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ABSTRACT

In this paper, we propose a new multilevel hard-
ware architecture that combines the features of
both Huffman and PDLZW algorithms. In par-
ticular, the memory allocation and the data unit
of compression is changed from byte, which is
used by PDLZW algorithm, to byte stream. In
addition, the tree-based dynamic update method
used in adaptive Huffman algorithm is changed
to an order list for speeding up the compression
rate. The resulting architecture shows that it
can reach the same compression ratio as adaptive
Huffman algorithm but only at the cost of one-half
hardware resource. Furthermore, the compressing
data rate is one codeword per cycle rather than
one bit per cycle.

Keywords: Adaptive Huffman algorithm, adap-
tive Huffman algorithm using transposition,
canonical Huffman coding, lossless data com-
pression, lossy data compression, PDLZW algo-
rithm.

1 Introduction

Data compression is a method of encoding rules
that allows substantial reduction in the total num-
ber of bits to store or transmit a file. Two basic
classes of data compression are applied in differ-
ent areas currently [1]. One of these is lossy data
compression that is widely used to compress image
data files for communication or archives purposes.
The other is lossless data compression that is com-
monly used to transmit or archive text or binary
files that required to keep their information intact
at any time.

Lossless data compression algorithms include
mainly LZ codes [9, 10]. A most popular ver-
sion of LZ algorithm is called LZW algorithm (8],
which is a dictionary-based method. However, it
requires quite a lot of time to adjust the dictio-
nary. To improve this, two alternative versions of
LZW were proposed. These are DLZW (dynamic

LZW) and WDLZW (word-based DLZW) [2] al-
gorithms. Both improve LZW algorithm in the
following ways. First, they initialize their dictio-
naries with different combinations of characters
instead of single character of the underlying char-
acter set. Second, they use a dictionary hierar-
chy of which the word widths are successively in-
creased. Third, each entry in their dictionaries
associates a frequency counter. That is, the LRU
policy is used. It was shown that both algorithms
outperform LZW [2]. However, they also compli-
cates the hardware control logic.

To reduce the hardware required for VLSI
implementation, a simplified DLZW architecture
called PDLZW (parallel dictionary LZW) [4] is
proposed. This architecture improves and mod-
ifies the features of both LZW and DLZW algo-
rithms in the following ways. Tirst, instead of
initializing the dictionary with single character or
different combinations of characters a virtual dic-
tionary with the initial |X| address space is re-
served. This dictionary only-takes up a part of
address space but costs no hardware actually. Sec-
ond, a hierarchical parallel dictionary set with suc-
cessively increasing word widths is used. Third,
the simplest dictionary update policy called FIFO
(first-in first-out) is used to simplify the hardware
implementation. The resulting architecture shows
that it outperforms Huffman algorithm in all cases
and about only 5% below UNIX compress on the
average case but in some cases outperforms the
compress utility.

However, as demonstrated in [4], the size of the
dictionary set used in the PDLZW still requires
3072 bytes which may be inhibited in some area-
constrained applications since the dictionary set
costs too much silicon area. Therefore, in this pa-
per, we will propose a new multilevel data com-
pression architecture that combines features from
both adaptive Huffman and PDLZW algorithms.
The resulting architecture shows that to achieve
the same compression ratio as that of adaptive
Huffman algorithm is only requires one-half the
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hardware cost. In addition, both compression and
decompression rate are greater than those of the
adaptive Huffman algorithm.

The rest of the paper is organized as follows.
Section 2 describes features of both adaptive Huff-
man and PDLZW algorithms. Section 3 de-
scribes in detail the proposed multilevel architec-
ture. Section 4 presents the performance of the
new architecture. Section 5 concludes the paper.

2 Related Work

Before presenting our new architecture for data
compression VLSI chip, both the features and
limitations of the hardware implementations of
PDLZW and adaptive Huffman algorithms must
be discussed in advance.

