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Abstract
In this paper, we address the problem of minimizing
link contention of linear-constant communication on
wormhole-routed k-ary n-cubes. Our research reveals
that, for dimension ordered routing algorithms, the de-
gree of link contention of a linear-constant communica-
- tion can be quite large. To solve this problem, we propose
a new approach called processor mapping. In our ap-
proach, processors are remapped according to the given
communication(s) so that the new communication(s) can
be efficiently realized on the k-ary n-cube network. It is
proved that for any set of m linear-constant communica-
tions, m<k-1, there exists a processor mapping such that
the new communications have minimum link contention.
Several computer simulations are conducted and the re-
sults clearly show the advantage of the proposed ap-
proach.

1. Introduction

A distributed memory parallel computer consists of a
large number of identical processing elements and an in-
terconnection network. Each processing element has its
own processor, local memory, and other supporting de-
vices. Processors communicate by sending messages
through the interconnection network. There are many dif-
ferent kinds of interconnection networks been used to
build parallel computers. The most popular ones are k-ary
n-cubes and their variants such as rings, meshes, tori,
cubes, binary n-cubes, and Omega networks.

The problem of moving messages among processors
is called the message routing problem. Many researches
on the message routing problem are based on the store-
and-forward rouiing, where the message latency is pro-
portional to the product of the message length and the
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number of routing steps. Hence, most of them concen-
trated on minimizing the number of routing steps in mov-
ing messages among processors. On the other hand,
wormhole routing has been widely adopted recently [1],
[2], [23] due to its effectiveness of inter-processor com-
munication. With wormhole routing, each message is di-
vided into numbers of flits. The header flit(s) carries ad-
dress information and governs the route while the re-
maining flits of the message follow in a pipeline fashion.
One of the attractions of wormhole routing is that the stor-
age requirement for each router is significantly less than
that of the store-and-forward routing. Another attraction
of wormhole routing is that its message latency is much
lower than that of store-and-forward routing, In the ab-
sence of link contention, the message latency of wormhole
routing is relatively insensitive to path length [8], [23].

In this paper, we focus on the problem of minimizing
link contention of linear-constant communication on
wormhole-routed %-ary n-cubes. Linear-constant commu-
nication is a class of communications where the address
vectors of destination processors are linear combinations
of the address vectors of source processors plus a constant
vector. Many important problems like fast Fourier trans-
form, matrix transposition, polvnomia!l evaluation, etc.,
can be effectively solved in parallel computers which have
an efficient scheme to support this type of communica-
tions. The problem of moving messages between pairs of
source and destination processors can be treated as the
problem of realizing the corresponding communication
using the k-ary n-cube network among the processors.

Traditional approaches to the message routing prob-
lem are trying to find an efficient routing algorithm [6],
{71, [9], [11], [15], [16], [26]. However, our research re-
veals that, for dimension ordered routing algorithms, the
degree of link contention of a linear-constant communica-
tion can be quite large. To solve this problem, we adopt a
new approach, called processor mapping. In our approach,
processors are mapped according to the given communi-
cation(s) so that the new communication(s) can be effi-
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ciently realized on the k-ary n-cube network. We can
prove that for any set of m linear-constant communica-
tions, m<k-1, there exists a processor mapping such that
the new communications have minimum link contention.
We also propose an algorithm to find an optimal proces-
sor mapping. Experiments based on computer simulation
are conducted and the results clearly show the advantage
of the proposed approach.

The rest of this paper is organized as follows. Section
2 introduces the notations, definitions and necessary in-
formation. In section 3, we present the concept and theo-
rems of processor mapping. Experimental resulis based on
computer simulation will be shown in Section 4. Finally,
conclusions are given in Section 5.

2. Background

The target parallel computer is a -ary n-cube com-
puter with wormhole routing capability. The routing paths
are assumed to be dimension ordered shortest paths. The
goal is to perform linear-constant communication’ effi-
ciently on the k-ary n-cube computer such that the degree
of link contention can be minimized. The definitions and
notations of these terminologies will be clarified in this
section.

