hiERE N+ FREEEEEE

An Improved Dfspatch and Issue Mechanis with Dynamic Instruction

Yi-Ming Chen

Reuse

Chang-Jiu Chen

Departmént of Computer Science and Information Engineering

National Chiao Tung Universit

ABSTRACT

Among researches about improving performance on
superscalar processor, an idea is emerged and it is named
dynamic instruction reuse. This concept will help
improving the performance and the utilization of the
resource which can be reduced at the same time. In this
paper we propose an improved dispatch and issue
mechanism with dynamic reuse in superscalar. The
percentage of average reduction of total number of cycles

is from 12.5% to 15.2% by using dynamic instruction

reuse and trivial computation

Index terms : Dynamic Instruction Reuse,

Instruction Dispatch, Superscalar

1. Introduction

Empirical observations suggest that many instructions or
groups of instructions be executed over and over again,
with the same input. Such instructions do not have to be
executed repeatedly. By buffering the res ult of the
instruction executed previously, future dynamic instances
of the same static instriction can use the result if that the

input operands in both cases are the same.

Dynamic instruction reuse checks reuse conditions at
run-time. It is obvious that the number of instructions
executed dynamically can be reduced if instructions that
are going to produce the same value can be reused
repeatedly. Since dynamic instruction reuse can benefit the

performance, we would like to apply this concept to the

architecture of the superscalar processor.

A proposed micro-architecture with dynamic
instruction reuse in superscalar architecture is depicted in
Figure 1. As we can see in this figure, before dispatching
instructions to the instruction window, we should check
whether the instructions could be reused. If so the
instruction is not dispatched to the instruction window and
just bypass it (Instruction Window), and proceeds directly
to the Reorder Buffer (ROB). If the instruction can not be
reused, it would be dispatched to the instruction window
for later execution.

This paper contains 5 sections. In section 2, we will talk
about our surveys on dynamic instruction reuse. In section
3, we will propose a improved dispatch mechanism for the
simplified superscalar archi tecture, which applies the
concept of dynamic instruction reuse, as depicted in
Figure 1. In section 4, we will show the simulation results,
and analyze the simulation result to show that the effect of
dynamic instruction reuse is worthy to develop this ¢ oncept
and the proposed architecture works. In section 5, we will
make some conclusions on' this topic, and talk about the
future work we are going to work out.

2. Dynamic Instruction Reuse and Related
Survey

In this section, we will first show the phenom ena of

dynamic instruction reuse, and then introduce the schemes,

which developed in [6]. We will also talk about the position

of dynamic instruction reuse and at last the generi

microarchitecture of dynamic instruction reuse.

A-447

Result Bus
))
ROB M
tch Issue ,_@
Inst.
Window ®—
Register
File

Figure 1: Superscalar Architecture with dynamic

instruction reuse mechanism

2.1 Phenomena of Dynamic Instruction Reuse

Sodani mentioned two scenarios in [6]. The first scenario
involves speculative execution in a dynamically scheduled
processor. This scenario is termed squash reuse. (6]

Another scenari is general reuse.[6)

2.2 Schemes for Dynamic Instruction Reuse

In this section, we introduce three hardware schemes to
implement dynamic instruction reuse , which was firstl
proposed in [6], In each scheme we store the resulis of a
previously executed instruction in a hardware structure

called Reuse Buffer (RB), which is illustrated in Fig 2 [6).

Reuse Buffer

PC

fest

Reused Instruction

Figure 2 : Generic Reuse Buffer with invalidation

mechanism and reuse test, which indexed by PC

As in [6], scheme S, is a straightforward
implementation of the reuse concept. The operand values of
an insiruction are stored along with its result.

Rather than store operand values, we store operand
(architectural) re gister identifiers in the RB. When an
instruction writes into a register, all instructions with a
matching (source) register identifier in the RB are
invalidated. This scheme is called S,,.

Scheme S;.4 extends scheme S, by attempting t
establish Vchains of dependent instructions, and to track the

reuse status of such instruction chains.