2.1 PDLZW algorithm

As described in [4], the essence of PDLZW com-
pression algorithm is based on a parallel dictio-
nary set that consists of m small variable-word-
width dictionaries, numbered from 0 to m — 1,
with each of which increases its word width by
one byte. More precisely, dictionary 0 has one
byte word width, dictionary 1 two bytes, and so
on. The actual size of dictionary set used in a
given application can be determined by the infor-
mation correlation property of the application. To
facilitate a general PDLZW architecture for a va-
riety of applications, it is necessary to do a lot of
simulations based on the information correlation
property of these applications for determining an
optimal dictionary set. However, the PDLZW al-
gorithm proposed in [4] actually suggests a class
of data lossless compression algorithms. The more
detailed discussion about how to determine the
dictionary set of the algorithm and the algorithm,
please refer to [4].

In general, different address space distributions
of the dictionary set will present significantly dis-
tinct performance of the PDLZW compression al-
gorithm. However, the optimal distribution is
strongly dependent on the actual input data files.
Different data profiles have their own optimal ad-
dress space distributions. Therefore, in order to
find a more general distribution, several different
kinds of data samples are run with various par-
titions of a given address space. Each partition
corresponds to a dictionary set. For instance, the
1K address space may be partitioned as: {256,
256, 128, 128, 64, 64, 64, 64}.

In general, the compression ratio, which is de-
fined as the ratio of the bit number required for
representing compressed data and that for original
data, is improved as the address space of dictio-
nary increases. Thus, the algorithm with 4-K ad-
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dress space has the best average compression ratio
in all cases that we have simulated [4]. However,
as we examine the partitions in different address
spaces, each exhibits some optimal partitions. For
instance, in the case of 1-K address space, the
partitions with {256, 256, 128, 128, 128, 64, 64}
and {256, 256, 128, 128, 64, 64, 64, 64} are opti-
mal and have the same compression ratio of 54%.
In comparison with three different address spaces,
the best compression ratio is 54% and appears in
both 1-K and 2-K address spaces, respectively. As
a consequence, the compression ratio is not only
determined by the correlation property of under-
lying data files to be compressed but also depends
on an appropriate partition.

An important consideration for hardware im-
plementation is the required dictionary address
space that dominates the chip cost for achieving
an acceptable compression ratio. From this point,
the optimal solution of dictionary address space to
be used in [4] is 1-K address space with partition:
{256, 256, 128, 128, 64, 64, 64, 64}.

To further reduce the size of the dictionary set
of PDLZW algorithm while keeping the compres-
sion ratio above an accepted level, in this paper,
we explore the possibility of using a multilevel ar-
chitecture. This is due to that the compression
ratio is deteriorated significantly when the size of
the dictionary set is too small. To compensate
the loss of compression ratio, a second stage is
used to encode statistically the fixed-length code
output from PDLZW algorithm into a variable-
length one. The rational behind this is based on
the observation that the output codewords from
PDLZW algorithm are not uniform distributed
but each codeword has its own occurrence fre-
quency that depends on the distribution of in-
put data. Up to now, one of the most common
used algorithms for converting fixed-length code
into variable-length one is adaptive Huffman al-
gorithm. However, it is not easy to realize it in
VLSI technology since the frequency count associ-
ated with each symbol requires a lot of hardware
to implement and time to maintain.

In the following subsection, we will describe a
modified adaptive Huffman algorithm that is easy
to realize in VLSI technology.

2.2 Adaptive Huffman algorithimm us-
ing transposition

The Huffman algorithm requires both the en-
coder and the decoder to know the frequency table
of symbols relating to the data being encoding. To
avoid building the frequency table in advance, an
alternative method called adaptive Huffman algo-
rithm [3] allows the encoder and the decoder to
build the frequency table dynamically according



to the data statistics up to the point being encod-
ing and decoding.

