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Abstract

Although hierarchical architectures are becoming
more and more popular due to their high scalability
and performance, yet there has been a lack of synthe-
sis methodologies that are targeted at such hierarchi-

cally clustered systems. A novel methodology called.

MRASM is presented in this paper for the design of
hierarchically clustered parallel systems. MRASM is
a multi-level rule-based synthesis approach to paral-
lel architecture design. The synthesized architectures
at each level are simulated and checked for constraint
satisfaction. An intelligent design space exploration
method is incorporated into the simulation environ-
ment so that the target system is improved upon iter-
atively. One of the various alternative architectures is
selected based on factors such as cost, throughput, uti-
lization, bandwidth, scalability, reliability, and fault-
tolerance. Experiments show that our approach is in-
deed feasible.

Keywords: hierarchically-clustered parallel systems,
architectural synthesis, multi-level design, rule-based
design, clustering technology

1 Introduction

Scalability has been a major concern in the design of
parallel computer systems. The design of hierarchical
architectures with processors grouped into clusters and
hierarchically interconnected with some interconnec-
tion network is one way to tackle the scalability prob-
lem. Parallel architectures with multiple processors
have been the target of several recently published work
on synthesis methodologies such as PSM [1], ICOS
[2], POSE [3], and CMAPS [4], but they all do not con-
sider hierarchical architectures which need specific de-
sign techniques such as partitioning the synthesis tasks
into several levels of details. Here, a pioneer work on
the design of a synthesis methodology targeted at hier-
archical architectures, called MRASM, is presented.
Previous work on the synthesis of parallel systems
do not explicitly consider hierarchical architectures.
This leads to the possible waste of design time due

to significant redundant efforts spent on synthesizing
the same cluster design. Here, a hierarchical sysiem
consists of several clusters, where each cluster has a
collection of interconnected processors, some memi-
ory, buffers, and control units. Usually clusters are ho-
mogenous such that only one cluster need be designed
and the others are obtained by a simple reconfigura-
tion of the first cluster. Existing synthesis methodolo-
gies will design each cluster as a separate new entity
since they must consider the possibility of heterogene-
ity among the clusters. But, MRASM knows that hi-
erarchical systems generally have homogenous clus-
ters since heterogeneity often degrades overall system
performance. Thus, MRASM is much more efficient
at synthesizing hierarchical architectures than existing
methodologies.

Section 2 describes the target Hierarchical Paral-
lel System model. Section 3 gives an account of how
MRASM synthesizes a system at different levels. An
implementation example is given in Section 4. Section
5 concludes the paper.

2 Hierarchically Clustered Paral-
lel System

The target system is a hierarchically clustered parallel
architecture. Hierarchically-Clustered Parallel System
(HCPS) has been gaining more and more importance
[5, 6, 7, 8]. Some of the under-research and already-
implemented systems are: the Cedar parallel processor
at the University of Illinois at Urbana-Champaign [9],
the Cm* at Carnegie-Mellon University [10], the Stan-
ford University DASH architecture [11], the Syracuse
University NETRA machine [12], and the MR-1 mul-
tiprocessor at the University of Melbourne, Australia
[51.

The HCPS architecture consists of four parts: a
Global Control Unit (GCU), a Cluster Subsystem (CS),
an Interconnection Network Subsystem (IN), and a
Global Memory Subsystem (GM). The GCU conirols
the data-loading of the system inputs inio memory,

.and the partitioning and allocation of tasks to Clusiers.
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The control here can be one of two types: Single In-
struction Stream and Multiple Data Streams (SIMD)
or Multiple Instruction Streams and Multiple Data
Streams (MIMD) [13]. The Cluster Subsystem con-
sists of a set of totally homogenous clusters. Each
cluster is composed of one or more Processing El-
ements (PE), one or more banks of Local Memory
(LM), and the cluster interconnection network subsys-
tem. Each PE is further composed of one Central Pro-
cessing Unit (CPU) and a private memory. The Cluster
Interconnection Network can be a shared bus, an in-
direct connection like multi-stage interconnection net-
work, or a direct connection like hypercube or cross-
bar [14, 15]. Interconnection Network Subsystem is
the main interconnection between GM and CS in the
Shared Memory Architecture and an interconnection
of clusters in the Message Passing Architecture. One
or more banks of globally shared memory constitutes
the Global Memory Subsystem in the Shared Memory
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Architecture. The type of memory access latency af-
fects the global distribution of the memory banks.