2.3 A simplified Superscalar Architecture with

Dynamic Instruction Reuse

Figure 1 shows a generic microarchitecture with a RB.At
this point, the RB is accessed to see if a reusable result for
the instruction can be found. Loads bypass the IW only if
both micro-operations, address calculation and the actual
memory operation, can be reused.

Since the RB contains state that will determine the
outcome of future instructions, it needs to be maintained
precisely (just like a register file). For scheme S, insertin
instructions into the RB speculatively requires no special
actions — the reuse test énsures that the correct result is
obtained. For scheme S,,4, the RST controls the reusabilit
of instructions. Just like the rename map in a superscalar
processor, checkpoints of the RST have io bé taken when a
speculation decision is made, and it has to be repaired in

the case of an incorrect speculation.

3.An Improved Dispatch andIss e
Mechanism for Superscalar Architecture
with Dynamic Instruction Reuse

According to the experimental evaluation in [6], we can
easily see that among all 3 reuse schemes, the S , performs
bestin 1024 -entry RBand has almostthe same
performance with fewer entries of RB while compare to the
other two schemes. In this section we will put our focus on

the dispatch and issue problems in superscalar architecture

A-448

with scheme S,, and propose a mechanism to solve the
problem which incorporate trivial computation with the
current architecture. We will also talk about the
implementation of the mechanism and evaluate the

hardware cost.

3.1 Determine Reusability

In the previous section, we knew that the most important
part of dynamic instruction reuse is in the instruction
decoding stage. During the instruction decode stage, the
fetched instructions are decoded at the same cycle and
check if the instruction can be reused, as depicted in
Figure 3 .

First, let’s see how to determine the reusability of these
4 instructions. If the instruction can not be reused, it would
be sent to the instruction window for later issuing to the
function unit, else the reuse buffer would send the result to
the reorder buffer for later update.

If the instruction can not be reused, it would be sent to
the instruction window for later issuing to the function unit,
else the reuse buffer would send the result to the reorder
buffer for later update, but there are some problem

remaining unsolved. We will see it in the next section.

Instruction index RB
dispatcher’, A
i ROB [
P
NN |
VR
3
— 4
- 10 'i‘ = IW [
TR
P
RE
N
ID-4 S |
Result Bus

Figure 3: Four instruction decoding with comparison with

reuse information

3.2 Rules for Dispatch Mechanismn ITnside
Scheduler

relationship. In

We can find that there is only one problem that will affect
the reusability of the dynamic instruction reuse — RAW data
dependency. We assume that there are four decoders that

could decode four instructions at the same cycle.

II:r1+r2:@

L:r1=0
L rd =15
I: 4 =16

Figure 4: Example of denpendent-instruction-pair

For ensuring the discussions we define the term
‘dependent-instruction pair’. A dependent-instruction-pair
is apair of instructions that has RAW daa dependency
Figure 4 there are2
dependent-instruction-pairs, they are I and I3, I; and L.

According to the dependence, we can conclude that we
need a scheduler to handle these cases of RAW data

dependency problems as shown in Figure 5.

Instruction index —— RB
dispatch ’
7 4.4
’ B ROB
Vi n N
U ’
Jany
D-2 D
— IQ é"—
uf N
M M2 —
RF
N
D4 " L/ l
= Result Bus

Figure 5: Scheduler for handling dispatching problems

The rules to handle all these conditions are shown as
foll ws:

1. K I; is not reusable, then check I,, Iz, Iy to see

A-449

whether any of them has RAW data dependency
relationship with ,, if so that instructionis
dispatched to the instruction window with . Go
to 3.

2. If I is reusable, then go to 3.

3. ¥ 1, isn t reusable, then check &, I to see
whether any of them has RAW data dependency
relationship with », if so that instructionis
dispatched to the instruction window with ;. Go
to 5.

4. If I is reusable, then go to 5.

5. If I; is not reusable, then chepk 1; to see whether 4
has RAW data dependency relationship with I3, if
so that instruction is dispatched to the instruction
window with 3. Goto 7.

6. If I is reusable, then go to 7.

7. Collect all the instructions that should be

dispatched and send them to the instruction window
3.3 Trivial Computation Incorporated

To reduce the number of instruction dispatching to the
instruction window, checking the trivial operation is
another option. We adapt three conditions for triviality as

illustrated in fable 1.