The essence of implementing adaptive Huffman
algorithm in hardware is centered around how to
build the frequency table dynamically. Several ap-
proaches have been proposed [6, 7). These ap-
proaches are usually based on tree structures on
which LRU policy is applied. However, the hard-
ware cost and the time required to maintain the
frequency table dynamically are too complicated
to realize in VLSI technology. To alleviate this,
an approximate version of adaptive Huffman algo-
rithm, called AHAT (adaptive Huffman algorithm
using transposition), is proposed in [6]. In the al-
gorithm, an ordered list instead of the tree struc-
ture is used to maintain the frequency table re-
quired in adaptive Huffman algorithm. More pre-
cisely, an index corresponding to an input symbol,
say n, of the ordered list is searched and output
when receiving it and then swap both items lo-
cated in n and n—1, respectively. Thus, the higher
occurrence frequency symbol will “bubble up” to
the top of the ordered list and we can code the in-
dices of these symbols by using a variable-length
code to take their occurrence frequency into ac-
count and to reduce the information redundancy.

By using a simple ordered list to memorize
the occurrence frequency of symbols, both of the
search and update time are significantly reduced
from O(logan), which is required in tree struc-
tures, to O(1), where n is the total number of
input symbols.

2.3 Canonical Huffman code

To facilitate a fast speed for both compression
and decompression operations, it is necessary to
take the code assigned to the symbol set into ac-
count since there exists many codes corresponding
to the Huffman tree of a given input data. A fast
decoding technique for Huffman code is proposed
in [5]. The approach divides compressed code-
words into a sequence of fixed-length bit strings,
called groups. Each group consists of n bits. The
decoding process is carried out much the same
way as in the case of fixed-length codes except
that several decoding tables are used instead of
one. In this paper, we use the same idea to code
the indices output from ordered list that contains
the output codewords from PDLZW algorithm for
speeding up both coding and decoding operations.

The Huffman tree corresponding to the output
from PDLZW algorithm can be built by using off-
line adaptive Huffman algorithm. An example of
the Huffman tree for input symbol set {A, B, C,
D, E, F} is shown in Figure 1(a). Although the
Huffman tree for a given symbol set is unique, such
as Figure 1(b), the code assigned to the symbol

set is not unique. For example, three codes of all
possible codes for the Huffman tree is shown in
Figure 1(a). In fact, there are 32 possible codes
for the symbol set {A, B, C, D, E, F} since we can
arbitrarily assign 0 and 1 to each edge of the tree.

For the purpose of easy decoding, it is conve-
nient to choose the type three encoding scheme
shown in Figure 1(a) as our resulting code in
which symbols with consecutively increasing oc-
currence frequency are encoded as a consecutively
increasing sequence of codewords. This encoding
rule and its corresponding code will be called as
canonical Huffman coding and canonical Huffman
code, respectively, for the rest of the paper.

The general approach for encoding a Hufi-
man tree into its canonical Huffman code is first
to run the test data files using adaptive Hufi-
man algorithm for generating Huffman code and
then to use the following algorithm, called Algo-
rithm: Canonical Huffman Code Encoder,
to generate the corresponding canonical Huffman
code.

Algorithm: Canonical Huffman Code En-
coder

{Assume that each symbol s has num_bits[s] bits,
no codeword is longer than mazxlength, and n is
the total number of symbols under consideration.

}

Input: A set of symbols s and its length array
num-bits(s).

Output: The canonical Huffman codeword for
each symbol s.

Begin
1: for i = 1 to maxzlength do
num._codewords_l[i] =0
2: for i =1tondo
num_codewords_[num._bits[i]] =
num.codewords[num-bits[i]] + 1
{The number of codewords of length [ is stored
in num_codewords {[l]. }
3: {The codeword for the first codeword of length
| is stored in first_codeword(l]. }
3.1: set first_codeword[mazlength] = 0;
nextcode[mazlength] = 0
3.2: for i = mazlength — 1 downto 1 do
first_codeword|[i] = (first_codeword]i + 1]
+num_codewords_L{i + 1])/2;
nezxtcode[i] = first_codeword]i]
4: for i = 1 to n do {The canonical code for sym-
bol i is in codeword[i]; the rightmost num_bitsli]
bits should be used. }
4.1: codeword|i] = nextcode[num_bits[i]]
4.2: nextcode[num_bits[i]] =
nextcode[num bits[i]] + 1
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Symbol | Frequency Encoding type

One | Two | Three
A 11 000 111 000
B 12 001 110 001
C 13 100 on 010
D 14 101 010 011
E 24 01 10 10
F 26 11 00 11

(a) Three possible encodings

(b) Huffman tree

Figure 1: An example of Huffman tree and its three possible encodings.

