FEREA/\EREERSE

Solving for a Class of Linear Matrix Inequalities Using Neural Networks

Chun-Liang Lin, Chi-Chii Lai, Teng-Hsien Huang and Tasi-Yuan Lin

Department of Automatic Control Engineering
Feng Chia University, Taichung, Taiwan, 40724, R.0O.C.

Email: chunlin@fcu.edu.tw

Abstract

This paper proposes a new approach solving for a class of
LMIs, which are commonly encountered in the robust
control system analysis and design, using recurrent neural
networks. The nature of parallel and distributed neural
processing  renders these networks possessing the
computational advantages over the traditional sequential
algorithms in real-time applications. The proposed
networks are proven to be asymptotically in the large and
capable of LMIs solving. Illustrative examples are
provided to demonstrate the proposed results.
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1. INTRODUCTION

LMIs are becoming basic tools in control as Lyapunov and
Riccati equations became basic tools in the 1960s. They
have emerged as a powerful formulation and design
technique for a variety of linear control problems [1].
Construction for design objectives in systems and control
theory can usually be cast or recast as semi-definite
programming problems, i.e. LMI problems, for examples,
robustness analysis and robust controller design [9,10,12],
gain scheduled controller design [13), H_, design with

pole placement constraints [4], stability analysis of fuzzy
control system [18],..., etc. See [3] for an extensive
research survey. Due to recent advances in convex
optimization, efficient algorithms exist for solving LMI’s;
see [3,15] for excellent surveys of these methods and [7i
for a MATLAB TOOLBOX. It turns out that the analysis
problem can be solved using a numerical algorithm.
Traditional algorithms solving for LMIs perform
sequentially numerical computations. For real-time control
applications, when the solution is to be obtained within a
time of the order of a hundred nanoseconds, a digital
computer performing numerical computation may not
comply with the desired computation time. In recent years,
intensive investigation activity has been devoted to the
application of artificial neural networks for solving the
matrix equations [5,16,19] and linear programming
problems [6,17,20] due to their parallel and distributed
nature.

The presented approach constitutes a solution to the LMI
problems by applying recurrent neural networks. Because
of the parallel distributed nature of the neural networks,
and advances in VLSI technology make it possible to

fabricate microelectronic networks of high complexity, thus
they can be available computational models for the real-
time control purpose [5,21]. Many researches have been
reported for solving systems of linear equations and related
problems with artificial neural networks. However, there
have few literatures focusing on on-line solutions to the
Riccati matrix equations or related equations [12].
Specially, it was rarely seen that one solves LMIs based on
neural network processing [11]. Throughout this paper, an
emphasis is placed on synthesizing a variety of recurrent
neural networks to solve LMIs. The algorithm involves
four important extensions beyond traditional numerical
methods. First, it takes advantage of the special structure of
the matrix inequalities, e.g. Lyapunov or Riccati. Second,
the neural dynamics enables us to solve many optimization
problems in real-time due to the massively parallel
operations of the computing units and due to the better
convergence properties in comparison with iterative
schemes. Third, the neuro dynamical system implemented
on the basis of differential equations usually exhibits more
robustness to certain variations and it tends to retain
information better through time. Finally, the most
important one is that it possesses the potential for
synthesizing real-time robust adaptive controllers for time-
varying or gain-scheduled systems. We consider in this
paper the following problems:

e Lyapunov matrix inequalities for stability and
performance analysis of linear differential inclusion

* joint synthesis of state feedback and Lyapunov or Riccati
inequalities for linear differential inclusions

As certain representative LMIs are studied, however, the

proposed approach can be directly extended to solve other

types of LMIs.

2. NEURAL DYNAMIC EQUATION

Formulation of LMI based on Lyapunov’s methods will be
our main focus. Advantages of using the methods are
threefold. First, many problems from Lyapunov theory can
be cast as convex or quasiconvex problem. Second, the
method can just as well be used to find bounds on system
performance provided one do not insist on analytic solution.
Third, the neural network solving for Lyapunov equations
can be realized using hardware. These features make
Lyapunov’s method useful in control applications.