3 Multiple Levels of MRASM

MRASM is an architectural synthesis methodology
for hierarchically-clustered parallel systems (HCPS).
HCPS designers input their constraints and the prob-
lems to be solved. A Problem Knowledge Base (PKB)
acts as a repository of known elementary problems
such as sorting, searching, numerical computations,
etc. Designers can choose problems from PKB for
their system specification. The specification is input
in the form of a directed graph with problems as ver-
tices and data flow as edges. This graph form input has
been used in several design methodologies [4]. Due to
space-limitations, the reader is advised to refer to [4]
for further details on the graph form input.

As shown in Figure 1, MRASM partitions sys-
tem design into several levels: System Level Synthesis
(SLS), Cluster Level Synthesis (CLS), and Register-
Transfer Level Synthesis (RLS). Key design issues
such as processor selection, memory selection, inter-
connection selection, and control selection are all con-
sidered in MRASM. The final VHDL [16] output can
be used as input to a lower-level synthesis system, thus
resulting in the parallel architecture being actually fab-
ricated. Hence our approach is indeed a feasible one.

Rules are used to guide the synthesis process at
each level of design. An intelligent Design Space Ex-
ploration (DSE) method is used to shorten the design-
time and select the best architecture very efficiently.
The target architecture is modeled and simulated us-
ing SES/Workbench ' which is a simulation tool. Per-

1 SES/Workbench is a registered trademark of Scientific and En-

Figure 1: Multi-Level Synthesis

formance evaluation and analysis results obtained dur-
ing simulation using this tool were input to the design
space exploration process.

3.1 System-Level Synthesis

As shown in Figure 2, this first level of synthesis
results in a system-level architecture model. The
graph form input is mapped into a System Architec-
ture Model. The mapping is performed in various
stages: decision about the adoption of a Shared Mem-
ory or Message Passing Architecture, the selection of
an appropriate System Memory Model, the selection
of the type of System Interconnection Network, and
the selection of the Control Method. This mapping
is carried out by delving on the computation require-
ments, communication overhead, memory access pat-
terns, and control dependencies as exhibited by the
problem. All selections at the system level of synthe-
sis are rule-based since there is not enough information
for one to exactly analyse the effect of one’s selections
on the overall performance.

o Shared Memory or Message Passing Architec-
ture: Heavy communication in a problem in-
dicates the need for a Shared Memory type
of Architecture as sharing of variables is more
efficient than passing of messages. A prob-
lem with a small communication to compu-
tation ratio could be solved efficiently with
a Message Passing loosely-coupled multicom-
puter system. It would seem that problems with

gineering Software, Inc.
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Figure 2: System Level Synthesis

roughly equal fraction of communication and
computation could be mapped onto either type
of architecture, it is here that user-given con-
straints come into play, for example, a high
architecture scalability requirement on the part
of the user would definitely make us opt for
the Message Passing Architecture since loosely-
coupled systems are more easily scalable than
tightly-coupled ones.

o System Memory Model Se-
lection: Different types of memory models are
taken into consideration: Uniform Memory Ac-
cess model (UMA), Non-Uniform Memory Ac-
cess model (NUMA), Cache-Only Memory Ac-
cess model (COMA), and NO-Remote-Memory
Access model (NORMA) [17]. A problem
showing uniform memory access pattern would
indicate the need for an UMA Model, whereas
one exhibiting non-uniformness in memory ac-
cesses would certainly indicate a NUMA Model.
A problem that shows very little but does need
memory sharing would prefer a COMA Model.
The NORMA Model is reserved for Message
Passing Architecture.

