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Abstract

Many grand challenge applications such as
weather prediction are known for their extensive
computations and large datasets, and are
usually run on massively parallel processor
systems (MPPs). To visualize data from these
applications, potentially massive amounts of
data must be transferred from the MPPs to
special graphics workstations, often across a
network. Under  this condition, it may be
preferable to visualize the data in place. In this
paper, we first reveal the usefulness of directly
perform rendering on parallel machines, and
then discuss design issues related to this field.
Finally, we present a sort-last class polygon
rendering method which performs better than
our previous work by 13-30 % times faster. To
the best of our knowledge, the reported
rendering rate obtained from a 512 node Intel
Delta, is much higher than any other parallel
implementation on the same kind or similar
parallel architectures.

Keywords: parallel graphics, polygon
rendering, parallel image composition

1. Limitations of Traditional
Graphics Post-Processing

Specialized graphics hardware and workstations
have been built to provide very impressive
performance results for rendering images.
However, use of parallel machines for rendering
images provides many advantages over
specialized graphics hardware {1]. Scientific
simulation datasets are generated on large
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parallel computers and their sizes range from
hundreds of megabyies to hundreds of gigabytes
[2,3]. To render these datasets on graphics
workstations, massive amounts of data must be
transferred across communication networks.
Limitations on I/O rates and network bandwidths
force researchers to select portions of datasets,
for example, by analyzing data to only certain
time-steps. Therefore, unexpected or subtle
phenomena can be potentially overlooked. By
rendering images on parallel computer, massive
data shipment is avoided and data can be
analyzed in more detail to explore new
phenomena. In addition, since rendering
software can be integrated directly with the
simulation software, there is no need for exira
storage, and rendering can be a part of the
simulation. By the combination of simulation
and rendering together, it allows users to
interactively "steer" simulation, rather than have
to wait for long simulations and with high
storage and transmission cost, only to find
during post-processing (rendering at graphics
workstations) that the simulations are wrong or
uninteresting,

2. Parallel Rendering Is Useful

The aggregate computing power and memory
capacity on modern parallel computers allow us
to exploit many computationally expensive
rendering schemes such as ray tracing and
volume rendering to explore rendering large
datasets. Even with the latest acceleration
techniques running on the top-of-the-line
workstations, it still takes a few seconds to a few
minutes to render an image with these
computationally expensive rendering schemes.
However, with these rendering techniques, large
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MPPs can render the images faster than
workstations can, possibly, in real-time, or at
least achieving interactive frame-rates [2,3]. In
addition, with the advent of larger parallel
machines ~and  better  scanners  and
instrumentation, larger and larger datasets are
being generated today, some of which would not
fit in memory of a workstation class machine.
On the other hand, MPPs have larger memory
capacities to render such larger datasets.
Software-based parallel rendering provides more
flexibility in allowing additional geomeric
primitives, different rendering schemes, non-
standard lighting model, etc. Usually, special
graphics workstations perform well only on 2
small set of geometric primitives, use special
rendering schemes and a limited set of
illumination models.  Therefore, parallel
rendering is useful and there is growing interests
in parallel rendering algorithm design.

3. Polygon Rendering(Z-Buffer)
and Its Parallelization

In this paper, the rendering algorithm we
parallelized is polygon rendering (Z-buffer).
Polygon rendering is an image space rendering
technique [4]. It provides faster rendering speed
and acceptable photorealism. Polygon rendering
produces a 2D representation of the 3D scene
model taking info the account the lighting and
perspective distortion. This scheme is popular
and supported in most commercial graphics
workstations. A standard polygon rendering (Z-
buffer) pipeline is described as follows: The
vertices of polygons are illuminated by different
light sources, transformed from 3-D world space
to 2-D screen space, and truncated by a clipping
pyramid. The polygons are then scan
converted to pixel values and a Z-buffer
hidden surface elimination is performed.