2.1 k-ary n-cubes

A k-ary n-cube interconnection network consists of
N=k" nodes in n dimensions and k nodes along each di-
mension. Each node x in a k-ary n-cube can be identified
by an n-digit radix-£ integer, X,.;%.2...Xo, Where 0<xv;<k-1
for 0<i<n-1. We shall use an n-dimensional vector (x,,
X1,...X0)' to represent it. The ith digit of the address vec-
tor, x;, represents the node's position in the ith dimension.
Two nodes x and vy are neighbors if and only if there exists
J such that x=(y£1) mod & and x7=y; for all i/. There are
two unidirectional links between two neighboring nodes,
one for each direction. Note that the use of modular
arithmetic in the definition results in wraparound links in
k-ary n-cubes. When £>2, each node has 2» neighbors,
two in each dimension. When 4=2, a special case for hy-
percubes, each node has » neighbors, one in each dimen-
sion. Another special case, when »=1, is a ring with &
nodes,

2.2 Routing strategies

The path selection for a message traversal is based on
the dimension ordered routing strategy which reserves
links required for a communication path in a strictly in-
creasing order of dimensions. Within each dimension,
shortest paths are chosen. For binary hypercubes, this al-
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gorithm ensures deadlock-free routing but only one path
for a given source-destination pair is allowed. Augmenta-
tion must be made to implement deadlock-free routing in
k-ary n-cubes because deadlock may occur within a di-
mension due to the wraparound links, As implemented in
the supercomputer Cray T3D[1], virtual channels can be
used to prevent this problem. All links are broken up into
pairs of virtual channels (high and low channels). They
can be implemented by time-multiplexing onto the associ-
ated physical links. Upon entering a new dimension
(either from another dimension or an injection channel), a
message is routed along the high virtual channels if it will
not ftraverse wraparound links. Otherwise it is routed
along the low virtual channels in that dimension. This
routing restriction coupled with the dimension ordered
routing is sufficient for providing deadlock-free routing in
k-ary n-cubes.

2.3 Linear-constant communication

In what follows, we define the class of linear-constant
communications of a k-ary n-cube with N=4" nodes, where
k is a power of 2. Since every node in the k-ary n-cube can
be denoted as a radix-k£ n-dimensional vector, (dy, d,,...,
d,.1), and k is a power of 2, the addition and multiplica-
tion in the following definitions can be defined to be in
the finite field, GF(¥) [19].

Definition: A communication is a linear-constant com-
munication if there exists a matrix A4,., and an s-
dimensional vector b such that, for every source node x,
its destination node is given by the equation, y=4x+b.
Definition: A linear-constant communication is a linear-
constant permutation if the matrix A,,, is non-singular,
i.e., rank(A,..)=n.

Definition: A linear-constant communication with a ma-
trix A,., and an s-dimensional vector b is a linear-
constant gather if rank(A.,)<n.

Scatter, the dual operation of gather, can be imple-
mented by simply reversing the direction of message
transmission of gather. Thus, we can define /inear-
constant scatter as follows.

Definition: A communication is said to be a linear-
constant scaiter if there exists a matrix A4,., , rank(A..)<n,
and an n-dimensional vector b such that, for every desti-
nation node y, its source node x is given by the equation,
Ay+b=x.

Example 1. The communication of matrix-transpose on a
k-ary 4-cube is a linear-constant communication with

0010 0
1
A= ?880 and b,,= g Q
0100 0

A linear-constant communication defined above is



equivalent to perform a linear transformation of the n-
dimensional vector space over the field GF(k) and then
add a constant vector. There is one-to-one correspondence
between the radix-£ matrix of size nxn and linear trans-
formations on n-dimensional vector space over GF(k). We
shall utilize this property in the following sections.

3. Processor Mapping

Link contention can have a severe impact on the
throughput of the interconnection network. Let the degree
of link contention be defined as the maximum number of
paths that contend for the same link in the interconnection
network. The goal of this paper is to minimize the degree
of link contention for linear-constant communication on
dimension ordered wormhole-routed k-ary n-cubes.

