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Abstract

Although the wunlinkability property makes it
possible to protect the privacy of customers or users
in anonymous electronic cash systems, it can be
misused by criminals, such as to launder money or
to safely get a ransom. The techniques of fair blind
signatures are developed to deal with the misuse
of unlinkability. The fairness property makes it
possible for the government or the judge to find
the identities of those criminals. In this paper,
we propose an. efficient fair blind signature scheme
for electronic cash. Only two integers are required
to form a signature in our fair blind signature
scheme. Furthermore, it only takes several modular
computations for a signature requester to obtain
and verify a signature. Comparing with the eristing
schemes proposed in the literatures, our method
reduces not only the amount of computations for
requesters or users by 99% but also the required
storage space for them by 86%.
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1. Introduction

Due to the fast progress of network and cryptology
technologies, many advanced communication ser-
vices have been proposed in the literatures to take
advantage of the ever-growing networking capabili-
ties. Among these services, electronic cash is a pop-
ular one since the technique makes it possible for a
payer to pay.electronic cash through electronic com-
munication channels. Owing to the ability of protect-
ing the privacy of the payers, blind signature tech-
niques are usually adopted to develop this popular
service proposed in the literatures.

A typical blind signature scheme consists of two
kinds of participants, a signer and a set of requesters.
A requester requests signatures from the signer, and
the signer issues blind signatures to the requesters.
There are two sets of messages known to the signer:
(1) the messages received from requesters for signa-

" tures, and (2) the signatures submitted by the re-

questers for verification later. The key point is that
the actual correspondence between these two sets of
messages is unknown to the signer. This property
is usually referred to as the unlinkability property
(1, 2, 8, 9, 17]. Due to the unlinkability property,
blind signatures have been widely used to construct
anonymous electronic cash systems [2, 3].

Since the blind signature techniques provide per-
fect unlinkability, it is impossible for any one but
the requester himself to link a signature to the cor-
responding instance of the signing protocol which
produces that signature. In electronic cash systems,
the unlinkability property could be misused by crim-
inals, such as to launder money or to safely get a
ransom (23, 24]. To guarantee the quality of this
ever-growing popular communication service, mod-
ern blind signature techniques should possess the fol-
lowing two properties:

(1). If signature requesters or customers are en-
gaged in legal commercial transactions or pay-
ments, their privacy should be protected well;
on the other hand, if they misuse the unlinkabil-
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ity property, then the government or the judge
should have enough information to uncover their

identities. This property is referred to as the -

fairness property.

The addition of the fairness property to blind
signatures should not increase the computation
load for signature requesters or customers since
their computation capacities are limited in some
situations such as smart cards and mobile units.

(2).

In this paper, we propose an efficient fair blind sig-
nature scheme. Our scheme can overcome the misuse
of the unlinkability property. With the help of the
judege. the government, or a trusted party, it is possi-
ble to link a signature to the corresponding instance
of the signing protocol. In other words, if the judge
or the government does not disclose any necessary
information to the signer, the privacy of every re-
quester is protected against the signer. On the other
hand, if necessary, the judge or the government can
give some appropriate data to the signer or the bank,
so that the signer or the bank.can link his view of
a signature protocol to the signature or cash pro-
duced by that protocol, and uncover the identity of
the signature requester who requests that signature
or cash. -

Our scheme only takes several modular computa-
tions for a signature requester to obtain and verify
a signature, and in the proposed scheme, every sig-
nature consists of only 2 integers in Z, where Z% is
the set of all positive integers less than and relatively
prime to n. Comparing with the existing schemes,
our method reduces the amount of computations for
signature requesters by 98% and reduces the required
storage space for requesters by 86%. OQur scheme
minimizes both the storage space and the computa-
tion load for signature requesters or customers, so
that it is suitable for mobile clients and smart-card
users.

The rest of the paper is organized as follows. In

section 2 and 3, we briefly review the related works in

the literatures. In section 4, we present our efficient
fair blind signature scheme. The performance of the
proposed scheme is examined in section 5. Finally, a
" concluding remark is given in section 6.

2. Typical blind signatures

The concepts of blind signatures was first introduced
by Chaum [2]|. Based on the RSA cryptosystem, he
proposed a blind signature scheme to achieve the un-
linkability property. By means of the techniques of
blind signatures, an anonymous electronic cash sys-
tem was proposed in [3]. In such an electronic cash
system, the bank (or the signer) issues electronic cash

(e-cash), and a customer (or a requester) can with-

" draw e-cash from his account, or deposit e-cash into
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his account in the bank.

