hERE N\ ERE e e S

New Schemes of Cache Memory for Multimedia Applications

Shu-Lin Hwang Jing Liang Tsai Feipei Lai

Dept. of Electrical Engineering Dept. of Electrical Engineering 4 Dept. of Electrical Engineering &

National Taiwan Universit National Taiwan Universit Computer Science and Information -

hwangsl@ccsun.mit.edu.t jltsai@bulls.csi .ntu.edu.tw Engineering

National Taiwan Universit

flai@cc.ee.ntu.edu.t

Abstract

A recent confluence of hardware and software technologies has given computers the ability to process dynamic media data.
Multimedia workloads such as MPEG-2 video player, 3D graphics and animations will occupy a large portion of the
computer workload. While the processor speed increases rapidly, the required memory bandwidth for multimedia workloads
is more critical than that for desktop workloads. This paper will focus on strengthening the memory system to suit
multimedia workloads. Then, the Split Data Cache scheme that divides data cache into two parts (Stride and non-Stride) to
makes better use of the spatial locality is proposed to enhance performance. The result shows that by adopting the Split Data
Cache scheme, the miss rate can be reduced to 82%~87% of a conventional data cache. To further improve the performance,
an Assisted Stream Buffer is proposed to hide the latency by prefetching data between the Stride data cache and the second
level cache. By using the Stride History Table information, the Assisted Stream Buffer can yield an average hit ratio of
77.8%, with 12.5% extra bandwidth.

Keyword: Cache Memory, Stream Buffer, Multimedia, Workload

1. Introduction

The memory speed has not advanced as rapidly as the
processor speed . The microprocessor performance has
improved 55% per year since 1987 while the DRAM speed
improved only 7% per year [1]. To mitigate the
performance gap, cache memory has been introduced in the
1980s. Cache is a small amount of fast SRAM memory that
keeps the recently referenced data. If the data is referenced
againby the program before it is flushed out, the program
can get the data from cache with a faster access time.

The cache performance is closely related to its
configurations and its workloads. Studies showed that the
commercial workloads are very different from the numeric
workloads. A static locality analysis on numeric
applications indicated that the self-temporary and
self-spatial reuse of data is frequent in these applications
[2]. It also showed that about 35% of the references exhibit
only temporary locality. The Dual Data Cache [3] tries to
make use of this characteristic by splitting data cache into
two parts. Commercial workloads have been discussed in
[4). It suggests that the OLTP workload continues to
benefit from larger on-board caches, up to 4-8MB range,
but little benefit will be gained beyond thi s point. However,
the multimedia workloads’ characteristics are rarely
discussed. In [5], an MPEG-2 software decoder is studied.
This paper showed that a small set of tabular data
contributes to more than 50% of the memory references,
and the output data from decoder, which are only written
once, are likely to pollute the cache.

Modern issues for improving memory systems can
be divided into three major categories. The first one is the
latency hiding technique. Contemporary microprocessors
usually use two-level on-chip cache bridging between
processor and memory. Other latency hiding techniques
include a stream buffer [6], a prefetch buffer that brings the
next block of data in advance to hide latency between level
one cache and memory.

The second technique is to reduce cache misses.
Cache misses have been categorized into three C’s, that is,
Compulsory, Capacity, and Conflict misses. There are
several ways to reduce each category of misses, for
example, set-associative caches, varying block sizes,
victim cache [7], hardware and software prefetching [8].
Set-associative caches benefit from observed 2:1 cache rule
of thumb, that a direct-mapped cache of size N has about
the same miss rate as a 2 -way set-associative cache of size
N/2 [1]. Alarger block size can reduce compulsory misses,
but it might increase conflict misses and capacity misses.
The victim cache is a small fully associative cache block
between a cache and its refill path. The victim cache
contains only blocks that are’ discarded from a cache
because of a miss. It is checked on a miss to see if it has
the desired block before going to the next level of memory.

The third technique is to increase memory
bandwidth as well as memory speed. Several companies
have proposed new memory standards. For exampl e,
SLDRAM (synchronous link DRAM) [9] canreach the
speed of 400Mbit/s/pin with maximum IO speed of
800MB/s, and DRDRAM (direct rambus DRAM) [10]
reaches the speed of 800MBit/s/pin with maximum 1/0
speed of 1.6GB/s.

