Joint Conference of 1996 international Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

Comparisons of Load Balancing Strategies for Ray Tracing on
Network Clustered Environments

Chungnan Lee, Tong-yee Lee*, and Tain-chi Lu

Institute of Computer and Information Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan, ROC

email:cnlee @mail .nsysu.edu.tw
tclu@cie.nsysu.edu.tw

*Department of Information Management
Nantai Institute of Technology
Tainan, Taiwan, ROC
email: email:tlee@candy.nic.edu.tw

Abstract

Load balancing has been a major issue in network
computing for ray tracing and other applications. In
this paper we present a new load balancing strategy,
called global distributed control 10 load balancing
in the network processors. The algorithm not only
has the ability to dynamically adjust to the load, but
also has the fault tolerance ability. In order to study
the performance of the algorithm we design a
common experimental protocol to evaluate the
performance. The parameters used in the protocol
include environment configuration, problem size,
data type, number of workstations, and algorithm
selection. We compare the algorithm with the
traditional load balancing schemes such as a master
slave, an interleaved, and a proposed hybrid
algorithms. Experimental results show that the GDC
performs the best among four algorithms.

1. Imtroduction

Ray tracing has produced the most impressive
photorealism image in computer graphics which is
widely applied to many areas, such as scientific
visualization, ~computer animation, dynamic
simulation, and virtual reality. A simple ray tracing
model is shown in Figure 1. The color and intensity
of a pixel in the image plane is obtained by tracing a
ray from the view point backward into the scene.
Then to find if there is a direct or an indirect path
from object to the light source. In the past, research
has focused on minimizing the cost or reducing the
overall number of intersection calculations. Space
partitioning structures, bound volume, shadow
buffers and ray coherence techniques have all been
proposed to reduce this cost. Many technigues have
exploited different data structures to speed up the
search for a closest intersection on a ray. These

structures (such as Octree, BSP trees, K-D trees, and
hierarchical bounding volume tree), allow us to
search small percentage of the scene to determine
the closest intersection. The survey of ray tracing
acceleration techniques can be found in Arvo and
Kirk’s seminal article [1]. In our raytracer
implementation, we adopt the hierarchical bounding
volume tree structure proposed by Kay et al. [2] to
speed up raytracing calculations.

LightSoutce
inditect ray

irect tay

View Plane

gpixel

Figure 1. A model of ray tracing

In this paper, we present a new dynamic load
balancing scheme, called global disiributed control
and compare it to a couple of traditional load
balance schemes, such as the mater slave and the
interleaved schemes. In order to evaluate the
performance of these algorithm we design an
experimental protocol to describe what performance
can be characterized for performance evaluation of
algorithms.  The paper is organized in the
following way. We first review a couple of
traditional load balancing scheme and propose a
hybrid algorithm in Section 2. Section 3 presents the
global distributed control. In Section 4 we design an
experimental protocol to carry out the performance
evaluation of the algorithms. Section 5 presents the
resulis and discussions. In the last section we give
the conclusions.

2. Review of Typical Load

Balancing Schemes

203



Proceedings of International Conference
on Networking and Multimedia

As mentioned in preceding section, in addition to
inventing new accelerating techniques of ray tracing
on sequential machines, a large number of
researchers devote to parallelizing ray tracing on
many experimental and commercial multiprocessor
machines [8-11, 17, 18]. In this section, we review
two schemes and propose a hybrid algorithm to
parallel ray iracing on networked clusters of
workstations.

The first one used is a static load balancing scheme
called ““interleaved “ assignment. The idea is to
assign scanline I to workstation I mod N, where N is
the total number of workstations. As neighboring
scanlines should have similar computational
complexity for ray tracing, the computational load
can be more or less scattered evenly among all the
workstations. The communication mechanism for
this ““interleaved *’ scheme is described in Figure 2.

Time
Host
@ @ o

Any workstation

CRCRCR R

W here Risending results, and C:time for computation
Figure 2. The communication mechanism for the
interleaved scheme

In Figure 2, a host workstation is responsible to
collect scanlines rendered at different workstations
and display the image. As each scanline is finished,
the rendered results are sent to the host by a non-
blocking sending. Such overlapping between
sending the previous results and computing the
current scanline can hide communication cost and
reduce the network contention to some extent.