End {End of Canonical Huffman Code En-
coder. }

As shown in Figure 1(a), in the beginning
adaptive Huffman algorithm is used to compute
the corresponding codeword length for each in-
put symbol. Then it counts the number of code-
words of the same length and saves the result
into the array num.codewords.[]. Finally, the
starting values (or called codeword.of fset) for
each codeword group of the same codeword length
are calculated from array num_codewords.l]].
Based on this procedure, the codeword length,
first.codeword, number of codewords, and
codeword_of fset for the input symbols, consist-
ing of the output codewords from PDLZW algo-
rithm with dictionary set: {256, 64, 32, 16}, are
calculated and shown in Table 1. Of course, dif-
ferent data distributions for the input to PDLZW
algorithm will generate different PDLZW output
code and hence different data set shown in Ta-
ble 1. However, one of the main contributions of
this paper is to propose a new multilevel archi-
tecture for lossless data compression applications
which uses only a small-size dictionary.

3 Proposed Multilevel Architecture

The proposed multilevel architecture consists
of two major components: a PDLZW processor
and an AHAT processor, as shown in Figure 2.
The former is composed of a dictionary with par-
tition: {256, 64, 32, 16}. Thus, the memory size
used in the processor is only 288 bytes. Please
note that the dictionary 0 with address space of
256 bytes does not occupy a physical memory
hardware. The latter is centered around an or-
dered list and requires 414 (= 368 x 9 bits) bytes
CAM. Therefore, the total memory used is 702
bytes.

3.1 PDLZW processor

The major components of PDLZW processor
are CAMs, a 4-byte shift register, and a prior-
ity encoder. The word widths of CAMs increase
gradually from 2 bytes up to 4 bytes with three
different address spaces: 64,32, and 16 words, as
shown in the figure.

The input string is shifted into the 4-byte shift
register. Once in the shift register the search op-
eration can be carried out in parallel on the dic-
tionary set. The address along with a matched
signal within a dictionary containing the prefix
substring of the incoming string is output to the
priority encoder for encoding the output codeword
pdlzw_addr. This codeword is then encoded into
canonical Huffman code by AHAT processor. In
general, it is not impossible that many (up to four)
dictionaries in the dictionary set containing pre-
fix substrings of different lengths of the incoming
string simultaneously. In this case, the prefix sub-
string of maximum length is ruled out and the
matched address within its dictionary along with
the matched signal of the dictionary is encoded
and output to the AHAT processor.

In order to realize the update operation of the
dictionary set, each dictionary in the dictionary
set except the dictionary 0 has its own update
pointer (UP) that always points to the word to
be inserted next. All UPs count from 0 up to its
maximum value and then wrap back to 0. Hence,
the FIFO update policy is realized. The update
operation of the dictionary set is carried out as
follows. The maximum length prefix substring
matched in the dictionary set is written to the
next entry pointed by the UP of the next dictio-
nary along with the next character in the shift
register. The update operation is inhibited if the
next dictionary number is greater than or equal
to the maximum dictionary number.
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Table 1: The canonical Huffman code used in AHAT processor.

Codeword length | First_codeword | Number of codewords | Codeword. offset
6 29 35 35
7 45 13 48
9 20 160 208
12 0 160 368
Parallel Dictionary Canonical Huffman
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Figure 2: The architecture of proposed multilevel compression processor.