In the past, many efforts were proposed to
parallelize polygon rendering. Whitman's book
{5] multiprocessor rendering methods and our
recent  paper [6] thoroughly surveyed the
previous work in parallel polygon rendering
work., We have discussed design issues in [7].
Here, several key issues are listed below:

@ Parallelization Algorithms
@ Load Balancing
@ Data Communication

3.1 Parallelization Algorithms
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How to parallelize a polygon rendering? There
are many ways to do it. Molnar et al. [8]
describe a framework for parallel rendering
where the sort and redistribution of data occurs
when transforming 3D objects to 2D screen
space. They delineate three types of parallel
rendering algorithms: sort-first, sort-middle
(image-oriented) and sort-last (pixel-oriented).
They conclude that there is no obvious evidence
that some class is always better than others. In
the sort-first algorithms (shown in Figure 1),
each polygon is first pre-processed to
determine which screen region it will be
projected on. The primitive is then sent to the
processor corresponding to this projected region,
which performs all pipeline operations on that
polygon. In the sort-middle parallel algorithm
(shown in Figure 2), each polygon's geometry
transformation is first done locally, then the
algorithm determines where the transformed
polygon will be sent. The sort-last class of
algorithms (shown in Figure 3), in general,
delay the data sort until the geometry processing
and the rasterization of all polygons are
completed. After each processor finishes
rendering its allocated polygons, the sub-images
created by the processors are merged into the
final image.

Graphics database

A /\ t J\pre-transfonn
Redistribute raw primitives
G G G G
R R R R
l G: geometry
. processing
Disply R: rasterization

Figure 1. The sort-first parallel pipeline
Graphics database
|
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Figure 2. The sort-middle parallel pipeline
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Figure 3. The sort-last parallel pipeline
3.2 Load Balancing

In  Molnar’s classification, the graphics
primitives and screen space is distributed among
the processors. For simplicity, here, we assume
that they are evenly distributed among the
processors and each primitive is a triangle. Each
processor can perform both  geometry
transforming (shading, model dnd coordinate
transforming, culling and clipping) and
rasterization  (rasterizing the triangles and
hidden surface removal). For shading and
transforming part, since the triangles have been
distributed evenly to the processors, and these
operations may be performed independently on
each triangle, this part can be parallelized
perfectly. Back-face culling and clipping can
introduce local variations in workload which
will detract from perfect speedup. Fortunately,
this part does not contribute too much
imbalances. Similar variations can be introduced
in the rasterization and Z-buffer computations,
and will likewise be the most significant
contributors to slow down the speedup. The
impact of these variations is both scene and view
dependent. See an example in Figures 4 and 5.
In Figure 4, the projected primitives are evenly
distributed among the screen. However, in
Figure 5, the projected primitives are
concentrated on the center of the screen, and
therefore, most rasterization workload is done by
the processors which rasterize the central parts
of the screen. In general, in graphics pipeline,
the rasterization is the most timing contributor.
Therefore, to achieve a high parallel efficiency,
it is important to devise a load balancing to even
out rasterization workload among the processors.
In the past, there have been many work reported
to balance the rasterization workload. The
schemes were classified into: static [9], dynamic
[10]), and adaptive [11,12] classes. For more
discussion, see [6).

Figure 4. The primitives are evenly projected
on the screen space

Figure 5. The primitives are clustered on the
center of the screen.

3.3 Data Communication

In parallel rendering, the data (either graphics
primitives or the screen space) is partitioned and
distributed, so the data communication is
introduced. The communication overhead
consists of several parts: packing and unpacking
data, sending data, waiting time, termination and
something else. In general, if we assume that a
processor will, on average, sends v data to each
of p destinations, including itself, So, the total
number of message is inserted to the whole
sysiem is wp’. This is a kind of all-to-all
communication. As the size of the system grows,
this number grows even more quickly.
Unfortunately, the communication still can not
be solved in a scaleable manner even many
advances in collective operations on parallel
architectures [13]. So, this nonlinear cost does
not decrease linearly with the numbers of
processors, and therefore detract from the
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perfect speedup. For more details, please see [9].
In the past, we [16] and Ellsworth [10] have
presented similar approaches to solve the
communication problems. In both cases, the
buffered data goes to an intermediate processor
before being forwarded to its destination, and in
both cases the communication complexity is
reduced by not sending the data directly to its
final destination. In both cases, the number of
messages required is reduced approximately
from O(p®) to O(p*?). In [14] and 15] , both
proposed similar divide-and-conquer approaches
to compose image pixels at optimal stages (i.e,
log P). Both schemes work well on flat-tree or
hybercube like parallel architectures but not on
the mesh parallel architecture [16].