First, we shall show that the humber of paths con-
tending for the same link is directly related to the ranks of
sub-matrices of the matrix 4. A sub-matrix of the matrix 4
is the matrix obtained from 4 by retaining entries in some
row(s) and column(s) and deleting other entries. We use
A to denote the ith row of 4 and A? to denote the jth
column of A. The following definition defines special sub-
matrices and their notations to be used in this paper.
Definition: A sub-matrix of the matrix 4 obtained by re-
taining rows in the set R and columns in the set C is de-
noted as Ay

We shall use L; to denote the set of non-negative inte-
gers smaller than /. So, given integers i and j, 4 i is the

upper-left sub-matrix of 4 with i rows and j columns. Ex-
ample 2 shows the sub-matrix 4, , of a 4x4 matrix A.

a(i.() a(l.l a‘l.Z al).)
. a,, a, a, a .
Example 2. Given 4=| """ "t "2 " 4 s equal
a,, a,, a,, a -l
2.0 2.4 22 2.3
a}.(’ a].l a}.Z a].3
al’,(l a".‘
to al.(l al.l D
a,, a

2.0 2.1

Theorem 1: Given a linear-constant communication
y=Ax+b, the maximum number of paths that contend for
the same link at dimension /, denoted as T{(A,b), can be
determined as follows:

(1).if rank( A, , Yr1=rank( 4, o JZrank( A, . ), then
0 , X, =y
T(A,b)= —— L
(4.0) {k e , otherwise,

(). I rank( A, , y+2=rank( A taz TH1=rank( A, ),

i+l Liv)

then T:(A’ b) - °2k_ » ki""""("/‘iii-)-| )
G). it rank( A4, , y=rank( A, , )=rank( 4,

+bdivl )’

then
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Z(A,b) =§X ki«rn/:l.'(J/q'/.H]"

(4). if rank( A4, 1 yr1=rank( Ay, Yr1=rank( 4 oty ) @nd
(a). rank( 4, , Y=rank( 4 fr sy ) then
(2+4)

8
(0). rank( A, , Y+1=rank( A Ly ) then

« kl—muk(.ILI it )

T(4.b)=

0<T(4,6)< g )

Proof: For any ring (k-ary 1-cube) r at dimension i, sup-
pose that r has the set of nodes {(z0,2),...,21.1,W,Zjs1,...,20y)!
[0<w<k}. If there is a path from node x to node v that
passes some link of r, according to the dimension ordered
routing, it must hold that x=(xo,v),....x;,Z;1)....,z,,)" and ¥=
(202 150w sZict VisewenV) - Since y=Ax+b, we have

a

Ya “0 oo oy ca,, X,

.}.}! =l 5= % 4 o, ‘\:I +

Yia Zini [ Fimta Gy 0 Ay, L%
i~ -
a(),i+l ’ a(u»-z * au,/,-g Z“_' B b"
aLm-l al.i+l L= Zi~2 + bl
LGicin Qi " Gy | Z0a bi—l

Since a path from x to y must pass links from node (vo,
ylwwyi-l:xiyxi'rl:m7x;1-l)t to node (V0¥ 1sreesViel Vit 13eenXn)' at
dimension /, there must exists some ring at dimension /
that solutions for (x,x),...,x;) exist. Hence, we can con-
sider only the situation that there exist solutions for (xo,
X{,...,X;) in the following proof.

According to Linear Algebra, the number of solutions

for (xo.x),....x;) must be k”'_""“(""""*'). This is also the
number of paths passing links of ». Similarly, we can find

the number of solutions of (xp,x(,....x;.,) to be fm )

Therefore, by comparing the ranks of the 4 pandd,

we know that
(a). if rank( 4, Y=rank( A,,,,)*1, there is only one
solution for x; and all the paths passing links of r
arrive at the same node. .
(b). if rank( 4, , Y=rank( A, , ), there are k different

solutions for x; and the paths passing links of r are
divided evenly into & groups. Paths in different
groups arrive at different nodes.