The class of generalized Lyapunov . inequalities are
commonly used for determining a robust stabilizing control
law. The LMI is described by (1)
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L(P)=BPA+ATPE +D<0, P>0 (1

where A, B, D=DT >0 are given matrices of appropriate
sizes, P=PT&R™™ s the variable. The inequality
symbol ‘<’ (>’) in (1) means that L(-) (P) is negative
definite (positive definite), i.e., uTL(P)u <0(P>0) ,

Vue 0,ue R" . If L(P) is simplified as L(P) = PA+ AT P,
then it is well known from the linear system theory that this

LMI is feasible (i.e. the LMI will be solvable and result in
P >0),if and only if, the matrix A is asymptotically stable.

To simplify the representation let us only consider the
general form:

L(P)<0, P>0 2)

To solve for LMIs in terms of recurrent neural networks,
we first impose two slack matrices converting the LMI into
the linear matrix equalities of the forms:

G(P,R)=L(P)+RR] =0 (32)
Go(P,Ry)=P-RyRY =0 (3b)
where P is named as the solution matrix, Gy e R™" and

G, € R™™ are the objective matrices, the slack matrices

1-!51,2 are restricted to be nonsingular, positive definite as
the following forms

(i) 0 0 0
g1 Mpliz) 0 0
R=H®)=| rn A3 M3(iss) (4a)
0
L Ainl Tin2 N3 Py (,n0) |
(’121(’11 v 0 0 ]
nay holmyy 0 0
R, =Hy(Ry)=| r3y ny Ilnay) (4b)
0
| P hm  md hzm(fzmm)J
with Ry = [rl,ij]nxn » Ry = [rZ,ij]mxm ’ ;:,'9,_/:/‘ = h.v("x,_/j) >0,

Vs, j. The existence of the‘decomposition KJ?ST for a

positive definite matrix is ensured by the matrix theory [14].

Lemma 1: A principal submatrix of a positive definite
matrix is also positive definite.

Lemma 2: The matrix A is positive definite, if and-only if,
there is a unique lower triangular matrix R with positive
diagonal elements such that A = RR”

It follows from Lemma 1 that the matrices 131’2 defined in

(4) are positive definite. Lemma 2 is known as the
Cholesky decomposition. It ensures that the LMI in (2) can
be expressed in the form of (3).

The next step is to establish a convex computation energy
function:

HORRR=Y Y sl Rl S e lonsr] )

i=l j=1 i=l j=t

where €, j are the error functions, they measure the degree
of constraint violation of elements 8s,ij(P\Ry),

Vs,i,j. Solving for the LMI now becomes a constrained

optimization problem. The derivation of the energy
function enables us to transform the minimization problem
into a set of ordinary differential equations based on neural
networks with appropriate synaptic weights, input
excitation, bias, and nonlinear or linear activation function.

* The dynamically neural network for solving linear matrix

equalities (3a)-(3b) are described by

dP(1) OF
L= = O
di Mo op = r ©
dR, (1) O
R R A 6b
i M ox, 1™ (6b)
dR, (1) O
—==-7. —— ’-,W;7
a0 ok, ©
R, =Hy(Ry), s=12 (6d)

where the derivative of a scalar valued-function E with
respect to a matrix is defined by

B—E = {—QE } Lj=1, .m

P 317‘] mxm

The derivatives a%ﬁ »$=12 are defined similarly. In
§

the above, P(r) and R,(t),s =12 are activation state
matrices of the recurrent neural network, 7 poTls >0 are
the learning rates and Q=[] pxm > W =, 1nin
Wo =[w i lem With
wjf = iiag;'/g('ﬂfl.kl(gl.kl(a Ri)

k=li=1 %P (7a)

oy 982k Ry . ;
+L )= i Fopg2m(P Ry, i=1, mj=1 .m

e 081 1 (P Ry)
Wi = ——-1'“.. lﬁ,kz(gl,kz(P,Rl)),
v )
== Oy (7b)

i=1, ,n,j=1, ,n

m m a
22 11 (P, Ry)
Wi = —=— S (82,1 (P, R)),
ég O (7c)

i=l, ,m, j=1, ,m

g5 1y .
— can be viewed as the

in which f;4(g,0) =
8 5.kl

activation function with the input g s - Note that

€,ij(8s,) and fy (g, ;) are functions of g5, only.