2. Related Work

We will review the related designs that have the
potential to improve the performance under multimedia
workloads while still fast enough to meet the modern
processor speeds.

2.1 Stream Buffer

Jouppi's Strearn Buffer [6] is a small prefetch buffer
lies between the first level cache and second level cache.
The buffer can hide the second level cache latency without
affecting the hit time of the first level cache. Figure 1
shows the block diagram of a stream buffer.

When a cache miss occurs, the Stream Buffer starts
to prefeich successive line at the miss target, set Tag field

A-466

to next address and valid bit to false. When the prefetched
data return, they are stored and the valid bit is set to true.
The prefeiched line is only stored in the buffer, thus
prevents the cache pollution probl em. When accessing o
the first-level cache we also compare their addresses with
the first item of the Stream Buffer. If it is a miss inthe

cache but hit inthe Stream Buffer, the cache can be

reloaded in one cycle. One drawback is that only the head

of thebuffer has a tag comparator, thus non -sequential
misses will flush the buffer. The results showed that the

Stream Buffer can remove 72% of the instruction misses,

but it can remove only 25% of the data cache misses. The
reason is that data references tend to consist of interleaved
streams of data from different sources, thus flushing

between different streams degrades the Stream Buffer
performance.

to processor

from processor

ﬁ:st-leve]
cache

to second-level from second-level
cache cache

Figure 1. Block diagram of the Stream Buffer

To avoid the flushing problem, Jouppi also proposed
a multi-way Stream Buffer that can handle several sireams
at the same time. It uses a multiplexor to switch between
different buffers that contain different streams.

2.2 Stride Directed Prefetching

Because numerical programs often have poor cache
performance, a Stride Directed Prefetching [12] method
was proposed. A table called Stride Prediction Table (SPT)
is used to direct the prefetching. The block diagram of the
Stride Prediction Table is showed in Figure 2.

[adder
SPT hit

Prefetch address

Figure 2. Block diagram of the Stride Prediction Table

The lower bits of instruction address (IA) are used

to index the SPT. When a cache reference takes place, the
current IA and IA field in the SPT entry are compared. The
distance between memory address (MA) and last memory
address in the eniry is also calculated and added to the
current MA. If it is a SPT hit, the new address is used as
the prefetch address. If it is a miss, an entry in the SPT is
selected and updated, and no prefetching will occur.

2.3 Selective Cache Line Replacement

A different caching method, the Selective Cache
Line Replacement [17], is proposed. I, unlike the
aggressive method such as prefetching that tries to bring
data into the cache in advance, tries to bypass some types
of data from the cache. This idea comes from the
observation that a large percentage of data misses are
caused by a verysmall number of instructions. In this
method, instructions that are marked C/NA
(Cacheable/Non-Allocatable) will not invoke the alloca tion
policy of the hardware management algorithm. This is
achieved by using a Miss Prediction Table. The paper
evaluated several different cache schemes, but we will only
describe the Improved Dynamic 2-bit Counter Scheme.

In the Improved Dynamic 2-bit Counter Scheme,
each line of the cache has associated with it the address of
the load instruction that brought that line into the cache.
Each entry of the Miss Prediction Table contains
Instruction Address and a 2-bit counter. On a cache hit, the
2-bit counter associated with the instruction that caused the
hit is decremented and in addition, the 2-bit counter
associated with the instruction that brought the cache line
into the cache is also decremented. Thus, those instructions
that do useful prefetching of data for other instructions are
not marked C/NA. On a cache miss, if the 2-bit counter
associates with the instruction in the Miss Prediction Table
is in the highest state (11, state), the data will be sent
directly from the second level cache to the proces sor
without changing the data cache content.

The results show that although total memory
references reduce only 1.36%, the required bandwidth
reduces substantially for SPEC92 benchmarks. SPE
INT92 reduces the average required bandwidth from 21%
to 23% for different cache configurations, and SPEC FP92
reduces the average required bandwidth from 5% to 10%.
This is because if a reference is a non -cacheable one, it
does not need to transfer the whole cache block from the
lower level memory hierarchy to the pro cessor, thus
reduces the required bandwidth.