The second one used is a dynamic load balancing
scheme called ““master-slave *’ approach, which is a
popular sirategy in network computing [1], uses a
single master for task scheduling, results collections
and image display, and uses multiple slaves to
perform real computation. The communication
mechanism for this “master-slave ° scheme is
described in Figure 3.

Time

M aster
@ @ @
Any workstation
Start C R W w End

W here R:sending results, and C:time forcom putation
W :waiting time for the new job

Figure 3. The communication mechanism for the
master-slave scheme

In Figure 3, the slave requests a job(i.e., a scanline)
from the master to compute. As the slave finishes
the current scanline, it will send the rendered resulis

back to the master and wait for the arrival of new
job from the master. The master-slave scheme
considers how the computing power of workstation
is changing as the process is running. This scheme
just distributes the task on a FCFS basis. As a result,
those faster workstation will be given more jobs
(scanlines) to compute (i.e., achieve better balancing
on workstation utilization). As all workstations send
back large blocks of messages to the master, a traffic
jam may occur and thus effects the performance. In
such situation, the waiting time (W) (i.e., the
propagation time of both the sending results and the
new job) will be lengthened. Additionally, the
computing power of slave is wasted in the period of
W in the master/slave configuration.

To take advantages of both “interleaved” and
““master-slave”’ schemes we propose a hybrid
scheme. There are two phases in our hybrid scheme
where the first phase attempts to reduce the waiting
time (W) in the master-slave scheme by a modified
interleaved scheme, and the second phase attemnpts
to dynamically adjust load imbalances incurred in
simple “interleaved” scheme. Initially, the
consecutive scanlines of image are cut into two parts
K1 (0..C-1) and K2 (C.. L-1) at scanline, C, where L
is the number of scanlines. In the first phase, done
by the master, the modified “interleaved®’ scheme
takes the current load of each workstation into
account before assigning K1 among the
workstations in an interleaved fashion. For example,
there are three slave workstations in use and their
relative speeds at initial stage are: wl=1,w2=2,
w3=1. We will logically consider this configuration
as: wl=1l, w2l=1,w3=1,w22=1, where w2 is
logically considered as two different workstations ,
(w21, w22), with the same speed. Then, K1 part (0..
C-1) is logically assigned among these four
workstations (w1, w21, w3, w22) in an interleaved
fashion. After this assignment, the first phase
performs the same operations as the original
“interleaved” scheme does. In the second phase,
the master will be responsible to dynamically
schedule K2 part among the slaves. As time goes by,
the remaining scanlines in each workstation
becomes less, and after a threshold point (ie.,
entering the second phase), an exira workload
request, contained in the resulting message (i.e.,
scanline plus load request), is sent to the master.
Under this arrangement, the slave can be processing
the remaining scanlines while the new job (one of
K2) is sent from the master simultaneously. In our
implementation, the C is set to 400 and the
threshold is set to 1 (i.e., one scanline is left). The
communication mechanism for this ““hybrid ©
scheme is described in Figure 4.

204



Time

1

SatCRCRCR {

& B'bfftera threshold
W here Jis new job from master,
R:sending results, and C:time forcomputation

Figure 4. The communication mechanism for the
hybrid scheme

M aster

3. Global Distributed Control

In this section, we present a load balancing method
called “GDC” (Global Distributed Control). There
are two phases in the GDC scheme. In the first
phase, similar to the interleaved scheme, it uses the
equal partition to assign scanline I to N workstations
by I mod N. The master is responsible to collect the
results which are sent from slaves and display the
image. But the master process does not attempt to
dynamically adjust imbalance load. The
communication mechanism for this “GDC” scheme
in the first phase is similar to the interleaved that is
shown in Figure 2.