Based on the RSA cryptosystem, Ferguson intro-
duced another blind signature scheme tailored for
his anonymous electronic cash system proposed in
[9]. In (1], the authors proposed a blind signature
scheme based on discrete logarithm (DL) problems.
In addition to the above scheme, the authors of [1]
presented another blind signature scheme based on
the Nyberg-Rueppel signature scheme [13]. Based
on the Okamoto’s protocol of [14] and the Schnotr’s
protocol of [20], a blind signature scheme was pro-
posed in [17]. The authors of [17] presented another
blind signature scheme based on the Okamoto's pro-
tocol of [14] and the Guillou-Quisquater protocol of
[11].

3. Fair blind signatures i
Due to the unlinkability property, the technique of
blind signature can protect the privacy of customers
in an electronic cash system. Since the technique
provides perfect unlinkability, it is impossible for any
one but the customer himself to link an e-cash to the
corresponding instance of the withdrawing protocol
which produces that e-cash. Unfortunately, the un-
linkability property could be misused by criminals
[23, 24].

Fair blind signatures are developed to cope with
the misuse of unlinkability. In an anonymous elec-
tronic cash system with fairness property, if cus-
tomers are engaged in legal commercial transactions
or payments, their privacy should be protected well;
on the other hand, if they misuse the unlinkability
property, then the government or the judge should
have enough information to uncover their identities
[24].

A fair blind signature scheme consists of three
kinds of participants, the judge (or the government),
a signer, and a set of requesters. A requester re-
quests signatures from the signer, and the signer is-
sues blind signatures to the requesters. The judge
keeps all link information between every instance of
the signing protocol and the signature produced by
that instance of the protocol. If the judge provides
the signer the kept information of some link, then
the signer can derive the link. On the other hand, if
the judge does not reveal the appropriate link infor-
mation to the signer, it is computationally infeasible
for the signer to derive the link.

In [24], Stadler, Piveteau, and Camenisch pro-
posed three blind signature schemes to achieve the
fairness property. The first scheme of {24] is based
on the Chaum’s blind signature scheme and the cut-
and-choose method (2, 3]. The second scheme of [24]
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is based on a variation of the Fiat-Shamir signature
scheme and the concept of one-out-of-two oblivious
transfer {7, 10]. The main idea of the third scheme
is that the requester has two pseudonyms registered
at the judge. One of the pseudonyms is used during
the signing protocol, whereas the other one is part of
the signature. Thus, the judge, who knows the two
corresponding pseudonyms, can link a view of the
signing protocol and the corresponding signature.

In the fair blind signature scheme using the cut-
and-choose method of [24], a large amount of data
is exchanged during the signing protocol, and the
resulting signature is large. Although the resulting
signature of the fair blind signature scheme using
oblivious transfer of [24] is short, it is necessary for
a signature requester to perform a large amount of
modular computations. Considering the fair blind
signature scheme with registration of [24], a large
amount of computations is still required for signature
requesters.

4. The proposed scheme

In this section, we propose an efficient fair blind sig-
nature scheme. Our scheme only takes several mod-
ular computations for a signature requester to obtain
and verify a signature, and only two integers are re-
quired to form a signature in our scheme. Comparing
with the existing schemes proposed in the literatures,
our method greatly reduces not only the amount of
computations for signature requesters but also the
required storage space for requesters.

The proposed scheme is based on quadratic

residues. Under a modulus n, x is a quadratic residue _

(QR) in Z% if and only if there exists an integer y in
Z;, such that y? =, x where Z7, is the set of all posi-
tive integers which are less than and relatively prime
to n. Given z and n, it is computationally infeasible
to derive the square root y of = if n contains large
prime factors and the factorization of n is unknown
[19].

Our proposed fair blind signature scheme con-
sists of four phases: (1) initialization, (2) request-
ing, (3) signing, and (4) extraction. All the nec-
essary information is published in the initialization
phase. To obtain the signature of a plaintext mes-
sage, a requester requests necessary parameters from
the judge, and then submits an encrypted version of
the message to the signer in the requesting phase.
The signer computes the blind signature of the mes-
sage and sends it back to the requester in the signing
phase. Finally, in the exiraction phase, the requester
extracts the signature from the blind signature. The
details of the proposed fair blind signature scheme
are described as follows.
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4.1. Initialization

The signer randomly selects two distinct large primes
p1 and pp such that p; =4 p2 =4 3. Then he com-
putes n = p; - p2 and publishes n,

The judge randomly chooses two distinct large
primes p3 and p4 such that p3 =y py =4 3 and
P3py > 1, and then computes 7 = p3 - py. The judge
publishes 7 and a string @ selected by the judge at
random. Let H be a public one-way hashmcr function
[22].