2.4 Dual Data Cache

The observation that different types of data exhibit
different locality properties results in the design of Dual
Data Cache. Scalar variables usually have high temporal
locality and vectors with a small stride exhibit a very high
spatial locality, while random accesses (i.e., sparse matrix
computation) do not exhibit any types of locality. The Dual
Data Cache consists of two independent blocks of cache,
one is Spatial Cache, which exploits spatial locality, and
the other one is Temporal Cache, which exploits temporal
locality. Figure 3 shows the block diagram of the Dual

Data Cache.

The Dual Data Cache uses a Locality Prediction
Table to predict the data type of current memory reference.
Different types of data will go to different caches by using
a multiplexor and the Locality Prediction Table. The
Spatial Cache and Temporal Cache need not have the same
cache size. They can also have different block size s,
associativities, and replacement stra tegies. However, the

A-467

hardware will be more complex to ensure data consistency
if different configurations are used. If a memory reference
is predicted as having spatial locality, the required data
might still be found in theTemporal Cache. This is because
other temporal type of instructions might have brought the
data into the Temporal Cache. Thus, two caches must be
looked up at the same time when a memory reference
occurs. The hardware of the Locality Prediction Table is
showed in Figure 4.

Progra

Memory request from CP Counter

Data from
L2 cache

datato/from CPU

Figure 3. Block diagram of the Dual Data Cache

referenced

data address 7T | I
| NewStae
- »| and Prediction
‘ Lo%ality
Prediction
updated

entry

Figure 4. Hardware to update the Locality Prediction Table

Every time a memory reference occurs, the Locality
Prediction Table is looked up. If the instruction address is
not in the table, an entry is allocated to this instruction.
Then it is initialized as follows: a)the address of the
instruction, b) the address of the referenced data, ¢) Stride
equal to zero, d) Length equal to one, €) State equal to
Initial, and e) Prediction equal to Bypass. There are three
states, Initial, Transient, and Steady. Initial state is reached
after the first reference to a vector. Transient state is
reached as long as two consecutive references have
different strides. In these two states, the Locality Prediction
is the defanlt value (Bypass in the original paper). The
third state, Steady state, indicates that successive strides
are equal. In this state the Locality Prediciion is given by
the updated value of the Prediction field.

3. Simnulation Environment and Benchmarks

The experiments were performed on SUN
UltraSPARC family workstations with Solaris 2.5.1
operating system. UltraSPAC processor uses 64 bit SPARC
V9 instruction set. The processor has 16K L1 instruction

cache alone with 16K L1 data cache. The instruction cache
is 2-way associative, and the block size is 32 bytes. The
data cache is direct-mapped with 16 byte subblocks.

This paper focuses on multimedia workloads, and the
non-commercial multimedia benchmark suite readily
available is MediaBench [13]. This benchmark suite,
proposed by UCLA, is a collection of public domain
multimedia applications that is commonly used.

MediaBench is composed of complete applications

~ coded in high-level langnages. MediaBench 1.0 contains

19 applications culled from available image processing,
communications and DSP applications. The components
include:

JPEG: is a standardized compression method for full-color
and gray-scale images.

MPEG: is the current dominant standard for high -qualit
digital video transmission.

GSM: European GSM 06.10 provisional standard for
full-rate speech transcoding, pr -ETS 300 036, which uses
residual pulse excitation/long term prediction coding at
13kbit/s.

G.721 Voice Compression: Reference implementations of
the CCITT (International Telegraph and Telephone
Consultative Committee) G.711, G.721 and G.723 voic
COMpressions.

PGP: PGP uses “message digests” to form signatures.
message digest is a 128-bit cryptographically strong
one-way hash function of the message (MD5).

PEGWIT: A program for public keyencryption and
authentication.

Ghostscript: An interpreter for the PostScript language.
Mesa: is a 3-D graphics library clone of OpenGL. All
display output functions were removed from the library
and demo programs included in the package.

RASTA: A program for speech recognition that supports
the following techniques: PLP,RASTA, and Jah -RASTA.
EPIC: Experimental image compression utility. The
compression algorithms are based onabi “orthogonal
critically sampled dyadic wavelet decomposition and a
combined run-length/Huffman entropy coder.

ADPCM: Adaptive differential pulse code modulation is
one of the simplest and oldest forms of audio coding.