When a slave finishes the current scanline, it will
send the rendered results back to the master without
waiting for the arrival of the new job from the
master. Because the computing power of
workstations may be different and the load may be
imbalance, the slaves in the high computing power
or low load workstation will finish their job faster
than those in the low computing power or heavy
load workstation. In such situation, the GDC
scheme will be able to dynamically adjust the load
balancing by the second phase procedure. The
second phase of GDC is as follows.

1. N processors are connected by using a ring
structure as shown in Figure 5.

N
O—-O—O= =+ O

Pn Pm

iFi

gure 5. The ring structure of N processors

2. During rendering, when a processor P,

becomes idle, it sends a message to its next
processor P to unfinished request scanlines.

However, there are several cases (o be
considered.

Case1:1If P, isnotidle, P, willsend an

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.
extrataskio P, .

Case 2 : If the processor P ; has finished its
pre-assigned tasks (ie., in the first phase),
then P, willuseP,,, Pi_y» Pi g+ -
P, sequence to search an unvisited processor
that is not idle. If P, finds an unvisited
process P thatisnotidle, P, process will
keep its integer task identifier. If P, wants to
request a new job, P, will skip the processes
between P, and P and directly ask anew
jobfrom P _ .

Case3:If P, "snextprocessor P; wasidle,
but P ; has found a processor P, that is not
idle. Hence, the processor P, sends a
message to the processor P ; to ask a new job,
P ; will acknowledge P, that P ; canask

a new job from P _ instead. Thus, the
processor P, does not have to waste time to
repeat the same process.

3. If p, has visited itself, then the processor
P, will terminate.

GDC method is a kind of decentralized parallel
computation environment. In the traditional method
“magster-slave”, the master process is the bottleneck
and each slave must wait for the arrival of new job
from the master, However, the master in GDC
scheme does not dynamically adjust load balancing.
Each slave must do real computation and control its
own load Dbalancing. The commiunication
mechanisim is shown in Figure 6.

Time

M aster

.o ////A

/
L7
L/

Slave 2 /YR —~ R/’ J / //\
Stove s Y/ LAY A. v/ /4
® e | o c cr

T 1 1
1:Finish past of equaipastition R :send resulte  C :perform ¢omputation

J:new job from another slave

Figure 6. The communication mechanism of the
GDC scheme

Network in PVM and fault tolerance

Network computing may consisi of heterogeneous
environment. In particular, PVM communication is
based on TCP, UDP, and Unix-domain sockeis.
There are three connections to consider : pvind-
pvmd, pvind and task, and tasks-tasks. In pvmd-
pvind mode, PVM daemons communicate with

205



Proceedings of International Conference
on Networking and Muitimedia

another pvid through UDP sockeis. As we know,
UDP is an unreliable delivery service which can lose,
duplicate or reorder packets. However, it is a wasie
to lose a message in a virtual machine especially in
GDC’s environment. Because ring’s construction is
so weak that any lost message may incur a deadlock.
Thus, it is important to incorporate the fault
tolerance into the GDC’s environment,

The process of fault tolerance is described as
follows,

1. - When a processor P, finishes its job and is
idle. Then P, will visit P to ask for a

new scanline to render. There are two cases to
consider. One is when P .,  is busy that can

not response to the request of P, . The other is
when P, is crashed.

i+l

2. In order to distinguish whether the processor
P, 1is crashed or busy, we must set the
timeout. If P,,, does not response the request

more than three times,
that P ,,, is crashed .

we can regard

3. If p,,, iscrashed, P, will send a message

to the master and ask master for checking the
global scanline table. Then master will notify
P totake over the incomplete tasks that were

owned by the process P ,,, . The information
includes how many scanlines P,  has not
finished and the processor identifier of P, ’s
next processor. At present, P, can replace
P, to conmect with theP,, , ’s next

processor. So it looks like a satellite to protect
the planet when the planet cannot normally
operate.

crashed

Figure 7. The fault tolerance mechanism of GDC

For this fault tolerance scheme, the crashed process
can be successfully replaced by the preceding
processor without paying too much overhead. The
other processors can continue their jobs without
spending the extra time to modify their
environment’s parameters.