The constraints 7yii >0,Vs,i imposing on R, (z) can be

fulfilled by employing a limiting integrator with the

continuously nonlinear transformation (see Fig. 1):

Psmax —€

- , Vs, i (8a)
1+e M

hSi(rS,ii) =&+

where the steepness factor A >0 and £ is an arbitrarily
small constant. Note that the nonlinear limiter is
continuously differentiable with

A-388



=Ar
A . —g)e T
hy (rs )= (P;,max_b ) -—>0,s,1 (8b)
(1 + e 54 )

See Fig. 1 for a graphical illustration of hy; . It should be
noted that the limiter's level pg ., is adjustable.
Adjusting pg g the neural network will result in

different solutions to the LMI (2). Therefore it can be used
as a design parameter for the control design. Equations
(6a)-(6c) mean that the activation state matrices P(t) and

R, (1) evolve in the direction of negative gradient of
E{G(P,R|,R,)] as time evolves. In other words, the

steady activation state matrix lim P(t)=F minimizes
=300

E[G(P,R;,R,)] in a gradient descent fashion. This is a

direct matrix representation for the minimization of convex
functions extending from the traditional gradient-descent
algorithm.

A

P:,max 'ﬁh (r:u)
// hy(r.a)
£ i

s,

Fig. | A nonlinear transformation

Before extending the above results to solve practical LMI
problems, we first present the following useful derivative
operations of a scalar-valued function defined as (5) with
respect to the solution matrix P. These equalities will be
useful for putting various LMIs in the form of (6).

Lemma 3: Suppose that the energy function E = E[G{X)],

the solution matrix X € R™" and the non-decreasing
activation matrix F =[ f,-j(gij)] , then the following
derivatives hold:

OE

(i) G(X)=AX, Ae R then = Z _ATF, Fe®b®

(i) G(X)=AXT, Ae R then g—;’;:FTA, Fe®Rbm

(i) G(X)= XA, Ae R™ then g—f;: FAT, Fe®™

JE

(iv) G(X)=XTA, Ae ™ then —a}—=AFT, Fe®™

) G(X)=ATXH , Ac®R™ and HeR"™ , then
OF o AFHT Fe®™"

X

(vi) G(X)=AXHT , AeR™™ and HeR"™" , then
BE
X

Based on (6) and Lemma 3, we can now obtain a set of
neural dynamic equations solving for the LMI (1) as
follows

‘Z‘j =-n,[B" (P, R)AT + AR(P, R)B+F>(P.Ry)] (%)

=ATFH  Fe®™

dR,

_d}— = -0 Fi(P.R)R, (9b)
dR,
_dt =-1,2F,(P,Ry)R, (%)

where the learning rates 77,712 >0, and the activation
matrices are
F(P,R) = F(BPA+ ATPBT + D+ RR{)
Fy(P,Ry) = Fy(P~RyRY)
Remark: For the discrete Lyapunov matrix inequality
described by

L(P)=ATPA-P<0, P>0

where P=PT e R™™ is the variable. Suppose that A is
asymptotically stable in the discrete-time sense. Therefore,
P must be positive definite. The corresponding neural
dynamic equations solving for the solution candidates are
given by

‘i’: =, [AF(P,R)AT - F(P,R))

dR
= =-n,F(P,R)R
a n,F(P,R)

where R is defined as in (4), the activation matrix is

F(P,R)=F(ATPA-~P+RR")

3. STABILITY ANALYSIS

The elements of the recurrent neural networks (6a)-(6¢) can
be described as follows:

dp; (1) 2 08, . (P Ry)
; =-np{22—%§#ﬁ,g[gl.g<P,Rl)l} (102)

dr, (t) 9 (P,Ry)
le rs{zz 85,k fsij[gs'ij(P,Rs)]}‘s=l,2 (10b)

b=l
The architecture of the recurrent neural network consists of
three output layers and two hidden layers which are
bidirectionally connected with the output layers of neurons.
There is a functional transformation f, ;() for each

neuron in the hidden layer, an integral transformation for
each neuron of p; in the output layer, and an integral-
limiting transformation for each neuron of ry; in the
output layer. Each layer is composed of an array of neurons.
The activation state matrix P(¢f) corresponds to the
ag 5.kl

solution matrix. Since g, 4 () isa linear function,

og 5.kl

and are constant. The connection weights from the

Ts.ij
(k,1) -th hidden neuron to the (i, j) -th output neuron of
9851l
s BFS i »

5
P(t) and R,(r) are defined as -7, 53 il

respectively. The connection weights from the (k1) -th
output neuron of P(f) and R, (r) to the (7, j) -th hidden
neuron are defined by the coefficients of py(f) and
Fou(® in gy s (PRS), respectively. There is no lateral
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connection among the neurons in either layer.