3.2 AHAT processor

The AHAT processor encodes the output code-
words from PDLZW processor. As described pre-
viously, its purpose is to recode the fixed-length
codewords into variable-length ones for taking the
advantage of statistical property of the codewords
from PDLZW processor and thus to remove the
information redundancy contained in the code-
words. The encoding process is carried out as fol-
lows. The pdlzw_addr, which is the output from
PDLZW processor and is the “symbol” for AHAT
algorithm, is input into swap unit for searching
and deciding the matched index, n, from the or-
dered list. Then the swap unit exchanges both
items located in n and n — 1, respectively. That
is, the more frequently used symbol bubbles up to
the top of the ordered list. The index ahat_addr of
the term pdlzw_addr of the ordered list is then en-
coded into a variable-length codeword (i.e., canon-
ical Huffman codeword) and output as the com-
pressed data for the entire processor.

The operation of canonical Huffman encoder
is as follows. The ahat_addr is compared with
all codeword_of fset, as shown in Table 1, 35,
48, 208, and 368 simultaneously, for deciding the
length of the codeword to be encoded. Once
the length is determined, the output codeword

can be encoded as ahat.addr — codeof fset +
first.codeword. For example, if ahat_addr = 38,
from Table 1, the length is 6 bits since 38 is greater
than 35 and smaller than 48. The output code-
word is: 38 — 35 + 29 = 32 = 1000005.

As described above, the compression rate is at
least one and up to four bytes per memory cycle.

4 Performance

The proposed architecture is mainly to reduce
the size of dictionary set used in PDLZW data
compression processor described in [4]. However,
the compression ratio will be reduced accordingly
if the size is too small. In order to reduce the dic-
tionary size while keeping the compression ratio
above an accepted level, a multilevel architecture
is used instead of single PDLZW processor.

Table 2 shows the compression ratio of adap-
tive Huffman algorithm (AHA), PDLZW 4- AHA,
and PDLZW+AHAT. The dictionary set used in
PDLZW is {256, 64, 32, 16}. From the table, the
compression ratio of PDLZW+AHAT is competi-
tive to that of AHA.

Because the cost of memory is a major part of
any dictionary-based data compression processor
discussed in the paper, we will use this as the base
for comparing the hardware cost of different archi-
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Table 2: Comparison of compression ratio of various architectures.

exe. 1 | exe. 2

exe. 3 | text 1 | text 2 | doc. | graphics

PDLZW+AHAT | 0.46 0.72

0.76

0.67 0.73 | 0.59 0.70

PDLZW+AHA 0.44 0.79

0.79

0.68 0.77 | 0.79 0.77

AHA 0.44 0.77

0.61 0.66 | 0.56 0.71

Table 3: Cost comparison of AHA and proposed architecture.

(2N — 2) ROM

Architecture Memory requirement Total memory (IV = 256)
2(2N - 2)-B CAM +
AHA (2N - 2)-B ROM + 1020-B CAM+514-B ROM

PDLZW+AHAT | 288-B CAM (PDLZW)+ | 702-B CAM
(proposed) 414-B CAM (AHAT)

tectures. Table 3 shows the memory size required
for AHA and PDLZW + AHAT.

5 Conclusion

In this paper, a multilevel VLSI architecture
based on the combination of PDLZW compression
algorithm and adaptive Huffman algorithm with
transposition is proposed. The PDLZW proces-
sor is based on a hierarchical parallel dictionary
set that has successively increasing word widths
from 1 to 4 bytes with the capability of parallel
search. The total memory used is only 288 bytes.
The second processor is built around an ordered
list consisting of 414(= 368 x 9 bits) bytes CAM
and a canonical Huffman encoder. The resulting
architecture shows that it is not only to reduce
the hardware cost significantly but also easy to be
realized in VLSI technology since the entire archi-
tecture is around the parallel dictionary set such
that the control logic is essentially trivial. The
simulation result shows that this architecture has
the competitive performance with adaptive Huff-
man algorithm but is only at the cost of one-half
that of adaptive Huffman algorithm in hardware.
The data rate for the compression processor is at
least one and up to four bytes per memory cycle.
The memory cycle is mainly determined by the
cycle time of CAMs but it is quite small since the
maximum capacity of CAMs is only 64 x 2 bytes
for PDLZW processor and 414 bytes for AHAT
processor. Therefore, a very high data rate can
be achieved.
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