4. Experimental Protocol
In order to evaluate the performance and understand
the behavior of many applications on network

computing environment systems, it is necessary to
establish a common experimental protocol. In this
protocol it should describe what is the system
configuration, what application is run, what kinds of
daia types and volume are used, what parameters to
be used, how to measure the performance, how
change in parameiers affecting the performance of
the application, and how to make improvement. The
purpose of this section is to design and apply the
experimental  to evaluate the performance of
different algorithms on the network computing
environments. In particular, it provides an explicit
protocol to be followed in the general application.

4.1 Protocol

The performance evaluation of network computing
and its applications for some parameters and
algorithms have been scatterly reported in the
literature [4-16, 20-24]. In [11], Cap and Strumpen
presented the method of heterogeneous partitioning
and compared it with the method of homogeneous
partitioning. Strumpen and Casavant [9] considered
the contention for LAN-based networks and latency
for WAN-based networks. In this section, the
parameters used in our protocol evaluate the
performance of four load balancing schemes are
described as follows.

Environment configuration
Problem size

Data type

Number of workstations
Algorithm selection

Nk W=

The main performance factor to be measured is
speedup. The speedup is defined as the sequential
execution time divided by the parallel execution
time. The speedup currently is measured in the
wall-clock time. We discuss each parameter in the
following paragraphs.

Environment configuration

Network computing may consist of honogeneons <=
heterogeneous environment. For homogeneous
environment where each computing node is of the
same machine type, the measurement of some
performance such as speedup tells what speed can be
gained or saturated, if more workstations are added
to the computing environment. However, for the
heterogeneous environment where the computing
power of each machine might vary significantly, it is
hard to tell what workstation contributes how much
computation to the speedup. In order to get a
uniform measurement of performance for speed-up
comparison, the computing power of each machine
type should be measured first.

Parallel Computing Platform
A number of programming environments exist that

206



make distributed computing available to the
application programmer. Among them are PVM, P4,
Parform, Express, ...etc. Here, the public domain
PVM is used as the parallel computing platform.

Problem Size

The sysiem performance for a particular application
will change for different problem size. The ideal
case for the speedup versus the problem size is
expected to be a linear relationship. Due to
communication overhead and others factors, the
relation may not be linear at both ends of the curve.

Data Type

While an unsophisticated parallel schemes give
good performance on a scene with even distribution,
it may give a poor performance when load
distribution is highly non-uniform. For example, in
graphics render problem, the performance of
algorithms may have different behavior under
different image data type, thus it needs to be taken
into consideration.

Algorithm Selection and Implementation

There may exist several algorithms for each
application problem. Some algorithins are
inherenily sequential and not parallelizable,

Furthermore, some algorithms may have efficient

speedup in dedicated multiprocessor system, such as

Intel Hypercube, but cannot have the same

performance on workstation clusters. There are

several issues to consider during the implementation
of the algorithms:

1.  data partition: static, dynamic or fine-grained
partition in order to reduce the
communication overhead.

2.  communication model: master-slave or
single-program-multiple-data (SPMD) model
depending on the selected algorithm,

3. load balancing: static or dynamic load
balancing for purpose of distributing evenly
the tasks onto the multi-user machines with
different load.

Number of Workstations

The speedup usually increases in accordance with
the number of workstations. It is an important
parameter t0 show how much speedup can be
improved by adding processors. But the speedup is
not necessarily increasing without limitation by
adding more processors as indicated in [8]. In
heterogeneous environment, the workstation
number is replaced by normalized computing node
number by measuring the relative computing power
of each composing node.

4.2 Experiments
Currently, we conceniraic on some of many
parameters proposed in the experimental protocol to

Joint Conference of 1996 international Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

illustrate how the performance characterization can
be done. For each experiment the . fifty data
measurements are taken. The outliers are removed,
before the mean and variance is calculated. The
parameters will be set based on the following.

1. Environments configuration
The workstations used for the experiments
includes twelve HP 715/33, one Sun Sparc 2,
and one Sun Sparc 20. The computing power
for each type of workstation is measured by the
data to be used in the experiment. The results
are listed in Table 1.