Similarly, by comparing the ranks of A and

Litisg
A, 10 » We know the number of solutions for y; and that
(@). if rank( A/J;, 1, YErank( AI,;+.. 1,,, )» there is only

one solution for y; and all the paths passing links
of » leave r at the same node.
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(b). if rank( A, , +1=rank( A, 5. ) there are k

different solutions for y; and the paths passing
links of » are divided evenly into k& groups. Paths
in different groups leave at different nodes.

From the above discussion, we have

if rank( A4, , yr1=rank( 4, Y=rank(4, , ), then

all the paths passing links of r arrive at one node, and
leave at one node. If these two nodes are the same
one, then there is no link contention. Otherwise all
the paths contend for links between these two nodes.

0 =Y,
Hence, 7(4,b)= kx k;_,.,nk(.n,,,.,,,i+,) , otherwise.

rank( A, , Yr2=rank( A, , t1=rank(4, ., )

R

(1.

, X,

if
then the paths passing links of  arrive at one node,
and leave at the & nodes of ». Hence,

(2).

T(Ab)= Kk,

. ifrank( A, , )=rank( 4, ,  Y=rank(A, . ), then the
paths passing links of r arrive at the £ nodes of r, and
leave at one node. Hence,
if  rank( A, Y1=rank( A Lobinn Yr1=rank( A .

« k,'-mnk(‘l/.,-./.,a,l )

T(4.)=2

(4). )

then the paths passing links of r arrive at the k nodes
of r, and leave at the k nodes of . Here are two pos-
sible cases: k-to-k permutation or scatter-gather. By
given the value of x; to find the number of solutions
for y;, we can distinguish these two cases. This can be
done by compare the ranks of 4, , and 4

Thus,
(). ifrank( 4, Y=rank( A

k scatter-gather.
(2+k)

g

Ligtdisg

), then it’s a k-to-

Lierdixl

« k'—"""‘-('ll-l'-/‘i+l >'

T(4.6)=
(b). ifrank( A Yri=rank( A

to-k permutation.

+?
Lt Lt ) then it's a k-

0< 7:(14,[7) < é X ki’m"k(""r"iu ) g

The above theorem shows that the degree of link
contention is determined only by the ranks of sub-matrices
of the matrix 4. As an example, we shall compute the de-
grée of link contention of matrix-transpose on a 4-ary 4-
cube according to Theorem 1.

Example 3. Consider the matrix-transpose in Example 1
on a 4-ary 4-cube. According to Theorem 1, the degree of
link contention at each dimension can be computed as

4 4
follows: Ro=Rs= PR 4°=2 and R=R,= > % 4'=8. By ex-
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amine the behavior of performing matrix-transpose on a 4-
ary 4-cube, it can be verified that link contention hap-
pened just as computed above. u]
Definition: The degree of link contention of a linear-
constant communication, y=Ax+b, is defined to be

MAX{T|(4,b)} , which is denoted by T(4,5).

Osgisn-1

For convenient, we may use T instead of 7(4,b) in
case of no confusion. To minimize 7(4,b), the matrix A
must be "changed" and, at the same time, the linear-
constant communication must be correctly performed. To
meet these two requirements, we propose a new approach,
called processor mapping. In this approach, processors
are remapped by a linear mapping, which is defined as
follows.

Definition: A processor mapping is said to be a linear
mapping if there exists a matrix O,., such that, for every
node x, it is mapped to node x=Qx.

Definition: A processor mapping is a reordering mapping
if it is a linear mapping with matrix Q and Q is a permuta-
tion matrix, i.e., each row and column of QO has exactly
one 1.

Definition: A matrix is called an operator matrix if it is
non-singular. [13]

In order to keep the linear-constant communication to
be performed correctly, the communication after proces-
sor mapping must be changed as shown in the following
theorem.