4.2. Requesting

A signature requester randomly chooses three in-
tegers y1, y2, and y3 such that for every i with
1<i<3,

n <y <A<y,
y; mod n € Z;,

Yi € Z;’:s, and

w is a prefix of y;.

Then, the requester computes and submits (y? mod
) to the judge for i = 1, 2, and 3.

After receiving all (y? mod 7)'s, since the judge
has ps and p4, the judge derives the square roots of
every (y? mod 7) in Z% (15, 19]. For every i, there
exists one square root of (y? mod ) in ZA with the
prefix w, so that the judge can obtain y1, yg, and y3
by finding those square roots with the prefix .

The judge randomly selects two integers 3 and
v, and forms v = H(B) and v = H(+v) such that
((u® + v%) mod n) is in Z%. Let z be an integer to
uniquely identify this instance of the protocol where
z is randomly chosen by the judge such that H{z)
is 2 QR in Z:J{ The integer z is referred to as the
identifier of this instance of the protocol. The judge
randomly selects an integer b in Z7, and then com-

putes
3:yf1~b mod n
T=y;' -1 mod n
T=y;' v mod n.

The judge derives a square root z of H(z) in zx such

that (2)> =~ H(z), and then the judge sends the

tuple B, u,7, 2, z) to the requester. In addition, the

judge stores the tuple (3,7,b, ) in its database.
After receiving (3, u,7,7, 2 ), the requester can ob-

tain b, u, and v by computing

-5 mod n)y=>b

‘% mod n)=u

-7 mod n) =v.

(yl
(ve
(3

To request a signature of a plaintext m, the requester
computes a = (H(m) - (u* +v?) mod n). The re-
quester submits the tuple (a, z,%) to the signer.
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Table 1: Property Comparisons.

1Two schemes in [1] and [17]. 2Three schemes in [24].

The signer examines whether (2)? =5 H(z) or not.
If true, the signer randomly selects an integer ¢ and
computes z = H(6) such that (a-(z* 4+ 1) mod n) is
a QR in Z7%. Then, the signer sends (z,2,2) to the
judge. ‘

After verifying that (2)? = H(z), the judge re-
trieves the stored tuple (8,7, b, 2) through the iden-
tifier z, and computes ¢ = ((uz + v)(u — vz)~! mod
n). where u = H(f) and v = H(y). The judge
checks if the integer c is different from all the other
¢’s which are recorded by the judge during all pre-
vious instances of the protocols. If not, the judge
requests the signer to choose another integer z until
¢ = ((uz +v)(u —vz)"! mod n) is unique among all
the recorded integers ¢’s. If yes, the judge computes
A = (b®- (u — vz) mod n), and sends A to the signer.
Then, the judge records the tuple (3,v,b,z2.¢).

4.3. Signing

After receiving ), the signer computes e = (A~! mod
n) and derives an integer ¢ in Z}, {15, 19] such that

th=, a0 (22+1) €%

Then, the signer sends the tuple (e,t,z) to the re-
quester, and stores (6, z, id) in his database where id
is the identity of the requester. '

4.4, Extraction

After receiving the tuple (e, t,z), the requester com-
putes

s=b-t mod n
c=b e (uz+v) mod n.

Thus, (s,¢) is a signature of m. To verify the signa-
ture (s, ¢) of m, one can examine if

st=, H(m)- (2 +1).

4.5, Discussions

In the requesting stage of the scheme, the signer re-
ceives two integers @ and \ from the requester and

Our Scheme | [1] [2] [9] 17! [24]°
Foundation QR DL/DL | RSA | RSA | RSA/DL | RSA/DL/DL
Randomization Yes Yes/Yes | No | Yes | Yes/Yes | No/Yes/Yes
Unlinkability Yes | Yes/Yes | Yes | Yes | Yes/Yes | Yes/Yes/Yes
Fairness Yes No/No | No | No | No/No | Yes/Yes/Yes

the judge for requesting a signature of a plaintext m,
where

o = H(m) - (u® +v%) mod n
A=0b%.(u—vz) mod n

Then in the extraction stage of the scheme, the re-
quester obtains a signature (s, c) of m by computing

s=b-tmodn
c=b% e (ur+v)modn

where t¢ =, a- (22 +1)-€? and e =, b2 - (u —
vz)~!. The signer cannot link the tuple (e, A) to the
signature (s, ¢) of m because the integers (u, v, b) are
randomly selected and kept secret by the judge and
the requester in the scheme.