Table 1. The relative power of different workstations

Host Max. Min. Mean Relative
execution execution power
time time
HP  101secs 96secs  97.86 1
715/33 secs
Sparc 2 225secs 218secs 22142 0442
secs
Sparc - 110secs - 103 secs 1053  0.929
10 secs
Sparc  96secs 7lsecs  72.65  1.347
20 Secs

We use the same program of sequential version to
test under the different workstations. And using
the same image data as the testing input file. Thus,
we define relative power of HP as one and compare
it with the other workstation’s mean execution time.
As one can expect, Sparc 20 got the highest relative
power and Sparc 2 the lowest relative power.

2. Data type and problem size
To perform our experiments, we used a set of
standard scenes from Eric. Haines‘s database,
called SPD[15], which can be found in the
public domain. The geometric characteristics of
three test scenes- gears, balls, and tetrahedral
pyramid that are shown in Figure 8. The
complexity of these test scene data is shown in
Table 2. However, we find that the objects in
these scenes are rather uniformly distributed,
which tends to minimize potential load
balancing problem. Hence, we adjust the view
points of a test scene to produce more biased
object distributions as shown in Figure 9. This
change will result in different variance of pixel
computaiions over this test scene. The large
variance suggesis that one scene should be more
difficult for which to achieve good load
balancing. Therefore, to evaluate the sounndness
of a load balancing scheme, we control the view
points to allow different variance of pixel
computations. Under the same testing
environment, we define the time complexity of

207



Proceedings of International Conference
on Networking and Multimedia

3.

balls scene as one. Therefore, when we- use
gears to be the testing data, it needs more time
to get the rendering resuit,

Table 3. The complexity of three test scene image

gears balls tetrahedra
I pyramid
Time 11.15 1 0.455
Complexity
Size of 1152 91 16
Structure rectangles spheres triangles

Figure 8. The balance rendered image data

Figure 9. The imbalance rendered e ta

The number of slaves

Since the UNIX based workstation uses time
sharing for it tasks. The more slaves are
running in the system, the larger portion of
CPU resources is allocated to the slaves. We
would to like to know how the number of slaves
affects the speedup in one workstation.

No. of workstations: up to fourteen
workstations. The HP 715/33 workstation is
added one by one to twelve. Then, one Sun
sparc 2 is added. Finally, one Sun sparc20 is
added to make it fourteen.

4.3 Results and Discussions

Some results are shown in Figures 10-12. We
calculate the speedup and compare it with the
linear speedup. The heavy and balance testing
scene can achieve the high speedup because it’s
easy to achieve the load balancing. But the
imbalance and light testing scene got the worst
speedup.

problem size : normal
data type : balance

relative power
] ] L] ) 5 B £ I} 3 ) ) ] ] ) k) ']

15

problem size : normal
data type : imbalance

relative power
() 3, ) (] ] ) (]

11 13 15

Figure 10. The experimental results for the ball
image data under balance and imbalance

problem size : heavy

speedup data type : balance
16 ¢ ———Lincar e ———"
14 - s Master-slave + o~ -
12 b """"" Intesteave ,~

10 | i

8 F ¢

6| =t

4 | +“+¢

+ 4

2 :6 relative power
0 h A ] 5 [} ] ) ) ] ] ] ) ] ) ] ] ]

11 13 15

problem size : heavy
data type : imbalance

speedup
15 r w=={===Lincar +,+
Master-slave d
10 &
5 =
";i" relative power
0 - 4 8 8 3 ] ) 8 L] ] ] 8 8 8 ] ] ]

11 13 15

208

Figure 11. The experimental results for the gear
image data under balance and imbalance



problem size : light

) 631”6‘1"1’ data type : balance
+
14 A
=3 /+
12 +,+
10 b+ A
g I
6 I
4 F ot
2 :,d.* relative power
0 (] 3 A, ] 5 8, ] ) ] ] ) ] ] ) L] L]

1 3 5 7 9 11 13 15

problem size : light
data type : imbalance

selative power
() (] ) () U]

1 3 5 7 9 11 13 15

] ) I} [) I} () ] () ) ) (]

Figure 12. The experimental results for the
tetrahedral pyramid image data under balance and
imbalance

From the experimental protocol, we have the

following observations.