In the experiments, we select larger input files for
some of the applications to enlarge the problem size for a
more accurate result. The benchmarks were analyzed to
ensure that they are as resistant as possible to compiler
optimizations that might not translate into real world
performance gains.

s

Dynamic
execution

initialize

Analyzer

A single process

Figure 5. Program-driven simulation
We choose program-driven simulation (Figure 5) to
save storage space. The simulation tools we use are Shade
[15] and SpixTools [16] released by SUN. Shadeisa
program-driven simulation tool. We only need to initiali ze

A-468

Shade and supply the information of what instructions we
interested in the beginning. Then, we write the analyzer
procedure that handles these instructions. SpixTools is a
collection of programs that provide instruction level
profiling of user programs.

4, Multimedia Workloads

The impression of a multimedia application is that it
has a smalt core that dominates the execution time. Figure
6 shows the relationship of static instructions and their
cumulative contributions to dynamic execution. In Figure 6,
we found that 13 out of 17 applications spend 70% of
dynamic execution on less than 200 static instructions,
which are less than 1% of the average static instruction
count (average static instruction count - of these 13
applications is 30000). However, the instructions that affect
memory system design are those generate memory
accesses. Figure 7 shows the relationship of static
instructions and their cumulative contributions to total
dynamic memory access.

cumulative dynamic instructions

48598338§

0
VN3 4 stos T8 B 101 1011315 16 T I
St instructio

Figure 6. Core size analysis

=1 —cieeg

— gl
dipeg

o gllenc
—egic

—~ ghostsciipt
- rrpeg2deccde
— mpegencode)

cumulative memory references

TOBE 2030 40 S 61 T BEO9L Al 11 520 131 141 358 161 Iy 1BE 91
e instructions

Figure 7. Memory reference analysis

In recent studies, researchers start to put emphasis
on stream reference activity that occurs in execution time.
Many new hardware schemes are proposed to make use of
this phenomenon. The Spatial Locality Detection Table [11
is used to decide how many blocks to be fetched on each
cache miss. The Siride Prediction Table [12] is used to
decide whether prefetching or not on a cache miss. The
Locality Prediction Table [3] is used to decide which part
of the block should reside in a Dual Data C ache when data
arrives from lower -level cache. The stream buffer also tries
to benefit from stream references.

As previously described, we know that few siatic
instructions generate most of the memory references. To
capture the stream reference pattern, we use a Stride

History Table (SHT) similar to the Stride PredictionTable,
but with a two-bit saturation counter attached to each entry.
The SHT scheme is presented in Figure 8.

v
Stride History Table E

PCl0:9]
e

I PC Tag | Last Address ILast Stride I 2-bit counter E
PC[16:31]

DA

update | | tridedict

PC Tag | Last Address | Last stride | 2-bit counter
i

Figure 8. Hardware to update the Stride History Table

5. Proposed Architectures
5.1 Split Data Cache

The stream references take about 50% of total data
references, which are easier to predict. We proposed a Split
Data Cache scheme using Siride data cache for swide
references and non-Stride data cache forno -stride
references. The architecture is showed in Figure 9.

To meet the CPU speed, the SHT might need to be
pipelined. When a hit occurs in data cache, new values for
SHT entry are calculated, and these valnes will be updated
at the next cycle. To prevent from getting the wrong value
during computation, the data forwarding technique can be
used. When a data miss occurs, the memory request is first
issued to the second level cache. The SHT will have two or
more cycles to make the prediction before dat a arrives
from the lower level cache, there will be an abundant of
time.

Figure 9. Block diagram of the Split Data Cache
In the Split Data Cache, data consistency property
must be preserved. When a Split Data Cache miss occurs,
different size of blocks might be brought in from the
second level cache depending on the SHT information. If a
block is brought into the Stride data cache, and some
blocks in the non-Stride data cache lie in the range of this
block, a consistency problem will occur. There are several
ways to deal with this problem. If the blocks in the
non-Stride data cache are not dirty, we can invalid the
block by simply turning the valid bit off. If the blocks are
dirty, we can proceed the write back operation to the
second level cache first, but this might introduce extra
delay in the memory hierarchy. One alternative is to add a
bus between the Stride data cache and non -Siride data
cache. If some blocks in the non-Stride data cache lie in the

A-469

range of arequired block of the Stride data cache, the dirty
blocks are copied directly to the non-Stride data cache and
the valid bits are turned off. Some control signal can also
be sent to the second level cache, and the returned data can
skip these parts. Although it need s more hardware and
control to achieve the goal, the bandwidth requirement
between the first level cache and the second level cache
can be relieved.