Operation Conditions for trivialit
Multiply x* (xory)=(0,1, or -1)
Division x/y x=y,x=-y,orx=0)

Square root x? (x=0o0rx=1)

Table 1 Conditions for triviality.

The structure of the trivial operation incorporated with
dynamic instruction reuse in the instruction dispatchin
stage is depicted in Figure 6. We can see in the Figure 6
that the instruction is decoded and get the source from
reorder buffer, result bus, or register file. The value of

source operand is then compared with the reuse buffer for

the reuse test and with the constant 0 and 1 for the trivial
operation test. After these 2 tests, we can determine the
source select from trivial operation orreuse test to the
scheduler and to the reorder buffer.

All these we will have experimental evaluation with
simulation latter — the reuse scheme part and with trivial

computaion will be presented in the next chpater.

RB

Reuse, f
Test _|

scheduler

ROB
ResultBus

51

Ml M2

Figure 6: Trivial operation test incorporated with

dynamic instruction reuse test

3.4 Reuse Buffer

It is obvious that the most important part to incorporate
dynamic instruction reuse with the current superscalar
architecture is the reuse buffer.

We know that the general registers would be used for
instructions are integer type, long integer type, single
precision type and double precision type. We assume that
the integer and single precision type register are 4-byte
long and long integer and double precision types are 8 byte
long. According to this assumption, we know that if we
want to use a general reuse buffer, we have no idea which
entry should be reserved for the 4-byte one or the §-byte
one. In this point of view, the source operand fields and the
result operand field are at least 8-byte long, that is to say, it
is waste!

Here we calculate the size of reuse buffer in 2 cases

I. General RB
If we use the general RB for all the instructions, we

need all the fields together to determine. But in fact the

A-450

load/store instruction and non-load/store instructions would
use exclusive fields, one way to reduce this waste is t
compact them together, but determination of the fields

would be more difficult.

We assume that we have 2"-entry RB and the address is

* 32-bit long. The tag field should record the rest of the
program counter, so we should reserve 32 -k bits for it.
These two source operand value fields should reserve 64
bits for all instruction, and so does the fesult field. The
Address field we have the 32 bits, which is the same as we
assume above. The memory Valid bit only needs one bit.
The total amount of one field is 257-k bits, which depicted
in Figure 7.
IL Speciall -designed RB

We have mentioned above that the load/store

instmctions and non -load/store instructions use the
exclusive fields, if we depart them into two classes, we may
save some buffer space. As we can see inthe Figure 8 that
the upper one is for non -load/store instructions and the
lower one is for the load/store instructions. The total size
can be easily added up. But there is something needs to be
concerned: how mayentries should we reserve - for
load/store instructions and how many entries should be
reserved for the other? This problem should be considered
by experimental evaluation and statistic results.

With this information, we can distribute them apart, but

our focus is not on this point, in our simulation we use a

general RB for our simulations.

Source Source
Tag | Operand.l | Operand.2
Value Value
1) 1.
I T |
32-k 64 64

Destination Memor
Value Address Validy
- (Result)
I l ol
I I |
64 32 1

Figure 7: Size allocation of every field of a general RB entry Specially-designed RB

Source Source Destination
Tag | Operand.l | Operand.2 Value -
Value Value (Result)
1))) o
| [} 0 1
32-k 64 64 64
Memory
Tag Address Valid
) 1) N
I 1 Ml !
32-k 32 1

Figure 8 Size allocation of every field of a specially-designed RB entry

A-451

3.5.1 Source Operand Value Comparator

While comparing the value of source operand with that of
reuse buffer, a comparator is necessary. The comparator can
be easily handled by xor (exclusive-or) gate. If the source
operand are 32-bit long, then the comparator need 32 xor
gates, while all the 32 bits are compared, we collect the
result of xor gates and ‘or’ them together. If the result is 0,
then we can make sure that the source operand value of
current instruction is equal to that of entry in RB.