e System Interconnection Network Selection: As
mentioned in Section 2, System Interconnec-
tion Network can one of Shared Bus (SB), indi-
rect connection like Multi-stage Interconnection

Network (MIN), or direct connections like Hy-
perCube or Crossbar. Low scalability require-
ments, few processing nodes (Clusters), and
low cost would indicate the use of SB as in-
terconnection network, whereas high cost and-
high performance would require something like
crossbar as interconnection network. Moder-
ate requirements would indicate something in-
termediate to SB and Crossbar in cost and per-
formance, which is in fact the MIN.

System Control Method Selection: Certain prob-
lems like matrix-computations are more suited
for computation using an SIMD method of con-
trol whereas there are problems which require
an MIMD conirol method. Hence, the method
of control can be chosen at this level of synthe-
sis. If a problem can be decomposed into similar
tasks (performing the same operations) then an
SIMD method of control is more suitable as only
data varies among the tasks. If a problem when
decomposed, consists of dissimilar tasks then an
MIMD method of control would be more suit-
able.

3.2 Cluster-Level Synthesis

Figure 3 shows the different stages at this level of syn-
thesis. Here we input the System Architecture Model
obtained from the previous level through four stages
of Cluster Level Synthesis: Processor Selection, Clus-
ter Memory Model Selection, Cluster Interconnection
Network Selection, and Cluster Control Selection.

The last three stages of this level of synthesis are

almost the same as those of the last level, differing only
in that they are considered in a more local sense, i.e.,
within a Cluster.
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e Processor Selection:

Processor Selection de-
pends on the computation requirements and the
degree of parallelism of the given problem as
well as the cost constraints imposed by the de-
signer since processors are the most expensive
component of the system. High performance
processors are usually more expensive than low
performance ones; given an upper limit on the
cost expenditure that could be incurred on the
whole system, one must not only consider what
type of processors to choose (high or low per-
formance, expensive or cheap ones), but also
the number of processors to use per Clugter and
the number of Clusters. Heavy computations
call for the need of high performance expensive
processors, and a given cost constraint would
permit us to use only a small number of them,
but if that same problem also shows a high de-
gree of parallelism in computation, one may opt
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Figure 3: Cluster Level Synthesis

for some not-so-high performance processors so
that we may have a greater number of proces-
sors at our disposal to solve the problem more
efficiently and with a better throughput. The re-
sult of this level of synthesis is a System Archi-
.tecture which is in fact a simple virtual parallel
machine.

3.3 Register-Transfer Level Synthesis

See Figure 4 for an overview of Register-Transfer
Level Synthesis. As shown in Figure 5, the DSE used
in this approach is a multi-level one. The main iterative
part of Design Space Exploration (DSE) is contained
in this level of synthesis. The System Architecture ob-
tained from the Cluster Level Synthesis is one of the
inputs at this level, the other inputs are the Synthesis
Parameters and their values. The synthesis parameters
and the performance factors are as given in Table 1 and
Table 2, respectively. System simulation is required to
explore the design space at this level. System analysis
is the process of selecting the synthesis parameter to
change in the next DSE iteration.

3.3.1 System Simulation

The system architecture as obtained from the previ-
ous level is verified and refined through simulation and
DSE, respectively. Workloads pertaining to the user-
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No
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Figure 4: Register-Transfer Level Synthesis

given problem are input to the system simulator and
performance results are recorded.

Initially, the Synthesis Parameters are given val-
ues corresponding to the resulting Systemn Architec-
ture from the System Level and Cluster Level Synthe-
sis. These values in fact form the configuration of the
system at iteration level 0. System is then simulated
with workloads representing the user-given problem.
Performance results, e.g., throughput, utilization are
recorded. System Analysis determines the synthesis
parameter to change in the next iteration based on these
results, and accordingly the system is re-simulated to
re-record the performance results of the improved sys-
tem. Thus the system is simulated once each iteration.

