hERE//EREERe R

Improvement for Reducing Latency of Load Instructions

Wen-J un Liu

Chang-Jiu Chen

Department of Computer Science and Information Engineering
National Chiao Tung Universit

ABSTRACT

Memory system design is one of the most challenging aspects of comput er architecture. One of the important

challenges in memory system design is ihe problem of continually lengthening load latency. This paper proposes

three methods to eliminate load latency : FAC-like scheme eliminates one cycle of load latency , LTAPE scheme

reduces two cycles ,and Hybrid scheme combines above two methods to benefit from their advantages. We adopt

an execution-driven simulator and apply Spec95 benchmarks to simulate the results.

Index Terms : Instruction Latency , Fast Address Caculation , Pipeline

1 Inéroduction

Recentl , many newer emerged workloads, such as

compression and multimedia data, lack the
characteristic of locality and result in the poor
performance of cache memory system. In addition,
some trends emphasized on instruction -level
parallelism or some multi-scalar processors issue
multiple loads and stores per cycle [1], resulting in
increased bandwidth demands on the memory system
and further aggravate load latency. Therefore, reduce
memory latency becomes a more and more important
topic to improve the efficiency of load instruction.
Load instructions move databeiween the
memory system and processor. A typical load
instruction is analyzed as follows: two inputs, a base
address and offset, are added together to form an
effective address which is used to access data memory.
In most modern architectures, the base is supplied
from a processor register and the offset is supplied by
either an immediate constant, i.e., register+constant
addressing, or via a register, ie., register+register
addressing. For RISC architectures, these two

addressing modes are adequate.

tEtrctios
Feth GF)

fpstractos Bucil Wemony s e back
Decod (D) B Aoouss GAEN) we

HIT M52
P ——

Oad Lateney

lchlmél.mf Efectte AcCHfs DABCECKE ! Sipre daty (v
Febh load ReadDase Regbtr/ Addmez Trans Bfeotue Regber
AHrEe adder 2 Cache Calcs B0y Address

Figure 1 : pipeline Datapath of a Load Instruction and
Definition of load Latenc
Figure 1 illustrates the major component

operations of a load and their order of execution. Load

“latency is defined as the time it takes to compute the

effective address of the access, access the data

memory, and return a result. Obviously in Figure 1,
effective address calculation takes a single cycle, and
data memory access takes a single cycle if the access
hits in the data cache. If the access misses in the data
cache, the load latency is further increased by delays
incurred with accessing lower levels of the memory

liierarchy.
2 Simulation Model

We will use an execution-driven simulator to evaluate

the simulation results [8]. Execution-driven simulator

A-457

acts like an actual processor. It “rums” every

instruction in the program, updates the contents of
virtual registers, modifies the virtual state of the
processor, and simulates the behaviors of functional

units and each pipeline stage.

21 Simulation Architecture

All experiments were performed with programs

compiled forthe SimpleScalar architecture. This

RISC architectﬁre is derived from the MIPS -IV ISA
[5]. Th.e simulator we choose from the SimpleScalar
ToolSet [8] is a detailed and complicated one, named
sim-outorder. This simulator supports out -of-order
issue and execution, based on the Register Update
Unit [2]. Figure 2 illustrates the simulated pipeline of

the sim-outorder simulator.

l RUU un_issoe() l
Fetch [Dispach [+ Scheduter [+ Exec [+ Writchack] Commit
vun_fQap() ran_dispatch() Memory Too_whi Toi_commit()
scheduler Mem
B g Bioclce Stape
X LA Memery Sygtem
-Cache LTLB D-Cache | o o
(L1 (DL1)
I-Cache D-Cache
(IL2) (DL2}

Virtnal Memorrl

the SPEC 95 benchmark suite [6].

3 Approaches for Reducing Load Latemcy

This section introduces three approaches to reduce
load latency. Figure 3 shows the approaches of this
paper and the load latency components that each

addresses.

T T
! o Adios Cakubtond | 1
T Modifzatonef FaC

""" N | /\

/| Efeclie Addrss
Calos lation

—
Load Latery

Figure 3:The component that each approach addresses
The following subsections give a brief description of

each approach.
3.1 FAC-like Scheme

Based on the original Fast Address Calculation
mechanism [7], we propose a modification named
FAC-like to increase the hit ratio of original design.

Figure 4 shows the conceptual model of FAC.