In our experiments, a data cache access will be
treated as a miss if the data is not in the Split Data Cache,
or the data can not be found in the Stride data cache when
the access is predicted as a stream reference. In the second
case, if the data is already in the non-Stride data cache, itis
copied from the non-Stride data cache io the Stride data
cache. Because the block size of the Stride data cache is
larger than that of a non-Stride data cache, the rest of the
block will still be retrieved from the second level cache.
We call this a fast miss, since it can still provide a single
cycle hit.

5.2 Assisted Stream Buffer

In a traditional cache, stream buffer might make too
much useless prefetch, and waste the precious memory
bandwidth. In a Split Data Cache system, we can prevent
this situation by using the SHT information. We propose an
Assisted Stream Buffer (ASB) to back up the Stride data
cache by using the SHT information. The Assisted Stream
Buffer can further improve the memorysystem
performance by hiding the second level cache latency. The
architecture is showed in Figure 10.

Figure 10. Assisted Stream Buffer with SHT information

The Assist Stream Buffer is an 8 -entry fully
associative cache using the LRU replacement. It does not
do anything until a Stride data cache miss occurs. When a
Stride data cache miss occurs, the ssisted Stream Buffer
gets the Last Stride value from the SHT and data address
from the address bus. It then checks if the data is in the
buffer, if so, returns the data to the Stride data cache. It also
checks if the next data block or previous data block is in
the buffer depending on positive or negative Last Stride
value. If the block cannot be found in the buffer, and if the
Last Stride value information from the SHT indicates that
the instruction causing this data miss has a small stride (no
larger than two block-size, e.g. 128 bytes in our
experiments), the memory request is issued. If the
instruction produces large stride references, no prefeich
will take place.

6. Experiment Results
6.1 Split Data Cache
6.1.1 Simulation Results on Level One Cache
We choose a 32K 2-way instruction cache with 16K
2-way non-Stride data cache and 16K -way Stride data

cache. To compare with the conventional cache design, a
conventional cache with 32K 2-way instruction cache and
32K 2-way data cache isused as the baseline . Both
architectures use 128K 2-way unified caches with 64 byte
blocks and32byte subblocks insecond level cache.

Write-back, write-allocate, and back-invalidation are all
simulated to approach the real performance. The baseline
architecture uses 32byte blocks in the first level cache,
while the Stride data cache uses 64 byte blocks. Three

" block sizes (8 bytes, 16 bytes, and 32 bytes) for non -Stride

data cache are used. To evaluate the potential of this
architecture, Stride Prediction Tables with 2048 entries are
used. The result is showed in Figure 11.

miss rate ratio

Figure 11. Miss rate of the Split Data Cache

The result shows thatby adopting the Split Data
Cache scheme, the miss rate can be reduced to 82%~87%,
of a conventional data cache. Other result also shows that
1%~17% of Stride data cache misses are fast misses. The
block size of the non -Stride data cache can affect the
performance dramatically. The miss rate decreases
obviously while the block size of the non-Stride data cache
increase from 8bytes to 32 by es. In rawcaudio, using a 32
byte block non -Stride data cache can reduce thé miss rate
by 25%, but using a 8 byie block non-Stride data cache
will increase the miss rate by 2 %. For the most of the
benchmark, the b32/b64 scheme is better than b8/b64
scheme.

6.1.2 Simulation Results on Required Bandwidth

Although the differences between the applications
are considerable, average miss rate can be reduced to
82%~87% using different block sizes. To choose a better
block size, we will further consider the extra bandwit
required by the three schemes. Figure 12 shows the
required bandwidth compared with the conventional data
cache.

bandwidth requirement

Figure 12. Required bandwidth for the Split Data Cache

In Figure 12, assume all Stride data cache misses
need 64 bytes of bandwidth, although some fast misses

A-470

actually need less bandwidth. The result shows that the
extra bandwidth required are 20% for 8 byte blocks, 30%
for 16 byte blocks, and 38% for 32 byte blocks. We find
that larger block can reduce the miss rate and needs some
exira bandwidth, which means thatthese non -stream
references in the program exhibit some. types of spatial
locality and the block size we choose should not be too
small.
6.1.3 Simulation Resulis on Level Two Cache