3.3.2 System Analysis

As shown in Figure 6, the primary objective of System
Analysis is to determine which synthesis parameter to
change so that the overall system performance is tm-
proved. The effect of changing each synthesis param-
eter on each performance factor is approximated using
first-order B-spline piece-wise linear segments [18].

Performance Space (PS) It is defined as an n-
dimensional real space with dimension ¢ repre-
senting P;,1=1,2,...,n

Consider the iterative process of DSE. Let r be the
current iteration number, 7 = 0,1,2,...; S be the i
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Synthesis Parameter, j = 1,2,3,...,m; and P}, be the
Ekth Performance Factor, k = 1,2,3,...,n.
DSE Algorithm: Jterate: (r = 0. 1,2, ool

1. Approximate
the effect of each S; on each Py, k=1,2,...,n,
j=1,2,...,m. Let fx[Synthesis(S;)] be a func-
tion that returns the value of P on changing 5;
by one unit. Hence, we need to approximate

o 5fk[Synthesis(Sj)]>
E]v _( 55] H (1)

where £k = 1,2,...,n,j = 1,2,...,m. Let
Njp = %% be a random variable. Stochasti-
cally, obtain the mean and variance of X; .. Use
(15,1 (25,k), 07 5 (zj,,)) as an approximation of
E; 1. This in fact is a B-Spline piece-wise linear
approximation.

[}

. Calculate expected design point on changing S5;,
j =1,2,...,m. Suppose this is the (r+1)th it-
eration of DSE. Let I,. be the design point ob-
tained in the r** iteration. Note that Iy is the
design point obtained as a result of first iwo lev-
els of synthesis. Let E;(I,41) be the expected
location of design point in the next iteration due

Table 1: Synthesis Parameters
[ | Synthesis Parameters
1 | System Memory Model
(UMA, NUMA, COMA, NORMA)
2 | Type of System Interconnection
(SB, MIN, Hypercube, Crossbar)
3 | Size of system interconnection
(no. of bus, size of MIN, dimension of cube)
4 | Number of Clusters
5 | Number of PE per cluster
6 | Method of Global control
(SIMD, MIMD)
7 | Kind of processors
(fine/coarse grained, RISC/CISC)
8 | Type of cluster interconnection
(SB, MIN, Hypercube, Crossbar)
9 | Size of cluster interconnection
(No. of bus, size of MIN, dimension)
10 | Method of Cluster control (SIMD, MIMD)

Table 2: Synthesis Performance Factors

[ [ PerfFactors | Definitions
1} Cost Total system compomnent Costs.
2 | Power Ratio of Throughput to Utilization
3 | Reliability (1 — (1 — Re(8))®°)
4 | Fault-Tolerance | >.o_; fa X &=
5 | Scalability > vey faSa

R, = the reliability of component a. d, = maximum
number of allowable faulty component a, f, = impor-
tance factor for component a, and s, = scalability of
component a.

to a change in S;. Thatis, Vj,Vr, B (Ir+1) =
I + Sp-, fjx where r = 0,1,...,j =
1,2, ey, k= 1, 2, sy Here, ﬁj,k(a:j,k)
is considered to be a vector parallel to the k-axis
in PS.

3. Select Synthesis Parameter to change:

Case 1 : V§, 3k such that [E; (Ir+1)]k > Prpaes
where [E;(Ir4+1)] is the kth co-ordinate and
P is the upper bound on Fj.

Normj =

{(———[Eﬂ:fzi”k - 1)H if [Bj(Ir+1)lt > Prma.

maz

0 otherwise.
@
Case 2 : Vi,Yk, [Eij(L4)lk < Pin,.» let

Normj,k = (————[Ej(fr+1)]k)u and Vj,DiStj =

Pkqu

® apNorm;, where ay is the weight
k=1 i g
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of Pp. 1If Dist, = Minj(Dist;), let
Dist(I,41) = Disty, return(p).