Figure2: Out-of-Order Processor Timing Simulation

Benchmark Programs

Benchmark Language " |Input
Compress C : Test.in

GCC C Ceep.i

Lisp C Test.lsp
ME8ksim C ctl.raw
Su2cor Fortran su2cor.model
SWIM Fortran swim.in
Fpppp Fortran natoms.in
Hydro2d Fortran hydro2d.model

BXE MEM EXE MEM
e | [|
—¥ Cialsin —L{ Cate Aooess '—b b
2Cyeles i !
1+¢Cycles
Qriginal Pipefine Original Pipeline + FAC

Table 1: Benchmark Programs
Table 1 details the programs analyzed, the language

they are written in, and their inputs and options. The
top group is integer codes and the boitom group is

floating point codes. These eight programs are from

Figure 4: Fast Address Calculation in Pipeline
The idea we adopt in the FAC-like modification
is to add an additional prediction circuit decoupled
from the normal pipeline desig n. Afier the base

regisier is read from the register file, the value of base

A-458

register and the constant offset (known in Instruction

Fetch stage) can be sentinto the prediction circuit

immediately. The prediction circuit is a simple
combinational circuit. Thereby the calculation of
effective address and validation of prediction circuit
can be completed quickly, and then offered conirol
logic to select the prediction result or ignore it. In the
following cycle, the data cache access can be

performed in time. Figure3 shows the conceptual

—0 abyab, ab gb
i

T

e— 1 5 0%

model.
-
.
sty)
— =
ad |
Formnding Logic oy
w75 _} e
. “

oxHe

reileas

RIS P
N
. %f
i

Figure 5: The Circuit of FAC-like scheme

We adopt carry-select adder [9] illustrated as
Figure 6 to accomplish our design. The asymptotic
time and space requirements for the carry-select adder
are O(Vn) and O(n). And n is the bits of precision. We
can adopt 32 1-bit carr -select adders to design the
prediction circuit or three different carry-select adders
for block offset portion, set index portion, and tag
portion respectively. This is a cost/performance
trade-off problem. As shown in Figure 6, the carr -out
of the adder that computes the block offset portion of
the effective address is propagated to select the 6utput
of the set index portion computation and its carry-out.
And then the carry-out of the set index portion adder
continues to select the output of the adder that
computes the tag portion of the effective address and

its cair -out.

Figure 6: 4-bit Camr -select Adder
Since this FAC-like conceptual model is an

additional circuit decoupled from the normal pipeline
design, there must be a signal to choose the normal
effective address or predicted effective address while
accessing the data cache in the following clock cycle.
Figure 7 shows the conception. There are two inputs
that are chosen to access the data c ache. One is the
normal effective address computed by the normal
ALU logic in EXE (EXEcute) stage when the

prediction circuit fails, and the other is the predicted
effective address generated from the prediction circuit
when the prediction logic succeeds. In addition, the
signal FAC _Vali denotes the validity of the
prediction outcome. And the signal FAC_enable2 is

applied to enable the selection of predicted effective

address.

Control Logic

Figure 7: Data Cache Access Diagram

3.2 LTAPB Scheme

FAC-like was introduced as a technique to overlap

address calculation with data cache access, thereby

A-459

eliminating the extra cycle needed for address
calculation. For most pipeline designs, address
calculation latency comprises at most half of the

latency of loads that hit in the data cache, leaving one
or more cycles of data cache access latency still
exposéd to extend execution critical paths or stall
instruction issue. Thus we propose this approach

named LTAPB (Load Target Address Prediction
Buffer) placed in IF stage of the pipeline to predict
the effective address that the load instruction needs to
access the data cache.

The LTAPB, loosely based on a branch target
buffer [3), uses the address of a load instruction io
predict the effective address early in the pipeline.
Therefore, the LTAPB is indexed with the virtual
address of the load instruction. If the virtual address is
hit in LTAPB, the virtual effective target address is
extracted from the hit entry of the LTAPB. And the
cache access is overlapped with non -speculative
. instruction decoding operation. Otherwise, the cache
is accessed again in EXE stage in later second cycle
using the correct effective address. If predict
successfuly, in the following ID stage, the acquired
address can be used to access the data cache up to two
cycles earlier than the traditional pipeline path. In
other words, the LTAPB can reduce two cycles load
latency at the. maximum.

With LTAPB, the load instructions produce a
result by the time they reach the EXE stage of the
pipeline. Subsequent dependent instructions can enter
the EXE stage of the pipeline at the same time (with
forwarding technique) unencumbered by load
insiruction hazards. Programs executing on a
processor supportingLTAPB will have fewer pipeline
stalls caused by load instruction and increased overall

performance. Figure 8 shows the conceptual model of

LTAPB.