1. The GDC algorithm gives the best
performance for all types of data.

2. The hybrid scheme takes the advantages of
both interleaved and master-slave schemes, it
gives the second performance.

3. The interleaved algorithm gives the worst
performance for all types of data.

The static load scheme cannot adapt to the
unequal computation power of workstation that
causes the worst performance of the interleaved
algorithin.

4. The higher the complexity of image data, the
better the performance in speedup.

5. The performance deteriorates under imbalance
image data.

As expected the performance for the

imbalance image is worse than for the balance

image. They tend to saturate earlier.

6. The lower the complexity of image data is, the
earlier the saturation occurs.

7. We will get the low speedup when we adopt
light and imbalance scene as the testing data.

We further the study by doing the experiment for the
number of slaves versus the execution time. The

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

result is shown in Figure 13. When the number of
slaves is increased, the execution time is decreased.
But it is saturated very soon. That means to spawn a
couple of slaves in the workstation will speed up the
execution. Because the system will allocate the more
cpu resources than a single slave in the workstation,

Time Islave&time l
200 ¢
ISOKN_
100 |-
50 f

No of slaves
0 g0 B0 8 8 8 B 8 8 6 0 6 0 8 H § B 8 0 O B 4 §

1 35 7 911131517 1921 23

Figure 13. The execution times in second versus the
number of slaves spawned in one workstation,

Fault tolerance

To test the fault tolerance ability, 9 workstations
are added in the PVM’s environment. After the
master process gathered 300 scanlines from the
slave processes, two workstations(i.e. two Sparc 20)
are deleted from PVM console. In the master
process, we adopted the blocking receiving within
timeout. So when the given hosts were deleted, the
master process can still receive the rendering result
from other slave process. The ball image is used as
the testing scene. The results in Table 3 show that
the rendering process is still running afier two
workstations are deleted, thus the fault tolerance
ability is proved.

Table 3. The performance of fauli tolerance after
deleting two Sparc 20 from PVM’s console

Sparc |Sparc [Sparc [Total [Performance
2 10 {20 relative
power

No off 3 2 4 - -
'workstations
Relative | 0.77 1 1.96 - -
ower
Before {3%0.77| 2*1 |4%1.96| 12.15 | 14 secs
deleting
0OSts
After 3%0.77) 2*%1 |2¥%1.96) 8.23 | 19 secs
deleting
hosts
[Degradation| ¢ 0 | 392 | 393 |42.85 %

From the results shows that the experimental
protocol proved to be effective in evaluating the
performance and characieristics of different
algorithms. The proposed GDC performs the best
and has faul tolerance ability.

5. Conclusions

209



Proceedings of International Conference
on Networking and Multimedia

We have presented a new dynamic load
balancing strategy, called global distributed control.
We have compared the algorithm to a couple of
traditional load balancing schemes. In order to
characterize the performance of different algorithms,
we designed an experimental protocol based on the
parameters of problem size, data type, number of
workstation, and environment configuration.
Results show that the global distributed conirol
gives the best performance for all type of data, the
hybrid approach gives the second, the master-slave
is the third, and the interleaved gives the worst
performance. The global distributed control not onty
has the ability o dynamically adjust the load, but
also has the fault tolerance ability.

Acknowledgment
This research was supported in part by the National
Science Council of Taiwan, R.O.C., under contracts
NSC-86-2213-B-218-011 and NSC-86-2213-E-110-
028.

References

1. Acceleration Techniques,”’ appeared in ~~An
Introduction to Ray Tracing,’ edited by A.S.
Glassner, Academic Press, pp. 201-262, 1989.

2, TL. kay and J.T. kajiya, “Ray Tracing
Complexity Scenes,” ACM SIGRAPH, 20(4):
269-278, Aug. 1986.