Theorem 2: Given a linear-constant communication with
a matrix 4 and a vector b, the new communication after
the linear mapping with an operator matrix Q is a linear-
constant communication with a matrix-Q40"" and a vector
Qb.

Proof: Fig. 1 is a good explanation for this theorem. For a
source node x in the communication with 4 and b, the
destination node y can be computed by the equation,
y=Ax+b. After linear mapping by O, we have x=0Ox and
y=Qy. Since Q is non-singular, we can derive x=0'x".

Hence, we have y'=0y=0(Ax+b)=0A4Q 'x"+Qb. Q
x Q x'=Qx
(4,b) (Q407,0b)
Q

y=Ax+b V=0AQ 'x"+0b

Figure 1. The new communication after linear mapping

with an operator matrix Q for y=Ax+b.

In other words, the degree of link contention after the
linear mapping is determined by Q4Q". By choosing an
appropriate linear mapping Q, the degree of link conten-
tion could be greatly reduced. In the following, we will



begin to find an optimal linear mapping for a linear-
constant communication. First, we notice that, there are
two situations in Theorem 1 that T;(4,5)=0 at dimension /.
They only happen when y;=x; for all x, i.e., 4»=/; and
b=0. Since T;(4,b)=0 means no communication at dimen-
sion i/, we would like to keep it unchanged when per-
forming processor mapping. It can be accomplished by
applying reordering mapping Q before applying other

i ,0<j<i-1
mapping, where Qyy=l; for j'={j-1,i+1<j<n-1.
n=1,j=i
Because [QAQ"]I L = A e, WE o can derive
=1 -den—) S U R "

T,(QAQ",Qb)=7}(A,b). Hence, we can just consider the
sub-matrix A,."_{,_“"_:i’ when minimizing link contention of

A. If there is a set of rows R such that T,(4,6)=0 for seR,
then, by recursively applying above method, we can just
consider the sub-matrix A4, ,, , when minimizing link

contention of 4. Without loss of generality, we may as-
sume Ty(4,6)>0 for 0<i<n-1 in the following discussion.
As proved in the following theorems and corollaries, there
must exists a linear mapping such that the new communi-
cation has minimum link contention.

Theorem 3: For any matrix 4., there exists an operator
matrix Q,., such that

rank( [QA Q"]W =i, for 1<i<rank(A).

Proof: The proof is by induction on the integer i. First we
shall prove this theorem is true for i=1. If ag=0, then
rank( A, , y=1.1f a =0, let A” be a non-zero column and

O be the permutation matrix exchanging A4 and 4. Ac-
cordingly, "' must be the permutation matrix exchanging
AD and A®. Hence, there exists / such that (QAQ"),,,#O.

Lethe the operator matrix adding A4 to Ay Accord-

AR

ingly, Q" must be the operator matrix subtracting A vy
A® We can derive

rank([0(040")0"],  y=rank([(2)A(00) ]

Hence, this theorem is true for i=1.
Now suppose that it is true for 1<i<k. There must ex-

ists an operator matrix Q such that rank([‘QAQ"]L‘_k y=i

1.

1y.14

for 1<i<k<rank(4). We shall prove that it is also true for
Iish+1. If rank([QAQ™] Yk+1, it must held that

rank( [QA on ]

singular, we have rank(QAQ "Yy=rank(4). There must ex-
ists a column AY | j>k, that is linearly independent of col-

umns in [QAQ"]I e Let Q be the permutation matrix

PRI

)=k. Since @ and Q"' are non-
Lt Lhewt
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exchanging A4, and 4. Accordingly, Q" must be the
permutation matrix exchanging A9 and A®. Hence, we

“—x] Y=k+1. In other words,
L Ly

have rank( [Q(QAQ")Q

there must exists a row [, [=k,

[Q(QAQ")Q" » that is linearly independent of rows
it k41

in [0(0407)0"

adding 4, to 4y. Accordingly, é

in the sub-matrix

. Let é be the operator matrix
Lt Lt
"' must be the operator

matrix subtracting A” by 4. We can derive
rank([§(0(040)0")0"|, =
for 1<i<k+1<rank(A).