F | D | BXE
4 bl g — 1 4 b
! [
| !
[!
[[
! b
[I oo
Addfess .Resuhfomrdmgm:

Prediction Buffer

!

/
T : —p

Cycei Cyele it

Figure 8: Conceptual Model of LTAPB
The hardware structure we craft for the LTAPB

concept is shown in Figure 9. There are six fields in
the LTAPB. The value of PC is compared with the
value of ¢tag field to determine a hit/miss. The vali bit
indicates the validation of the entry. The reserved bit
signifies that the entry is reserved to wait for the result
of the effective address computation to perform

updating when a LTAPB miss is caused by a load
instruction. The value of the Base_Num field denotes
the number of base register, providing for
dependenﬁies checking. The Ref Count field
expresses the reference/hit number of the entry. The
replacement policy is implemented according to

Ref_Count field when the LTAPB is full. At last, the
Effec_Addr field is extracted to apply the data cache’

access in the following clock cycle.

NV SN S N

entry O
entr; 63
TAG Vahdl! Effective :
hd Address P
Reserved Refe?ence
Base_Num Count

Figure 9: Example Structure Diagram of LTAPB
In the IF stage of the processor, theLTAPB and

the instruction cache are accessed in parallel with the
address of the current PC, There are three conditions

described as follows.

A-460

HIT Condition

If the current program counter hits in the LTAPB, the
effective address extracted from the hit entry can be
used immediately to access the data cache. And the

Ref_Count field increases by one.

MISS Condition

If the LTAPB misses, anentry is reserved for this

instruction. In the following ID stage, check the

dependency relation between the instruction and the
LTAPB, and identify whether the instruction is a load
instruction. If there are no any existed dependency

and this current instruction is not a load instruction,
the reserved bit of the reserved entry will be clear or
set to zero. If this current instruction is indeed a load
instruction, the Effec_Addr field of the entry reserved
early in the IF stage will be filled in the end of the
EXE stage. The computation result of the effective
address is forwarded to update the Effec_Addr field of

the reserved entry.

Dependency Resolution Condition

If the LTAPB misses and there aie some dependency

relations checked out in the ID stage, the central
control logic of the LTAPB turns into the dependency
checking mode to resolve the dependency relation

precisely. “Dependency relation” means that the
destination field of the current instruction is the same
as one Or more entries’ Base_Num field. Therefore,

the entry must be set invalid (that is, clear the valid bit
or set the valid bit to zero) to avoid the abuse of

following instructions. And the Effec_Addr field of
the related/conflicted entry must be updated when the
computation of the conflicted base register's newer
value completes. After updating the Effec_Addr field,
the valid bit of the entry is set back to 1 to denote its

validity.

3.3 Hybrid Scheme

Since the FAC-like scheme and LTAPB scheme are
adopted in distinct stages, they can be directly put
together to gain the best efficiency of load latency
reduction. The conceptual model is shown in Figure

10.

D EXE
> —>
Data .
——p> Forwarding
Cache § ¢
Address
Caleulation

Sl Cache Access

Reg File

Figure 10: Conceptual Model of Hybrid Approach
The conceptual model of hybrid approach shows the
process of a load instruction in the pipeline. If the
LTAPB hits, the load will complete in one cycle. If
unsuccessful, the load instruction enters the ID stage
ordinarily. After decoding, the base register value read
from the register file can be used to execute the access
using FAC-like in the execute stage. If FAC -like fails,

ano -speculative effective address can be compuied

- in the execute stage of the pipeline, with subsequent

data cache access in the memory stage. If an interlock
condition exists, the load instruction must stall uniil it
clears, at which point the access can proceed, possibly
employing FAC (or FAC-like) if the interlock
condition clears before address generation completes.
In the worse case, the LTAPB will miss, forcing

re-execution in the execute stége, where FAC-like will
fail, resulting in re-execution in the memory stage of
the processor - a worse case latency of two cycles
(given that mispredictions can be recovered in the
following cycle and there is sufficient data cache

bandwidth).

A-461

4 Simulation Result

This section gives adescription of simulation
evaluatioﬁ result. First of all, we show the percentage
of load instruction of total executed instructions in
each benchmark we employ in Figure 11. And then
the following subsections describe the experiment

results briefl .

