

C-75

wdesee L L .. . . .
s

1wz
e, bloch

Q19968

734008

caaes

$2a298
PIETT:
nasre

09118

104859

Luna S
VNS Eeck Time ! jHWSN)

Wodsied Nuddy Suciety
Fig. 16
“rre e -
ange
$s230_ ceee’
tinn, pwer E
orse_ . e
ey
ReIS .

WM.

2830,

eny
Ws &
13 tech Hme | (TN

ot
{1vsay My (] ()

— - lheR0d nddy Tuwrgy

Fie, 17

s wp
(e | pusig

S X s v‘-r ﬂr vs]< IS )
Voo gesm pusae | qevsnn | pasa 1 pesnee

— Gy by S dleny

[l “" (s

+ Geredy fodiy Wnoivay

s . -
i s R R
g e.f: :3: I‘ feem ”F frusy “? (-2 "l‘ rmﬁ(l! “" fusne “P s "’V puncy l [

2 4dadified uddy Shaieny

Fig. 18

mn

Van s tme

: Giaedy Brdiy Strawyy

/.l‘

LAmng is E:
wAs Leeh e | (rumy

 Maotiled fladdy Sestsay

Fig. 17

puzm v'r (] “i" e “E‘ (pusirey ’T’ e “f nussy ”1‘ ;wvm:i

2 Geredy Quddy Suve gy