Since (QQQ).l =000, it can be derived that

~ A ~ A -
rank(|(200)4(000) | =i
ik
for 1<i<k+1<rank(A).

Since (QQQ) is also an operator matrix, this theorem
is true for 1<i<k+1<rank(A4). Therefore, by mathematic
induction, this theorem must be true for 1<i<rank(A). This.
complete the proof of this theorem. Q
Corollary 1: For any linear-constant communication, the
new communication with the linear mapping in Theorem 3
has minimum link contention.

Proof: For any linear-constant communication y=Ax+b,
from Theorem 1, T{A4,h) can be rewritien as

i~rank(Ay,; 1; . .
a, x kT for all §, 0<i<n-1, where 1< o, <k. Hence,
we can consider only i-rank( 4, , ) for each dimension i

in the following proof.
(i) First, consider the case rank(4)=n. For any linear

mapping O, note that MAX {i —rank([QA Q"]“‘_ l)}

>0. From Theorem 3, there exists a linear mapping
O such that i-rank([éAé"] )=0, for O<ign-1.
1.

i List

Hence, this theorem is true for a linear-constant per-
mutation.

Then, consider the case rank(4)<n. For any linear

mapping O, note that %g’(‘{{i—‘rank([QAQ" [ )}

2(n-1)-rank([QAQ™], , V2(n-1)-rank(A).

Theorem 3, there exists a linear mapping é such that
i-rank( [QA é-l]/‘;.nm }=0, for 0<i<rani(4), and
i-rank( [QAQ"]

rank(A)+1<i<n-1.

(iD)

From

Y=i-rank( QAQ™), for

LiLixg
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Hence,

Mﬁ,’.;{i - rank([éA 0 ]’-: » ) }

=(n-1)-rank( QAQ ™ Y=(n-1)-rank(4).

Therefore, this theorem is also true for a linear-

constant scatter/gather.

From the above discussion, we know that the new
communication with the linear mapping in Theorem 3 has
minimum link contention, a
Corollary 2: For any linear-constant permutation y=4Ax+5,
there exists a linear mapping Q such that T(QAQ',0b)

k
SE’ for 0 <i<n-1.

Corollary 3: For any linear-constant gather/scatter
v=Ax+b, there exists a linear mapping @ such that

T{(QA Q",Qb)sé x k"D for 0<i<n-1.

Example 4. Consider the matrix-transpose in Example 3 '

on a 4-ary 4-cube. From Theorem 3, we can find Q, Q",
and the new communication as follows,

1010 Wl ftooo]|x| [o
0101 yil_lotool|x|.|o
=0"=lg010|2d |} 1510 10||x]|0]|

0001 wl lorot]|y] (o

The degree of link. contention at each dimension for the
. : 4
new communication becomes 7,=T,=0 and T>=T- 3=5 x4%=

2. Compared with Example 3, the degree of link conten-
tion is greatly reduced from 8 to 2 by the linear mapping.Q
Lemma 1: Let 4y, 4;,..., A, be m different matrices with
size mxn in GF(K) and msk<l. If rank([4,], , y<h

<rank(A,), then there exists an operator matrix Q such that
rank( [QA"Q_l]L dp Y=rank( [A“ L.ty )+l and

rank([Q4,0™'], | y2rank([4,], , ) forany A,,

1<r<m-1,

The above lemma is concerned with columns of ma-
trices. It can be easily shown that it also holds for rows.
Hence, by applying Lemma 1 to Theorem 4, we may find
an optimal linear mapping for no more than -1 linear-
constant communications as described in the following
theorem and corollary.

Theorem 4: Given m maitrices Ay, Ay,..., Apy, m<k-1,
there exists a linear mapping with an operator matrix Q,.,

such that rank([Q4,0™"], , )=i, I<isrank(4,), for any 4,,

0<r<m-1.