It should be emphasized that the effectiveness and
convergence of the presented neural networks depend
significantly on the values of the learning rates. The
optimal choice usually depends on the scheme being solved.
This problem seems to be similar to other gradient-based
optimization task. Larger gains accelerate the convergence.
However, they may overshoot the solution.

4. NEURAL DYNAMICS FOR A CLASS OF LMIS

(i) Simultaneous Lyapunov inequality problem

The problem arises in determining Lyapunov stability for
linear inclusion systems of the form:
x=A(t)x (11)
The system is stable for A(¢) in the convex set 2]
 A( e C, =convex hull(A, Ay, A7)

where A; € R™", Vi are given and stable, if, and only if,
there exists a global variable P >0 such that

ATP+PA<0,AcC, (12)
or equivalently,
ATP+PA <0, i=1 L (13)

Determining quadratic stability for the system is an LMI

problem in the variable P. To determine the variable P, the

LMIs are converted into a group of linear matrix equalities:
ATP+PA; +RRT =0, i=1, ,L

where R;,i=1, ,L are defined as in (4). Since

A é‘ft”"”,w have been assumed to be stable, thus P
must be positive definite. The remaining work is to find the
permissible matrix P satisfying (12).

To find the neural dynamics, the following objective
matrices are defined:

Gi(P,R)=ATP+PA+RRT, i=1, I (14)

Based on these objective matrices and using Lemma 3, the
neural dynamics solving for the problem can be easily
formulated as follows

dP oE L ~ ~_ T
;=—np§=—npg[AfﬂfP,R,->+ﬂ(P,Ri>A; ] (15a)
dR; oF ~ .~
-d—l"z_nri%:_n’}ﬂ(P’Ri)R’.’l=l’ ,L (le)

where the activation matrix is
F(P.R)=F,(ATP+PA +RRT)i=1, L
(i) Stabilizingtabilizing control problem

Consider the linear time-invariant system

x=Ax+Bu (16)
where Ae R™" Be R™™  The state feedback control law
is given by

u=Kx (17)

The system is said to be quadratically stabilizable if there
exists a state-feedback gain K such that the closed-loop
systtm x=(A+BK)x is quadratically siable, or

equivalently, there exists P =P’ >0 such that

(A+BK) P+ P(A+BK)<0 (18)
An alternative equivalent condition is that, there exists
Q= QT >0 such that

QA+ BK) +(A+BK)Q <0 19)
Define X = KQ , so that K =XQ7!. Substituting this into

(24) yields

AQ+0AT +BX +XTB" <0 (20)
The LMI includes two variables in Q and X. Thus, the
closed-loop system is quadratically stabilizable if and only
if there exist @ >0 and X such that the LMI (20) holds.
Using the elimination procedure for matrix variables Q and
X, (20) can be equivalently expressed as

BT(A0+0AT)B <0 (1)
where B is an orthogonal complement of B, i.e.

B'B=0
and [§ B] is nonsingular. Now using Finsler’s lemma 3],
(21) is also equivalent to

AQ+0QAT -0BBT <0, 6% (22)
where G is some scalar. Clearly, the variable X has been
eliminated from (20). We can always assume o > 0, and
since (22) is homogeneous in Q and O , we may set o =1
without loss of generality. If Q>0 satisfies (22), a
stabilizing state-feedback gain is given by

K=—-;-O'BTQ'1 (23)

Note that the simplified LMI (22) remains only one
variable Q. To solve this equation, let us define the
objective matrix

G(Q.R) =AQ+QAT —oBBT +RRT =0 (24)
where the slack matrix R is defined as in (4). The

corresponding dynamic equations of the recurrent neural
network can be obtained by applying (6) and Lemma 3

daQ _ oFE _ T ~ ~

o g 0 ~Ng (A" F(Q,R)+ F(Q,R)A) (25a)

dR oE ~ o~

—=-N,—==~N,.F(Q,R)R 25b

7 n, ¥ n-F(Q,R) (25b)
where the activation matrix is

F(Q,R)=F(AQ+QAT -oBBT + RRT) (25¢)

As Q is obtained from (25a), the control gain is recovered
as K = —().SCJ‘BTQ‘l . For the actual applications, however,

computation for the matrix inverse Q! should be avoided.