3. V. S. Sunderam, “PVM: A Framework for
Parallel J. Arvo and D. Kirk, A Survey of
Ray Tracing Distributed Computing,”
Concurrency: Practice and Experience, Vol. 2
No. 4, pp. 315-339, Dec. 1990.

4. S. Ahuja, N. Carriero. and D. Gelernter,
“Linda and Friends,” IEEE Computer, Vol. 19,
NO. 8, Aug. 1986.

5. 1. Flower, A. Kolawa, “The Express
Programming Environment,” Parasoft
Corporation Report, July 1990.

6. C. Giertsen, and J. Petersen, "Parallel Volume
Rendering on a Network of Workstations,"
IEEE Computer Graphics and Applications,
Nov. 93, pp. 16-23.

7. C.H. Capand V. Strumpen, "Efficient Parallel
Computing in Distributed Workstation
Environments," Parallel Computing 19 (1993)
1221-1234.

8. White, A. Alund, and V. S. Sunderam,
"Performance of the NAS Parailel Benchmarks
on PVM Based Networks," in
hitp://www.netlib.org/pvm3.

9. V. Sirumpen and T. L. Casavant, “Exploiting
Communicaiion Latency Hiding for Parallel
Network Compuiing: Model and Analysis,”
IEEE, 1994, pp. 622-627.

10. W. LEFER, “An Efficient Parallel Ray

210

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Tracing Scheme for Distributed Memory
Parallel Computers,” Parallel Rendering Symp.
1993, San Jose, pp 77-80.

S. Whitman, A Task Adapiive Parallel
Graphics Renderer,” Parallel Rendering Symp.
1993, San Jose, pp 27-34.

U. Neuman, ~Communication Costs for
Parallel Volume-Rendering Algorithms,"

H. Kobayashi, S. Nishimura, H. kubota, T.
Nakamura, and Y. Shigei, -~ Load Balancing
Strategies for a Parallel Ray Tracing System
based on Constant Subdivision,” Visual
Computer, 4(4): 197-209, Oct. 1990.

P. Dew, N. Holliman, D. Morris, and A. de.
Pennington, ~“Techniques for Rendering Solid
Objects on a Processor Farm,” in C. Askew,
editor, Proceedings of the Ninth Occam User
Group Conference, pp. 153-168, Southampton,
1988.

E. Haines, " A Proposal for Standard Graphics
Environment,*” IEEE Computer Graphics and
Applications, 7(11): 3-5, Nov 1987.

M. Potmesil and E.M. Hoffert, ~"A Parallel
Image Computer with Distributed Frame
Buffer: System Architecture and
Programming,’ in: Burographics 89, North
Holland, Hamburg, 1989,

M.B. Carter and K. A. Teague, ~The
Hypercube Ray Tracer,” in Proc. the 5th
Distributed memory Computing Conference,
1990.

F.C. Crow, G. Demos, J. Hardy, J. McLaughlin
and K. Sims, 3D Image Synthesis on the
Connection Machine,”” in P.M. dew, TR
Heywood, and R.A. Earnshaw, editors, Parallel
Processing for Computer Vision and Display,
Chapter 18, pp. 254-269, Addison Wesley,
1988.

M.B. Carter and K. A. Teague, ~The
Hypercube Ray Tracer,” in Proc. the 5th
Distributed memory Computing Conference,
1990.

D. May, “Toward general purpose parallel
computers,”” MIT Press, Cambridge, 1989. .
J. Packer, ** Exploiting Concurrency: a Ray
Tracing Example,” in: the transputer
application notebook, Inmos, 1989.

S. Whitman, “Dynamic Load Balancing for
Parallel Polygon Rendering,” [EEE
Computer Graphics and Applications, July, 94,
P41 ~48.

H. Nakanishi, V. Rego, and V. Sunderam, “On
the Bffectiveness of  Superconcuirent
Computations on Heterogeneous Networks,” in
http://www.netlib.org/pvm3.

B. K. Schmidi and V. S. Sunderam,
“Empirical Analysis of Overheads in Cluster
Environments,” in
hitp://www.netlib.org/pvm3.