Proof: The proof of this theorem is similar to the proof of
Theorem 3 except that, at each step, if we need to find an
operator mairix, we have to find one for all the m mairices
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Ay, 0<r<m-1 by Lemma 1. This completes the proof of this
theorem. Q
Corollary 4: Let {y=Ax+b,|0<r<m-1} be a set of m lin-
ear-constant communications to be performed, where
m<k-1. With the linear mapping Q in Theorem 4, each
new communication y=QA,0"'+Qb,, 0<r<m-1, has mini-
mum link contention.

Corollary 2 and 3 can also be applied to Theorem 4 to
find the degree of link contention for the new communi-
cations. Following the method in the proof of Theorems 3
and 4, we can easily design an algorithm to find an opti-
mal linear mapping for any m different linear-constant?
communications, m<k-1. Example 5 shows a linear map-
ping Q obtained from above theorems for two linear-
constant communications: matrix-transpose and digit-
reverse.

Example S. Consider the folowing linear-constant com-
munications,
(1) matrix-transpose, as in Example 1, and

Ya 000 1|1 0
(2) digit-reverse, i ; = 8(1) (138 2 + 8 ,
¥, 1000 X, 0

on a 4-ary 4-cube. From Theorem 4 we can’ find that
1011

0=0"'= 8 (l) % (]) , and the new communications are
0001
vl ftr201[x] To
wiVil_ 21021 0
M= ot |x|Ho| 2
il lor2u]]|y| o
(vl T3 0]{x] fo
w V112331 0
@ ytElor 21|l
_y;_ _] 01 l~ x! 0

_ After the linear mapping, the degree of link conten-
tion now becomes 2 instead of 8 in the original communi-
cations. u]

4. Performance Study

To compare the dimension ordered routing with our
approach, we make some experiments by simulating the
network behavior of a k-ary mn-cube. Two neighboring
routers are connected by a pair of uni-directional links.
Each link is broken up into pairs of virtual channels (high
and low channels). A router can communicate with its lo-
cal processor through a pair of poris. A separate buffer
with a slot for one flit is associated with each virual
channel. The flit at the buffer is transmitted in a cycle to
the router connected at the other end of the link. The
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Figure 4. Matrix-transpose on a 16-ary 2-cube.

processors generate messages at time intervals given by a

negative exponential distribution random variable. Each
message has 20 flits. When more than one input link con-
tain header flits waiting for the same available output link,
the arbitration policy is in favor of the header flit that ar-
rived at the router first.

The measures of interest in this performance study
are average message latency and average sustainable net-
work throughput. The message latency is the number of
cycles spent by a message in traveling from its source
processor to its destination, taking the queuing delay into
account. The average network throughput indicates the
average number of flits delivered per cycle per processor.
It is sustainable if the number of messages queued at their
source processors is small and bounded. For a given sys-
tem, the average message latency grows as the throughput
increases. At low throughput, the message latency is con-
tributed mainly by the message length because there is lit-
tle queuing delay involved. As the throughput increases,
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Figure 5. Digit-reverse on an 8-ary 3-cube.

more link contention and longer queuing delay happened,
give rise to a higher message latency. One system exhibits
better communication performance than another if it has a
lower message latency for any given throughput.

Network performance is significantly effected by the
communication patterns, which are application dependent.
In this paper, we consider three different communications:
matrix-transpose, ~ digit-reverse, and uniform-random.
They are chosen because they are frequently used in many
scientific and engineering applications. When performing
matrix-transpose, each node (do.dy,....dws1su2s- - sdpr)'
sends messages to node (dya,duaritse. syt s oy dunt)
Figs. 2 and 4 show the simulation results of matrix-
transpose on a 4-ary 4-cube and a 16-ary 2-cube, respec-
tively. Both of them can be used to transpose a 16x16
matrix. When performing digit-reverse, each node (d,
dy,...,d,)" sends messages to node (d,.i,dy-a,....do)" It is
useful when performing a radix-k FFT. Figs. 3 and 5 show
the simulation results of digit-reverse on a 4-ary 4-cube
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Figure 6. Uniform-random on a 4-ary 4-cube.

and an 8-ary 3-cube, respectively. These communications
are linear-constant permutations. We may find linear
mapping for them and see how the performance can be
improved. The last communication pattern, uniform-
random, is a general pattern representing the random ac-
cess of a parallel computer. In our simulation for this
communication, messages are generated randomly and in-
dependently by all the nodes, and the destinations of mes-
sages are evenly distributed across all the nodes. Fig. 6
shows the simulation result of uniform-random cn a 4-ary
4-cube.