Of course, if the source operands are 64-bit long, we
need the double size of the xor gates for the comparator,
and the logic diagram of the comparator is illustrated in

Figure 9,

Valve in Entry of Reuse Buffer

NNEN 7

&

U

N

Comparing Result

_111T]

!
D
LT

Value of Source Operand

Figure 9: Comparator of current instruction source

operand value with reuse information

4. Experimental Evaluation

Our simulator is built on top of the SimpleScalar toolset [5]
an execution-driven simulator based upon the MIPS -1 ISA.
A complete documentation can be retrieved at the web site
in University of Wisconsin-Madison:

hitp://www.cs.wisc.edw/~mscalar/simplescalar.html, We

also adapt this document for this section.
4.1 Simulation Design Consideration

In our simulator, we put our focus on total instruction
count and total number of execution clock cycles

reduced by instruction reuse and by hybrid method of

dynamic instruction reuse and trivial computation.
The main purpose of trivial operation is to reduce the
number of execution clock cycle rather than the
reduction of instruction count, so the simulation i

focusing only on the number of clock cycles. We

~ would like to see how the IPC be affected by the

dispatch mechanism. We would also see the effect of
replacement policy of the RB.

We would also have simulation on the effect of
replacement policy on the RB. In this part, we would
use the simpler version of SimpleScalar toolset fo
the sack of speed consideration. In this simple
version, all we simulation is based on the instruction
count.

Of course, reuse scheme can reuse multiple dependent
results in a single cycle (the maximum length ofa
dependence chain reused in a cycle is equal to the read
bandwidth of RB, which is 4 in the simulated
configuration). This configuration of the RB, though
aggressive, allows us to study the concept of instruction
reuse without been

limited by any particular

implementation.
4.2 Simulation Environment and Configuration

The base simulator models in detail a 4-way
dynamically-scheduled processor with its first level of
instruction and data cache memory. The parameters for the
base out-of-order simulator are listed in Table2.

We extended this base simulator to incorp orate the RB
and the three instruction reuse schemes described earlier.
The RB is integrated with the processor pipeline as
described in section 4. In our simulations, the BB is capable
of supporting 4 reads, 4 writes, and 4 independent
invalidations simultaneously. We also assume that all RB
accesses — read, write or invalidate — complete in one cycle.

In [6], we can find that the RB size works best in 1024

entry, and here we assume that the size of RB for our

simulation is based on 1024-entry RB.

A-452

Instruction Feich 8/4/2 instruction per cycle. Aggressive: can fetch beyond multiple branches and across
cache line boundaries. Fetch stops only on F-cache misses.
Instruction cache 16K-bytes, direct mapped, 32-byte cache line, 6 cycles miss latency.

Branch Predictor

2048 BTB entries with 2-bit saturating counters.

Speculative execution
Mechanism

Out of order issue/commit of 4/2 operations per cycle, 32 -entry ROB, 32-entry load/store
queue. Maximum of 8 unresolved branches. Loads execute only after the entire preceding
store addresses are known. Values bypassed to loads from matching stores ahead in
load/store queue.

Architecture registers

32 integer, hi, lo, 32 floating point, fcc.

Function units

4-integer ALUs, 2-load/store units, 4-FP adders, 1-integer MULT/DIV,1 -FP MULT/DIV

Functional unit latenc
(total/issue)

Integer ALU-1/1, load/store 1/1, integer MULT 3/1, integer DIV 20/19, FP adder 2/1, FP
MULT 4/1, FP DIV 12/12, FPSQRT 24/24.

Data cache

16K 2-way set associative, 32bytes block, 6 cycles mi ss latency. Dual ported,
non-blocking interface, one outstanding misses per register.

Table 2 Configuration of our simulation of superscalar architecture with RB

As to the replacement policy, we simulate on both 128
and 1024 entries to see how the replacement policy affects
the overall performance.