Under this consideration, the neural network given in [12]
can also be used to realize the gain.

(ili) Algebraic Riccati mairix inequality problem

The class of algebraic Riccati matrix inequalities are
commonly used in quadratic stabilizing control for
determining a robust stabilizing control law. It is typically
described by

ATP+PA+(PB-CTYD+D")y ' (BTP-C)+0 <0, (26)
where P=PT >0 is the variable, D+ DT >0, and A, B,

C, D, =07 are given matrices of appropriate sizes. This
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is a quadratic matrix inequality in the variable P. We
assume for simplicity that A is stable and the system
(A,B,C) is minimal. Using Schur theorem [8], it can be
equivalently expressed as an LML

T _AT
{PA+A P+0Q PB-C }<0, [

B'p-c -D"-D
Or equivalently
APB+BTPAT +D <0, P>0 (28)
where
K=[I],§=[A 315=[Q -c’ }
0 -c -p"-p

A Riccati equation has many solutions. However, if the
equation has a symmetric positive definite solution then it
is unique. Suppose that there is a positive definite solution
to (26). Now to avoid the solution obtained converges to
the one which is not positive definite, an additional
constraint as in (3b) can be imposed:

G((P,R)=APB+BTPAT +D+RR| (29)
Go(P,Ry)=P—-RyRY (29b)
Applying the derivation presented in (6) and Lemma 3, the

recurrent neural dynamics for solving the Riccati matrix
inequality is given by

5‘;—‘? =-n,[ATR(P,R)BT + BF,(P,R)A + F,(P,R,)] (30a)
dR -
Tzl' =1, F (P,R)R, (30b)
dR _—
th =—1,2F>(P,Ry)R, (30¢)

where the aciivation matrices are
F(P,R))=F,(APB+BTPAT +D+R\R)
Fy(P,Ry)=F,(P-RyR))

4, ILLUSTRATIVE EXAMPLES

In the following examples, elements of the convex energy
function were defined as

€ =8 tan'l(gij)—ln1¢1+ g,-jz , Vi, j
Therefore the corresponding activation functions are
fy=tan(gy), Vi)
Example 1. Consider the perturbed system of the form
x=Av+Bu+Alxut),  (ABYeC,{(A4,B), .(A;,B;)}(31)
where B; = B(0;), A; =A(0;),i=1, ,L are the stable
systern matrices evaluated at the i-th operating point o;,
Z(x,u,t) is the nonlinear time-varying perturbation
satisfying the matching condition [2]
Z\(x,u,t)z BA(x,u,t)
and the perturbation upper bound is estimaied as
"A(x,u,t)" < Ot"x“ + ,B"u", B<i1
over all operating conditions. In practical applications,
Z(x,u,t) can be viewed as the linearization error with A

and B being the nominal system matrices. Since
A;,i=1, ,L have been assumed to stable, the control law

is mainly designed to ensure the overall stability while

i

there is in the presence of the perturbation.
Since A;,i=1, ,L are stable we know that there exist

P. >0,Vi such that

PA; +ATP <0, Vi (32)
The LMIs can be converted into the linear matrix equalities
by imposing slack matrices ﬁi :

PA;+ATP +RRT =0, i=1, ,L 33)

Based on the preliminary result given in [2], it can be
proven that the perturbed system would be stable provided
that the control law at the i-th operating condition is given
by

u=-K;x
where K; =K(6;)=7;BP,,y; >0, the parameter ¥;
satisfies the following condition

Yi> o

i == )
2min (RiR (1= B)

where Api, () denotes the minimum eigenvalue. The

i=1 ,L 34)

control law for intermediate operating conditions are
linearly interpolated by computing the function K (T
such that

K(o;)=K(0;)
Then the actual control law is implemented as

u(t) = -K(6(1))x()

Now consider a perturbed system of the form of (1)-with
the stable coefficient matrix A and vector B

-1- sin[——w:a"] -1- cos(—lozdi] 2 1

A= 0 o 1070 ; q’B=1

= Py COS "'4— 1
0 0 -3

where ©; =0.1,0.2,0.3, are consistent with the

operating time. The nonlinear time-varying disturbance A
is supposed to be

A(x,u,t) = 0.1x) sin (ryt)+0.2¢u cosleet)
Let the initial states of the neural state P and the plant state
X were, respectively, P(0)=[0.1]353 and

x0)=[0.1 01 0.1f . Learning rates for the neural
networks were chosen as 77, =80 and 1, =500 . The

upper and lower limits of the nonlinear transformations in
(8a) were chosen as pj p, =2 and £ =0.1. We used the

neural dynamics (9) to solve the Lyapunov matrix
inequality (32) at every operating point. Figures 2(a)-2(c)
illustrate, respectively, the convergent behavior of the
activation states to the solution matrix P, the slack matrix