%

Bes

[SIZIRIRIRIR

@QQQ

o B8

Percentage of Load Instuctio

2
&)
%,
&

s S . s
& ¥ @“Q%&»& %&5‘;
&

b,

Bendwrmds

Figure 11: Percentage of Load Instruction in
Benchmarks

The left group is for integer codes and the right
group is for floating point codes. In this figure, the
speculative loads are not counted. Therefore, the
counted load instructions are committed regularly. We
make an apparent assumption, that is, the higher the
percentage of load instruction, the more influential the

load instructions.

41 FAC-like Scheme

This section evaluates the effectiveness of FAC -like
by examining the efficiency of programs. The
analyzed programs include both integer and floating

point codes.

Prediction Accuracy

For FAC-like, there is not any address prediction
failure in each ben chmark. The only failure situation
in FAC-like is when a carry is generated from the
effective address calculation. A propagated carry
generated from the predictor means the effective
address is out of illegal address space. In traditional
system, this condition will resultin an operating

system trap or hardware trap. Generaly, this

executing program will be aborted. Therefore, our
predictor should be tagged as a failure prediction to
represent this situation. Consequently, the predicior
achieves a zerom isprediction rate in normal
circumstances and may

improve the program

performance significantly.
Program Performance

Prediction performance does not translate directly into

programrun -time improvements. A successful
effective address prediction may orma not improve
program performance, depending on whether or not
the access is on the program’s critical path. To gauge
the performance of FA -like in the context of a
realistic processor model, baseline program
performance. was compared to the performance of
programs running on the baseline timing simulator

extended to support FAC-like.

FAGLike

Speedup

S S MW g s

Figure 12: Performance Speedup. Speedups shown
are over baseline model execution time.

Figure 12 shows execution speedups with
FAC-like hardware support respectively. Shown are
the average speedups for the integer and floating point
codes, weightedbythe run -time (in cycles) of the
program. All speedup are computed with respect io
the execution time (in cycles) of the baseline program
(no FAC-like specific optimizatio ns) running on the
baseline simulator.

On the average, FAC-like improves the
performance of integer programs by 39%. The

floatin -point programs show a smaller speedup of

A-462

i

15.1% for FAC-like. This is a very positive result.
One could expect program performa nce i0

consistently improve.
4.2 LTAPB Scheme

This section examines the performance of programs
running on a detailed timing simulator extended to
supp01:t the LTAPB mechanism. Key parameter, the
entry of LTAPB scheme, is varied from 4 to 16, 32,64
to see what effecis these changes had on the efficacy

of LTAPB design.

Prediction Accuracy

Figure 13 shows the prediction miss ratio for loads.
The figure shows the failure rates as a percentage of
total reg+const mode loads when running on the

baseline simulator supporting 4-, 16-, 32-, and

64-entry LTAPB, respectively.

|DLTAPB 4 OILTAFB 16 CILTAPB 32 ENLTAPB 64 |

0985

Prediction Miss Ratio
o
8

Figure 13: Prediction Miss Ratio for Variable-
entry LTAPB

From 4-entry to 64 -entry LTAPB, the miss
ratios are all very high. On the average, the miss ratio
is more than 99.3% for the in teger codes and 99.9%
for the floating point codes. One important reason is
that the entry count is too few. However, the entry
count of LTAPB is limited from 4 to 64 due to its
complicated hardware complexity [4]. Another reason
is that we do not classify the load instructions in

LTAPB.

Program Performance

Figure 14 shows execution speedups with LTAPB

hardware support. Shown are the average sneedups for

the integer and floating point codes, weighted by the
run-time (in cycles) of the program. All speedup are
computed with respect to the execution time (in cycles)
of thebaseline program (no LTAPB specific

optimizations) running on the baseline simulator.

[DLTAPE 4 OLTAPB 16 BLTAPE % DLTAPE 64]

RIS A
e

Figure 14: Speedup of Baseline Simulator with
Variable-entry LTAPB

On the average, the LTAPB scheme i mproves
the performance of integer codes by about 0.42%. The
floatin - point codes have much smaller improvement
of about 0.14%. The speedup of swim and fpppp is
approximate to be zero due to its very high prediction

miss ratio.

4.3 Hybrid Scheme

Baseline simulator extended to support LTAPB and
FAC-like altogether is applied to evaluate the hybrid

method.

Program Performance

Figure 15 shows the speedup for hybrid method.