We have eight benchmarks for the simulation, four of
them for integer and the rest for floating-point. Table 3
shows the average IPC of our base benchmarks. We know
that while the instruction be reused, the ins truction would

not be sent to the instruction window for the later execution

so the IPC is less than the base.

mark |Compress {Gce li m88ksim
Bandwi
8/4/4 1.717245 10.920209 [1.482089 [1.641188
4/4/4 1.717789 |0.916131 [1.495469 {1.640979
4/2/2 1.194288 0.75326 |1.071679 [1.343738
21212 1.194363 10.752487 {1.075449 [1.369123
mark |Swim su2cor hydro2d Fpppp
Bandwi
8/4/4 1.231185 1.108873 [1.098249 [0.731751
4/4/4 1.228325 |1.104982 j1.092656 |0.730234
41212 1.102393]0.966969 [0.958151 |0.624598
2/2/2 1.108793 10.966552]0.954863 10.623829
Table 3 IPC of each base benchmark
4.3 Simulation Resulis

4.3.1 Instruction Reused

From Figure 10, we can see that the improvement be

incorporating trivial computation is little. The most

improvement is appeared in hydro2d benchmark, which has
2% of reduction on instruction count, as for other
benchmarks there are almost nothing help. As we can see in
[4), the percentage is a litile better than what we have
experimented. The reason is that those instructions that can
be classified into trivial computation might be reused in the
reuse buffer, so the effectis not so good as we can see

in[4].
4.3.2 Speedups

Figure 11 shows the speedups by total number of execution
clock cycles obtained due to dynamic instruction reuse. The
percentage of average reduction of total number of clock
cycles is from 12.3% to 14.6%.

Figure 12 shows the speedups obtained due to dynamic
instruction reuse and trivial computation by total number of
execution clock cycles. The percentage of average
reduction of total number of clock cycles is from 12.5% to
15.2%. Figure 13 shows the speedup contributed from
trivial computation, and we can see that the contribution is

not too much. The reason is explained in previous section.

4.3.3 TPC Reduction

We know that while the instruction can be reused, then the

instruction would not send to the instruction window for

A-453

the later execution, so some of the previously scheduled
instructions would not be executed, and the TPC must be
less than the base. Here we can see in Figure 14 that the
reduction of five in eight benchmarks is less than 4%, and
one in eight is more than 10%.

In Figure 15, we can see that the reduction is not s

serious than that in Figure I4. We think that the main
reason for this is thatthe mainpurpose of trivial

computation is to reduce the execution cycle rather than
instruction count, so the effect of trivial computation will

increase the IPC. That’s why the IPC is a little better than

- that with only dynamic instruction reuse.

Instructin Reused Affected by Incorporating Trivial Computation

fetch:8 decode:4 issue:d Bfeich:4 decoder4 issue:d Dfetchi4 decode:2 issue:2 Elfeich:2 decode:2 issue:2

g 002
3
< 0015
o
B 001
s
& 0.005
compress gcc i m88ksim swim su2cor hydr02d foppp
Benchmark

Figure 10: Percentage of instructions reused affected by incorporating trivial computation for 1024 -entry RB

Speedup with Dynamic Instruction Reuse

|fetch:8 decode:d issue:d Efetch:d decode:d issue:d [Dfetch:4 decode:2 issue:2 [Jfetch:2 decode:? issue:2 l

0.25
0.2

0.15
0.1

005 1

o Hi

Percentage of Speedup by
clock cycles

e

-0.05 “ecompress £e¢

Q0% a3 H)) 2 £
ATORSHR SV SHZCor [ExAssierasy PPPE

Benchmark

Figure 11 :Speedups obtained due to dynamic instruction reuse measured by total number of clock cycles

Speedup with Dynamic Instruction Reuse and Trivial Computation

E3fetch:8 decode:4 issue:4H fetch:4 decode:4 issue:4Tfetch:4 decode:2 issue: I fetch:2 decode:2 issue:i

SRR

Percentage of Speedup by
Clock Cycles

20.05 COmBress 266 i m88i-s

Figure 12: Speedups obtained due to dynamic instruction reuse and trivial computation measured by total number of clock

Cycles

A-454

Speedup Affected by Incorporating Trivial Computation

Bfetch:8 decode:4 issue:d B fetch:4 decode:4 issuesd D fetche4 decode:2 issue:2 Bfetch:2 decode:2 is&ﬂl