To evaluate the overall performance gain, the impact
on the second level cache must also be evaluated. The total
second level cache mhisses are showed in Figure 13. The
result shows a remarkable reduction on the miss count.
Some applications even reduce their second level cache
misses by 50% or more. One reason is that the Stride data
cache fetches 64 byte blocks at one time, generates some of
the misses. '

Consider a small instruction core that accesses a
large array with one-byte interval. In a conventional cache
hierarchy, the first level cache misses will occuron
location 32k, k: 0, 1, 2,..., and it will be the same on the
second level cache because we use 32 byte subblocks. But
if the Split Data Cache is adopted, the misses of the level
one cache will only occur on location0, 3, 64k, k: 1, 2,...,
(cache miss on location 3 is a fast miss) in our example.
The misses of the second level cache will occur on location
0, 32, 64k, k: 1, 2,.... The first miss will bring a 32 -byte
subblock into the level two cache and the second miss will
bring the other subblock. All the following misses will
bring 64 byte blocks into the second level cache. This cuts
the total miss count to about a half. Although the total
bandwidth between the level two caches and main memory
is still the same, it reduces the setup time for ac cessing
main memory and makes the use of the memory bus more
effective.

Figure 13. The second level cache misses using the Split
Data Cache
6.1.4 Impact of Fixed-Size Stride History Table
To verify the effect on the size of the SHT, we

change the table size from 64 entries to 2048 entries. In
this experiment we fix the block size of non -Stride data
caches to 16 bytes. The result is showed in Figure 14. In
this figure we find that using different sizes of SHT will
change the average miss rate ratio from 84 .89% to 92.37%.
The average miss raie ratio in a 64 entry SHT is 90.81%,
which means that if the hardware budget is limited, a 64
entry SHT can be used.

miss rale ratio

py LA AT
fi;of LA w‘jj @

Figure 14. Impact of fixed-size SHT

6.2 Assisted Stream Buffer

The Stream Buffer will not reduce an miss rate, but
it can hide the memory latency if the prefetched data is
used later. Two parameters, buffer hit rate and bandwidth
requirement, need to be evaluated. If the buffer has a high
hit rate, but the buffer generates too much useless prefetch,
total performance might be degraded because of the limited
bandwidth. First, the Split Data Cache with the Assisted
Stream Buffer (16 byte blocks for non-Stride data tache) is
evaluated and the results are showed in Figure 15 and
Figure 16. Figure 15 shows that Assisted Stream Buffer
can benefit from the separated first level data cache and
SHT information, and have about 77.8% hit rate which can
significantly hide the latency between the Stride data cache
and the second level cache.

Figure 16 shows that the extra bandwidth wasted on
the useless prefetching are 12.5%. An observation shows
that the useful prefetched data are never used within 16
cycles. Moreover, the average first-hit t1me on these data
after the prefetching ranges from 10% to 10°, which means
that the Assisted Stream Buffer has abundant of time to
wait for the second level cache to complete the prefetching
request. This result also shows that hardware prefetching
technique without using extra prefetch buffer will have a
poor performance, because the prefetch will always replace
blocks in the first level cache too early, and probably will
increase the miss rate.

hit rate

Figure 15. ASB hit rate of the Split Data Cache

A-471

extra bandwidth required

;9‘ #}*‘Pa" &a’f,;"#fy f&&

a«r & &
4 g

O%sf é&éﬁ

éi’ &
¥

Figure 16. Increased bandwidth

7. Conclusion

The result shows that multimedia applic ations have
small computation cores that generate most of the memory
references. Based on this fact, the Stride History Table is
used to record the program history and make useful
prediction. The resuit also shows that a 64 entry SHT can
capture 90% of the stream references by using 2048 entry
SHT, which means that the hardware for SHT can be made
small.

To benefit from the stream references, a Split Data
Cache is proposed. The main idea of separating data cache
into two parts is to make better use of the s patial locality.
The Split Data Cache outperforms the conventional 2 -way
data cache; it also outperforms the conventional 4-way data
cache. The result shows that by adopting the Split Data
Cache scheme, the miss rate can be reduced to 82%~87%
of a conventional data cache. We found that the size of the
non-Stride data cache can be reduced with only minor
performance change.