4. Our Sort-Last
Polygon Renderer

Parallel

In this section, our parallel graphics system is
introduced and was developed on the Intel Delta
parallel computer at Caltech, a 2-D mesh
message-passing architecture. It belongs to
sort-last class rendering system in term of
Molnar et al.'s classification [8]. For a sort-last
class, first we ‘evenly distribute . graphics
primitives (static load balancing scheme similar
to [9]) to all processors, and partition the image
screen into disjoint regions. As the rendering is
done by each processor, a global image
composition is performed to merge all

subimages into the final display. Figure 6 shows
an example of four processors rendering the
Teapot scene in a sort-last manner.

Figure 6. An example of our sori-last polygon
renderer

In our previous work [16], we presented a
scheme called DPF (Direct Pixel Forwarding)
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and its variant called DPFL (see [16] for more
details). An example of DPF using 4 processors
is shown in Figure 7. In Figure 7, at each stage j,
each processor P; sends-active pixels in its
Zgsjryymoas 10 the processor Pe,.,q,. and receives
a Z ‘Gipmous from the processor Py, Then
composes the local Z,,),,4, With the incoming

Z ‘(M)mu

PO P1 P2 P3

Figure 7.

Direct pixel forwarding composition
using 4 processors (1x4)

Here, we describe another approach termed as
DPFS (DPF with Task Scheduling) with an
attempt to achieve higher rendering rate. The
idea of the DPFS scheme is to exploit more
communication links than DPF and to reduce
message  sizes by  overlapping  both
communication and rendering work. From our
experience, this approach is very useful to
reduce the communication time in the large
system size. The DPFS scheme is described as
follows:

DPFS

while (local triangles are not
yet rendered){

select a local triangle;

render it into A-type or B-
type buffers if its rendered
pixels are outside local
processor's assigned region,
and send buffer if full;

§f incoming messages exist
Jor each incoming message {
if message needed to be
Jorwarded in the second
phase of DPF

then unpack this message
into B-type buffers;

else Z-buffer this message
with local region;

}

}

flush all A-type buffers to
other processors in the order
of DPF's first phase;
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while (A-type messages
remain to arrive from other
processors){

if message needed to be
Jorwarded in the second
phase of DPF
then unpack this message
into B-type buffers;
else Z-buffer this message
with local region;
3
Jlush all B-type buffers to
other processors in the order
of DPF's second phase;
while (B-type messages
remain to arrive from other
processors){
Z-bujfer this message with
local region;
}
synchronize; /* make sure all processors
finish this frame */

For 2-D mesh parallel architectures like the Intel
Delta, we logically group the 2-D mesh (r x ¢)
into many sub-rings. There are » processors in
row direction and ¢ processors in column
direction. Each row or column forms a subring.
Under this arrangement, our previous work [16]
(i.e., DPF scheme) performs image composition
in row direction in the first phase, and in column
direction in the second phase. In the DPFS
scheme, there are two types of message buffers
which consist of (r-7) A-type message buffers
and (c-1) B-type message buffers. The A-type
message buffers store both pixel values and (x,))
coordinates of corresponding regions in the first
phase of the DPF scheme, and the B-type
message buffers are in charge of the second
phase. In the first while loop, the rendered pixels
of each local triangle can be temporarily stored
either in the 4-type buffers (i.e., these pixels do
not belong to local processor's region in the first
phase of the DPF) or in the B-type buffers (i.e.,
these pixels do not belong to local processor's
region in the second phase of the DPF) or can be
Z-buffered in local processor's assigned portion
of the final image. We implement this scheme
by asynchronous routines for message send and
receive, and these can be used to overlap
message transfers with both triangle rendering
and "pixel merging computations. Unlike the
DPF scheme, groups of pixel message are sent
asynchronously and are not delayed until the end;
therefore, shorter messages are needed to be
flushed (i.e., network congestion can be less).
For more detailed discussion, please see [6].
Similarly, we also implement a variant of
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DPFS called DPFSL. The DPFSL requires
interleaving the scanlines in the first phase.

5. Experimental Results

To perform our experiments, we used datasets
from Eric Haines's SPD database [17]. The SPD
database has been used in many previous
studies and is believed to be a good
representation of real data. Table 1 shows the
sizes of two datasets among our test scenes.
Figures 8 and 9 show the rendering results for
the "Teapot" and "Tree" scemes. In our
implementation, each large group consists of
2000 triangles and the data for each triangle is
48 bytes.