Predictably, the baseline /simulator supporting

FAC-like and 64 -entry LTAPB has the best av erage
speedup of about42% for integer codes. For the
floatin -point codes, the speedup was smaller than
integer codes. The floating-point codes have many
other long latencies, such as float point computation
and cache misses, which are effectively tolerated by
the out-of-order issue mechanism, but benefit little

from FAC-like+LTAPB load support. Shown in this

figure, the influence of variable LTAPB entry is tiny.

A-463

Thus the major performance promotion benefits from

supporting the FAC -like scheme.

OFACLike +4 DFACLke+32 M@FACLike + 64

Speedup

Figure 15: Speedup of Baseline Simulator with
Variable
Hybrid Methods for Integer Codes

5 Conclusions

For many codes, especially integer codes with good
cache performance, exposed address calculation
latencies account for a significant fraction of total
execution time. This paper introduces a pipeline
optimization, called FAC-like, that permits effective
address calculation to proceed in parallel with data
cache access, thereby eliminating the extra cycle
required for address calculation. The technique
employs a simple circuit to quickly predict the portion
of the effective address needed to access the data
cache. If the address is predicted correctly, the cache
access completes without an extra cycle for address
calculation. If the address is mispredicted, the cac he is
accessed again using the correct effective address. The
predictor is an additional combinational circuit
decoupled from the traditional pipeline path, therefore,
has minimal impact on cache access latency. This
predictor applies carr -select adders to calculate the
effective address. Prediction verification is very easy
to be examined. Only one bit signal is acquired to
signify the validation of predictor, ensuring that
pipeline control logic impacts are minimal.
FAC-like, however, is at most one hal of the

latency of loads, leaving one or more cycles of cache

access latency exposed to exiend execution critical
paths and stall instruction issue. This paper further
enhances the 4latency reduction capability o
completely hide the latency when this load instruction
hits in accessing data cache. The resulting designs,
named LTAPB, are capable of reducing the latency of
load instructions by up to two cycles. For a pipeline
with one cycle data cache access, loads can complete
before reaching the execute stage of the pipeline. This
scheme aliows subsequent dependent instructions to
issue unencumbered by load instruction hazards,
resulting in fewer pipeline stalls and increased overall
performance.

The major problem of LTAPB is the very low
hit ratio. We have some alternatives to improve
LTAPB scheme. One of them is to classify the load
instructions. For the load instructions, some particular
registers are used very often, such as stack point,
frame point, and global point. If we augment
additional spaces fort hese distinctive registers, the
utilization of LTAPB may be improved greatly.
Another alternative method is to tightly design the
LTAPB as the BTB structure. So the entry count of
LTAPB can be raised to 512, 1024, or even more.
Intuitively, the prediction accuracsr may be promoted.
The hurdle is the recovery procedure needed to
straighten the entire system to act precisely. If the
LTAPB hits but the target address is notthe “real”
effective address, there must be a recovery mechanism
to squash back to the precise checkpoint. This
recovery mechanism is similar as the one employed in

the branch prediction schemes.

6 References

(11 Gurindar S. Sohi," Instruction Issue Logic for

High-Performance,” Interruptible, Multiple
Functional Unit, Pipelined Computers . IEEE
Transactions on Computers, 39(3):349-359,
March 1990

A-464

2]

(3]

[4]

(5]

[6]

(7

(8]

9]

Mike Johnson, Superscalar Microprocessor
Design, Prentice Hall, New Jersey, 1991
C.H. Perleberg, and A.J. Smith, “Branch Target
Buffer Design and Optimization,” IEEE
Transactions on Computer, Vol. 42, No. 4,
April 1993, .

JL Hennessy, and D.A. Patterson, Computer
Organization and Design, Margon Kaufmann
Publishers, Inc., 1994.

Charles Price. MIPS IV Instruction Set.
Revision 3.1. MIPS Technologies, Inc.,
Mountain View, CA, January 1995.

SPEC95 Benchmark Suite Release 1.0,
September 1995.

Todd Michael Austin, Hardware and Software
Mechanisms for ReducingLoad Latency
University of Wisconsin — Madison, 1996.
Doug Burger, Todd M. Austin, and Steven
Bennett. Evaluating Future Microprocessors:
the SimpleScalar Tool Set . Technical Report
1308, Computer Science Department,
University of Wisconsin, Madison, WI, July
1996.

J.L. Hennessy, and D.A. Patterson, Computer
Architecture: A Quantitative Approach, Margon

Kaufmann Publishers, Inc., 1996.

A-465