In these figures, Map-S denotes the simulation result
using an optimal linear mapping for the specific commu-
nication pattern, which is proved to have minimum link
contention in Theorem 3. On the other hand, Map-G de-
notes the simulation result using the linear mapping cho-
sen for matrix-transposé¢ and digit-reverse by the algo-
rithm proposed in Theorem 4.

From Theorem 1, we can compute the degree of link
contention for the first two communication patterns to be
simulated. They are T=8 for matrix-transpose on a 16-ary
2-cube, T=4 for digit-reverse on an 8-ary 3-cube, and 7=8
for matrix-transpose and digit-reverse on a 4-ary 4-cube.
From simulation results, it can be observed that, for any of
these communication patterns, the network throughput of
the dimension ordered routing is always less than 1/7. In
other words, the maximum sustainable throughput that can
be achieved is approximately inversely proportional to the
degree of link contention. After linear mapping, the de-
gree of link contention for those communications will be-
come 7=8 for matrix-transpose on a l6-ary 2-cube, 7=4
for digit-reverse on an 8-ary 3-cube, and 7=2 for matrix-
transpose and digit-reverse on a 4-ary 4-cube. It can also
be observed that the average latency becomes much lower
after linear mapping, especially for Map-S and Map-G on
a 4-ary 4-cube. Since the degree of link contention is 2 for
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both Map-S and Map-G on a 4-ary 4-cube, theoretically
their throughput can approach 0.5. The actual value is
somewhat smaller because of the queuing delay between
messages generated by the same processor. As shown in
Figs. 2 and 3, their values are about 0.4 instead of 0.5.
Note that, for any given sustainable network throughput,
the message latencies of Map-G and Map-S are much
lower than that of the dimension ordered routing.

The simulation result for uniform-random is shown in

Fig. 6. Obviously, it is not a linear-constant communica-
tion. Hence, we can not find an optimal linear mapping for
it. In order to investigate the effects of linear mapping on
uniform-random, Map-G is applied in the simulation.
Each source-destination pair (x,y) in uniform-random now
becomes ([Onap-61¥, [Omap-clv) after Map-G is applied. In
this way, the original communication can be correctly per-
formed after processor mapping. Fig. 6 shows that the per-
formance of Map-G is about the same as that of the di-
mension ordered routing. This means that linear mapping
will not degrade the performance of uniform-random.
Furthermore, its sustainable throughput can be more than
0.4, which is quite large comparing with the throughput of
other communication patterns.

With these results, it is obvious that our approach
may greatly reduce the message latency and, at the same
time, significantly improve the throughput. Furthermore,
no exira hardware supports and sophisticated routing
strategies are needed. Only the dimension ordered worm-
hole routing is assumed in our approach. Therefore, it is
of practicable use.

5. Conclusions

In this paper, we address the problem of minimizing
the maximum number of paths contending for the same
link when performing linear-constant comimunication on
dimension ordered wormhole-routed k-ary r7-cubes. A new
approach called processor mapping is proposed to solve
this problem. We have proved that, for a set of no more
than 4-1 linear-constant communications, there exists a
linear mapping such that the new communications after
processor mapping has minimum link contention. Simula-
tion results clearly show significant performance im-
provement provided by the proposed approach when
compared with the dimension ordered routing strategy.
With these results, compiler techniques can be used to re-

‘duce the message latency without the need of extra hard-

ware costs.
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