Scene | Number of Triangles | Size of Dataset
(MBytes)
Tree 426K 19.5
Teapot 160K 7.3

Table 1. Number of triangles and data size of the
two test scenes.

Figure 8. Teapot and Tree scenes

Figure 9. Teapot and Tree scenes

For page limit, we only present part of our



experimental results here. Table 2 shows that
DPFSL consistently performs better than DPFL
for large systems. DPFSL achieves a rendering
rate of 3.8 to 4.5 million triangles/sec using 512
processors. In comparison with DPFL, we gain
about one half to one million triangles/sec
rendering rate. For example, replacing DPFL
with DPFSL, the performance of rendering
Tree" scene changes from 3.9 to 4.5 million
triangles/sec. Our rendering rates do not drop off
significantly for up to 512 processor. In contrast,
most previous work declined their performance
significantly after small number of processors in
use. On the other hand, for small systems, the
DPFSL is slightly slower, by at most 5%, for
“Teapot" scene using 8 processors. This is due
to the extra overheads incurred in three while
loops. These include buffer management,
message detection, breaking of rendering
pipeline by inserting message handling code in
the first while loop and so on. In the case of
small systems, the saving of message
communication time can not offset these factors
and results in slight slow-down in performance.

#Procs | 8 | 16 | 32 | 64 | 128 | 256 | 512
Teapot
DPFL | 115K | 223K |4156K | 756K |1287K [ 1970K | 2705K
DPFSL | 109K | 213K | 404K | 771K | 1438K | 2574K | 3893K

Tree

DPFL | | =eomn 555K 1 1026K | 1797K | 2898K | 3871K

DPFSL | 139K | 276K | 528K | 1002K | 1804K | 3131K [ 4482K

Table 2. The comparison in rendering rate
between DPFL and DPFSL for two test scenes

Figure 10 shows the relative speedup plot for
rendering both scenes using DPFL and DPFSL
schemes. The relative speedup values are based
on the times obtained from the minimum
configuration that test scene can fit in. For
example, it needs 8 processors to hold both
scenes in DPFSL implementation. For both test
scenes, the DPFSL rendering rate scales better
than the DPFL. For example, the DPFSL scheme
_scales well first with about 98% speedup
efficiency, but decreases to about 50% (Tree
scene) at the largest configuration of the Delta.
For further discussion of this figure (take
DPFSL scheme as an example), we divide the
total rendering time into two main parts:
rendering time (Render) that consists of exact
rendering time and pre-processing time for
composition, and the composition (Compose)
time. Figure 11 and 12 show the time breakdown
of our renderer for the "“Teapot" and “ Tree"
scenes using DPFSL scheme. For rendering both
scenes, most of time is spent rendering (i.e.,
geometry transform and pixel rasterization); the
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composition  time (ie, merging and
communication) are consistently small. From
both figures, we see that the rendering time
decreases slightly linearly as the number of
processors are increased for both scenes.
However, the composition time slows down
slightly. As the size of the machine increases,
one of the reasons for decreasing speedup
efficiency is that rendering load becomes uneven
among the processors when fewer triangles are
computed on each processor. The major cause is
that composition time does not scale with
increasing number of processors. With the
increase in the number of processors, the
composition time of each scene is almost kept
constant while the rendering time decreases, and
when composition time becomes dominant or
comparable to rendering time, the speedup will
decrease. For more details, please see [6] and

[7].
6. Conclusion

In this paper, first, we discussed the motivation
of our work and then outlined the key issues in
this area. This paper presented a implementation
of parallel graphics system on the Intel Delta
supercomputer. We described a scheme that
improved our previous work and obtained higher
polygon rendering rate. Using 512 processors of
the Delta, we obtained significant performance
improvement ranging from 13% to 30% on SPD
test scenes. However, there is a slight
performance degradation when using small
number of processors. This is due to exira
overheads incurred in three while loops.
Therefore, to achieve better performance, we
need to make a right choice among DPFL and
DPFSL. In our future work a performance model
will be developed and analyzed to assist in
choosing a right scheme to get the best possible
rendering rate. In addition, we may investigate
hybrid scheme (combine sort-last with sort-
middle) or rendering directly at compressed Z-
buffered data to reduce the amount of
communication. ‘
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Figure 12. Time breakdown for the Tree Scene
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