Consider the linkage recovery in our scheme.
Given a signature (3,¢) of a plaintext 7 produced
by some instance of the protocol, the judge can re-
trieve the unique tuple (3,7,b, z,¢) with ¢ = ¢ from
its database. Hence, the signature (5,¢) of 7 is pro-
duced by the instance of the protocol with identifier
z. If the judge reveals the tuple (83,7, z,¢) to the
signer,-then the signer can retrieve the tuple (6, z, id)
through the identifier z from his database. Thus,
¢ =, (HB)H(S) + H()(H(B) — H(v)H()™
Herce, the signer can obtain not only the instance
z of the protocol which produces (5,¢) but also the
identity id of the requester who requests that signa-
ture of m in that instance of the protocol. There-
fore, if the judge reveals appropriate information to
the signer, the link between an instance of the sign-
ing protocol and the corresponding signature pro-
duced can be established by the signer. On the other
hand, given the signature (3,¢) of the plaintext m,
the signer cannot find the tuple (6, z,4d) from his
database without the identifier z given by the judge.

In our scheme, the signer perturbs the message
received from every requester before he signs it by
using a random integer z. This is usually referred
to as the randomization property [9]. A randomized
blind signature scheme can withstand the chosen-
text attacks [21]. Our scheme and the blind signa-
ture schemes of [1, 9, 17] possess the randomization
property, while the blind signature scheme of [2] does
not have this property. In addition, given an integer
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Table 2: Performance Comparisons with Fair Blind Signature Schemes.

Our Scheme! | [24] [24]° [24]4
No. of Exponentiation Computations 0 40 240 10
No. of Inverse Computations 0 1 0 1
No. of Hashing Computations 2 60 2 2
No. of Multiplications 18 60 160 6
Computations Reduced : 99.85% | 99.97% | 99.45%
No. of Messages Transmitted 14 72 81 12
No. of Integers in a Signature 2 40 2 6
Space Reduced : 86% 81% 11%

1 An on-line judge is needed in our scheme.

2The first scheme of {24]. 3The second scheme of [24]. *The third scheme of [24].

¢ and a plaintext m, let s be an integer such that
s* =, H(m) - (c®+1). Thus, s is a 4th root of the
integer (H(m) - (¢ + 1) mod n) in Z}. Since n con-
tains large prime factors, computing a 4th root of an
integer in Zj, is computationally infeasible without
the factorization of n [19].

The comparisons of properties between our scheme
and the existing schemes of [1, 2, 9, 17, 24] are sum-
marized in table 1.

5. Performance

Typically, under a modulus n, the computation time
for a modular exponentiation operation is about
O(|n]) times that of a modular multiplication where
In| denotes the bit length of n [22]. The modulus n
is usually taken from 512 bits to 1024 bits in a prac-
tical implementation [22]. In [4, 6, 12|, some fast
exponentiation algorithms are proposed. In [6], it
requires 0.3381|n| modular multiplications and large
amount of storage, e.g. 83370 stored values for a
512-bit modulus, to compute a modular exponenti-
ation computation. An enhanced version of [6] is
introduced in [4]. However, it still requires 0.3246|n|
modular multiplications and large amount of storage,
e.g. 36027 stored values for a 512-bit modulus, to
compute a modular exponentiation computation [4].
The algorithm of [12] needs (1.164|e| + 3) modular
multiplications to compute (z¢ mod n) where |e] is
the bit length of e and |e| has to be large enough (say
128 bits) in the RSA-type blind signature schemes to
resist possible low-exponent attacks [5, 25].

In our fair blind signature scheme, no exponen-
tiation and inverse computations are performed by
signature requesters. Moreover, only several modu-
lar additions and multiplications are required for a
requester to obtain and verify a signature.

In the fair blind signature schemes of [24], many
modular exponentiation computations and inverse
computations are needed for the requesters to obtain
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and verify signatures, while these time-consuming
computations are not required in our scheme. Com-
paring with the fair blind signature schemes of [24],
our scheme reduces the amount of modular com-
putations for signature requesters by 99% under a
1024-bit modulus. The comparisons of the num-
bers of modular computations performed by a re-
quester between our scheme and the fair blind sig-
nature schemes of [24] are summarized in table 2.
The comparisons of the storage space required for
requesters between our scheme and the schemes of
[24] are also summarized in table 2. ‘

Furthermore, compared to the unfair blind signa-
ture schemes of [1, 2, 9, 17], our method still largely
reduces the amount of the modular computations for
signature requesters.

6. Conclusion

In this paper, we have proposed an efficient fair blind
signature scheme. Qur scheme not only possesses the
fairness property, but also minimizes the computa-
tion load and the storage space required for signature
requesters. Hence, the proposed scheme is suitable
for the situations where hardwares and computation
capacities of signature requesters or customers are
limited. With the help of the judge or the govern-
ment, it is possible to link a signature to the corre-
sponding instance of the signing protocol, so that the
identities of signature requesters or customers who
misuse the unlinkability property can be. uncovered
in our scheme.
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