To further improve the memory system performance,
we proposed an Assisted Stream Buffer to hide the latency
between the Stride data cache and the second level cache.
By using the SHT information, the Assisted Stream Buffer
can yield an average hit ratio of 77.8%, with 12.5% exira
bandwidth.

Although the new DRAM standards can provide
bandwidth up to 1.6 GB/s, the setup time for accessing the
main memory is still large. A SLDRAM has to wait for
32.5ns~77.5ns to get the first data depending on the
accessing mode. In a 500Mhz CPU, it equals 17~39
computation cycles. By adopting the Split Data Cache
scheme, we can reduce the miss count on the second level
cache to 53%. Thus the total setup time spent on accessing
memory can be reduced remarkably.

References

[1] John L Hennessy and David A Patterson, “Computer
Architecture A Quantitative Approach, Second
Edition,” Morgan Kaufmann Publishers, inc.

[2] F. Jesus Sanchez, Antonio Gonzalez and Mateo Vakro,
“Static Locality Analysis for Cache Management,” in
Proceedings of the 3™ international conference .on the
Practical Application of Constraint Technology, Nov.
1997.

[3] Antonio Gonzalez, Carlos A iagas and Mateo Valero,
“A Data Cache with Multiple Caching Strategies
Tuned to Different Types of Locality,” in Proceedings
of the2 ™ international symposium on Computer
Architecture, pp.338-347, 1993.

[4] Luiz Andre Barroso, Kourosh Gharachorloo and
Edouard Bugnion, “Memory System Characterization

of CommercialWorkloads,” in Proceedings of the 25 ®
international symposium on Computer Architecture,
June 1998.

[5] Peter Soderquist and Miriam Leeser, “Memory Traffic
and Data Cache Behavior of an MPEG -2 Software
Decoder,” in Proceedings of the IEEE/ACM
international conference on Computer-aided Design,
pp.417-422, Oct. 1997.

[6] Jouppi, N.P, “Improvingdirect -mapped cache
performancebythe addition of a small
full -associative cache and prefetch buffers,” in
Proceeding of the 17" international symposium on
Computer Architecture, pp.364-373, May 1990.

{7] Subbarao Palacharla and RE. Kessler, “Evaluating
Stream Buffer as a Secondary Cache Relpacement,”
in Proceedings of the 21* international symposium on
Computer Architecture, pp.24-33, April 1994,

[8] O. Temam, C. Fricker and W. Jalby, “Cache
Interference Phenomena,” in Proceedings of the 1994
conference on Measurement and modeling of
computer systems, pp. 261-271, 1994,

[9] Peter Gillingham, MOSAID Techn ologies Inc.,
“SLDRAM Architectural and Functional Overview,”
SLDRAM Consortium, 1997,

[10] “RAMBUS ® TECHNOLOGY OVERVIE
Rambus Inc., Feb. 1999,

[11] Teresa L. Johnson, Matthew C. Merten, and Wen-mei
W. Hwu, “Run-time Spatial Locality Detection and
Optimization,” in Proceedings of the thirtieth annual
[EEE/ACM international symposium on
Microarchitecture, pp. 57-64, 1997,

[12] John W. C. Fu, Janak H. Patel, and Bob L. Janssens,
“Stride Directed Prefetching in Scalar Processors,” in
‘Proceedings of the 25™ annual international
symposinm on Microarchitecture, pp. 102-110, 1992.

[13] Chunbo Lee, Miodrag Potkonjak and William H.
Mangione-Smith, “MediaBench: A Tool fo
Evaluating and Synthesizing Multimedia and
Communications Systems,” in Proceedings of the
thirtieth annual IEEF/ACM international symposium
on Microarchitecture, pp.330-335, 1997.

[14] “SPEC CPU95 Press Release,” Standard Performance
Evaluation Corporation, Aug. 1995.

[15] “Introduction to Shade,” Sun Microsystems, Inc.,
V5.33A, June 1997.

[16] “Introduction to SpixTools,” Sun Microsystems, Inc.,
V5.33A, Feb. 1993.

[17] Gary Tyson, Matthew Farrens, John Mathhews, and
Andrew R. Pleszkun, "Managing Data Caches Using
Selective Cache Line Replacement,” International
Journal of Parallel Programming, Vol. 25, No. 3,
1997.

A-472