El and the objective matrix G. For clarity, only lower

triangular elements of these matrices and the responses
within 0. to 0.5 seconds were shown. Note that the
coefficient matrix A changes at every 0.1 seconds. The
solution matrix P and the slack matrix R reach exact steady
state values (i.e. the matrix values such that (33) holds) less
than 0.03 seconds. Figures 3(a) and 3(b) illustraie,

" respectively, the transient responses of the sysiem state x

and the control signal . The parameter } determined by
the robust stability condition (34) is illustrated in Fig. 4. It
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was found from the transient response of x that, the
influence caused by the nonlinear time-varying perturbation
has been successfully restrained by the control signal.
Clearly, the feedback control system is robustly stabilized.
It is can also be seen that the proposed neural network
solving for the solution of the LMI can follow the slow
variation of the system parameters to generate stabilizing
control signals.

o o o1 919 07 0B 53 om o4 04 0p
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Example 2. Consider the linear time-invariant system (16)
with

-1 -1 -1 -1 0 0
A=[-1 -2 -1}, B=|-1 -1 0
-1 -1 =3 -1 -1 -1

The neural dynamics (25) was used to find the solution of
the transformed LMI (22). Let Q(0)=[0.1]3,3, 7 » =35000,
N, =20000, pp =2, €=0.1, 6 =1. Figures 5(a)-5(c)

illusirate, respectively, the convergent behavior of the
activation states to the solution matrices Q, the slack matrix

R and the objective matrix G (only lower triangular

elements were shown). The steady states of Q and R were
approximately obtained as

0.983082  -0.00443528 - 0.0188904
Q=]-000443528 0963767 —0.217216
~-0.0188904 -0.217216  0.295135
1.70866 0 0
R =[157869  1.70866 0
1.15939  0.136802  1.70866

Clearly, the matrix @ is symmetric and positive definite,

and satisfy the LMI (22). The steady control gain is then
obtained as

0.562230 1.0925567 2.534235
K =10.052782 1.0809352 2.493074
0.041161  0.458701  2.034373

o

i
9 as 1 15 2 25 3 15 4 a8 3
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- tine {sez)

Fig. 5(a) Transient of Q Fig. 5(b) Transient of R
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Example 3. Consider the algebraic Riccati matrix inequality
(26) with

-4
i L] gt Y cofo 9]
0 -7 11 0 0

r o~ [to] 1o
b +D‘[0 IJ’Q_[O 3}

The algebraic Riccati matrix inequality is converted to the
LMI (28) with

10 10 0 0
— 01| =[+4 1 11]=1{03 0 o0
A= ,B= ,D=

00 0 -7 11 00 -1 0

00 00 0 -1

Let P(0)=[0.1]30, N, =5000, 7, =50000 , p e =1,

£ =0.01. The neural dynamics (28) was used to solve the
algebraic Riccati matrix inequality (26). Figures 6(a)-6(c)
illustrate, respectively, the convergent behavior of the
activation states to the solution matrix P, the slack matrix

131 , and the objective matrix G| . The steady states of P

and I~€, were approximately obtained as

_[0.183057  0.0159725
100158725 0.250297
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0.66343 0 0 0
= 0.00421687  0.66343 0 0
171 -0.116196 —0.143594  0.66343 0

—0.264492 —0.358474 0.601167 0.66343

Clearly, P is symmetric, positive definite, and satisfies the
LMI (28).

5. CONCLUSIONS

We present a recurrent neural network approach solving for
a class of LMIs that are commonly encountered in robust
control system analysis and designs. The proposed
networks have been proven to be stable and their steady
states are the solution candidate to the LMIs. The solution
process is parallel and distributed in neural computation.
Therefore, it possesses the potential to be used for real-time
control applications. It is shown that the developed
approach can be easily extended to solve a wide class of
LMIs. Illustrative examples are provided to demonstrate the
operating characteristics of the neural network.
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