0.03

0.025

0.02

0015

0.0

0.005
0

Percentage of Improvment

-0.005 “~compress BCC iy

mBSksimr
Benchmark

. a e I
SV SUZCOT piijeiyvzavy TPPD

Figure 13 Speedups contributed from trivial computation compared to dynamic instruction reuse measured by total number

of clock cycles

IPC of Dyramic Instruction Reuse compared with Bas2

IPC of Dynamic Instruction Reuse and Trivial Computation compared with Base

|53 fetch decode:d issue:t Efetch:d decode:d issuerd Dfelch:d decode? issue? Qlfetch:2 derode issued I

Iﬁlelchﬂ decoderd issuerd BBfelch:d decoderd ismuerd Dfetchid decodeRissue2 BBfetch:2 decode:2 issued

Percentage of Reduction an

Percentage of Reduction on

fpopp

mB3ksim swim or hyd02d

Benchmark

Figure 14: IPC reduction resulted from dynamic instruction reuse.

5. Conclusiomns

In this paper we have introduced the concept and problem
of dynamic instruction reuse and trivial computation
incorporating into the current design of general superscalar
architecture. According to the experimental result in [6], we
observed that the size for RB would affect the effect of
dynamic instruction reuse. Thus if the processor itself can
provides enough area to locate the larger-size RB, not only
the instruction count but also the total number of execution
clock cycles would decrease significanily.

In our experiment, we show that the improving dispaich
mechanism with dynamic reuse works and its improvement
on instruction number is also significant. The other benefits
of this mechanism is that it collapses the RAW data
dependencies, and thus reduce the number of clock cycles
that would be wasted without this mechanism.

The most important contribution of this dispatch
mechanism is that it makes dynamic instruction reuse to be

applied to the superscalar architecture and improve the

Figure 15: IPC reduction resulted from dynamic instruction reuse and

trivial computation

instruction dispatch, which compares with the original
design of éuperscalar architecture. Of course, additional
hardware is necessaty.

We also show that the replacement policy would not
affect the efficiency of dynamic instruction reuse too much
and thus would not improve significantly in the instruction
dispatch stage.

The future work about this topic can be focused on the
static reuse on the function calls, which is similar to the
concept of result cache in [4]. Also, if we want to apply
dynamic instruction reuse to other architecture, such as
super-ﬁipe]jning, VLIW, and eic, it remains a lot of
problems to be solved. Our work focuses on the
architecture of superscalar, because it is the most common
architecture for the present time. Besides, the reuse
schemes can be improved in some way, and exploit the
reuse phenomenon to find out new schemes for better reuse
efficiency.

If instruction reuse can be done in both static and

dynamic ways, or even more the combination of these two

A-455

ways, the IPC (instruction per cycle) can be as the same as
that without dynamic instruction reuse. That is to say, w

need better scheduler to predict the reusability at compile
time, and thus would help decrease resour ce waste at run

time.
References

[1l. A. Abo, R. Sethi, and j. Ullman. “Compilers
principles, techniques, and tools.” Addison -Wesley,
Reading, MA, 1986.

[2]. J. Smithand A. Pleszkun. “Implementing precise
interrupts in pipelined processors.” IEEE Transactions
on Computers, 37(5): 562--573, May 1988.

[3]. Mike Johnson, “Superscalar Microprocessor Design”,
Prentice Hall, Englewo-od Cliffs, NJ , 1991.

[4). 8. E. Richardson. “Caching function results: Faster
arithmetic by avoiding unnecessary computation. ”
Technical Report SMLI TR-92-1, Sun Microsystems
Laboratories, Sept. 1992,

[5]. D. Burger, T. M. Austin, and S. Bennett. “Evaluatin
Future Microprocessors: The SimpleScalar Tool Set.”
Technical Report CS-TR-96-1308, University of
Wisconsin-Madison,July,1996.(URL:http:/Avww.cs. wi
sc.edu/~mscalar/simplescalar.htrl)

[6]. Avinash Sodani and Gurindar S. Sohi, “Dynamic
Instruction Reuse”, Proceedings of the 24™ Annual

International Symposium on computer Architectu-re,

A-456