4. Change S, by one unit, keeping the others con-
stant.

5. If (# of iteration = limit) or (Dist(l,41) —
Dist(I,)) < e, then exit else goto step (1).

Hence the design is iteratively improved by moving
the design point at closer and closer to the best archi-
tecture. If the final design point lies within the Feasible
and Acceptable Region of Performance Space then the
final detailed design architecture is output, otherwise
the synthesis system exits with error messages.

4 Tmplementation

SES/Workbench, a modeling/simulation tool has been
used throughout the synthesis process to model and
simulate the whole system. This tool has also been
used to translate the SES models into VHDL mod-
els. Figure 7 shows the main Multiprocessor System
Model with workloads in the form of control jobs,
computation jobs and data-loads. GCU and Cluster
models are omitted here due to page-limit. The be-
havior of a PE is illustrated in Figure 8.

Example: An example multiprocessor system has
been synthesized using the proposed synthesis ap-
proach

Table 3: Various CPU and their features

Problem : sorting, searching, and matrix multiplication.

Constraints: ¢(n) = O(nlogn), n ~ 10%
CPU benchmark : SPECint92 > 100
SPECfp92 > 100

Total cost < $110000

1. SLS:

(a) Shared Memory or Message Passing?
e High Communication to Computation
Ratio. = Use Shared Memory.

(b) UMA, NUMA, OR COMA?
e No non-uniformity in memory access =
UMA.

(c) System Interconnection?
e Shared Bus or MIN.

(d) System Control Method?
e SIMD (since sorting, searching, and ma-
trix multiplication can be partitioned into
similar tasks; e.g. subsequence sorting)

2. CLs:

(a) Processor Selection: Referring to Ta-
ble 3, only DEC’s Alpha chip and
Apple-Motorola-IBM’s PowerPC meet the
SPECint92 and SPECfp92 constraints.

(b) Cluster Memory Model: UMA.

(c) Cluster Interconnection: Shared Bus or
MIN.

(d) Cluster Control: SIMD
3. RLS: Some assumptions ...

@ 1 Shared Bus cost = $100 (capacity:10)
e 8x8 MIN cost = $100
1 Bank of 4 MB Memory Cost = $150

e No. of Mem. Banks in GMS = No. of Clus-
ters

No. of Mem. Banks in CMS = No. of
PE/Cluster

@

@

A-492

Company Intel Intel HP DEC | AMI’
CPU 30486 | Pentium PAS Alpha PPC
SPECint92 32 64.5 80 130 117
SPECp92 16 56.9 150 193.6 242.4
MHz 33 66 99 200 66.5
Cost ($) 317 900 | N/A | ~ 1000 | = 2500
Type CISC CISC | RISC RISC RISC
Model —_ — 735 21064 *
[2]AMI=Apple-Motorola-IBM, [3]PA=Precision Architecture,
PPC=PowerPC, *=MPC601



Figure 7: SES Model: Overall System Architecture Model

e Cluster Memory Cost = $ 500
e Control Circuitry + Others = $ 500

On Simulation and DSE, we deduct the follow-
ing results:

¢ 5 Clusters gives good performance.

e 1st alternative: 100 Alpha chips with one
8x8 MIN costs $103,350.

e 2nd alternative: 40 PowerPC with one
Shared Bus costs $103 350.

o Further analysis and simulation shows that
the 1st alternative is a better one due to its
higher fault-tolerance and scalability.

5 Conclusion and Future Work

We have presented a novel methodology which is a
pioneer work on synthesizing hierarchically-clustered
parallel systems. MRASM is a multi-level rule-based
approach to synthesizing such systems. Experiments
conducted using MRASM have shown significant in-
crease in synthesis efficiency as compared to existing
systems that do not take advantage of the hierarchy in
such systems. An intelligent DSE algorithm integrated
into the simulation/refinement/validation process of
sythesis is also an important feature of MRASM. Fu-
ture directions include more system design experi-
ences and a formal verification model [19] for such
system designs.
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