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Abstract

Average-rate options are sophisticated ezotic deriva-
tives whose payoff depends on the average value of
the underlying asset. Pricing the geometric average-
rate options by the lattice model and the combina-
torial approach is presented in this paper. The lat-
tice model can also price arithmetic average interest
rate options under the Hull-White model. For the
harder arithmetic average-rate equity option pricing,
a sophisticated method for constructing the lattice is
proposed. Comprehensive experimental results show
that this novel approach offers more accurate results
than ezisting methods.

Keywords: Asian-option, lattice, pricing, deriva-
tives, algorithm.

1 Introduction

Average-rate options are options whose payoff de-
pends on the average value of the underlying asset.
These options are strongly path-dependent, which in
turn makes the valuation problem difficult. In the
over-the-counter market, many option contracts are
written on such average options. An efficient and
correct pricing approach is therefore needed and im-
portant.

If the value of the underlying asset follows the log-
normal distribution, the geometric average of the as-
set value is also log-normally distributed. An an-
alytic formula for valuing European-style geometric
average-rate options is provided by Kemna and Vorst
[7). In our paper, the O(n*) algorithm the lattice

method of Cho and Lee [1] is investigated for their

convergence and the characteristics of early exercise.
A much faster O(n®) combinatorial approach is then
introduced for European-style options. As argued
in [9], this type of algorithm is useful for pricing
European-style geometric average-rate options with
non-standard payoff functions.
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Arithmetic average-rate interest rate options un-

 der normal interest rate models such as the Vasieck

model [11] or the Hull-White model [6] can be eas-
ily solved by modifying the previous lattice method.
Experimental results will be used to illustrate the
convergence and early exercise behaviors.

When the underlying asset value follows the log-
normal distribution, pricing arithmetic average-rate
options is a well-known hard problem. To solve this
problem, a sophisticated trinomial lattice method
is proposed. Experimental data show good perfor-
mance of the proposed method and superior conver-
gence than existing methods.

2 Pricing Geometric Average-
Rate Options

Assume the maturity equals the averaging periods.
The geometric average G(n) is defined as

G(n) = [S(0)S(1)S(2) ... 5(n — 1)§(n)]7HT

where 5(i) denotes the underlying asset value at time
i and n is the number of periods. The payoff at
maturity for the geometric average-rate call option
is

max(G(n) - X,0)

where X is the strike price. The payoff at time ¢ if
the option holder exercises the option is defined as
Gli) - X.

This section presents a lattice method and a com-
binatorial method for pricing geometric average-rate
options. The combinatorial method is much faster
and-uses a novel generating function. The lattice
method, on the other hand, can price American-style
options.

2.1  The Lattice Method

Define u and d as the magnitudes for the upward and
downward movements, N(7,j) as the node on the



lattice for which ¢ is the time and j is the number of
down movements needed to reach this node. Under
the CRR model, ud = 1. The maximum and the
minimum geometric sums for node N (3, j) are

Nunax(i,4) = §(0)+ o H1I/2=1G+1)
and
Nin(i, /) = §(0) 1y~ +D/ 2= i=+1)

respectively. The set of possible geometric sums at
N(3,7), is

Griajy ={A: A=80)"uf k= :Z(ZT+£, (1)

—i(i +1) —i(i +1) i(i+1)

5 T
Nmin(i,j) S A S Nm&x(i7j)}‘

Node N(i,7) will keep these |Gn; ;| (=2;(i — j))
states. )
The option value for the state S(0)"'u* at N (i, §)

+2,

is
D = (Py X V(i) (S(0)+1uh+i=20+1y 4
Py X Viv(i41,541) (S(0) T 1ubti=2i-1)) x B (2)

where V,,(S) represents the option value for state
S at node n, B is the discount factor for that pe-
riod, and P, and P, are the.up and down proba-
bilities, respectively. This backward induction im-
plies an O(n?) algorithm because the total number
of states of all the nodes can be seen to be O(n4)
. For American-style calls, say, the option value for
that state becomes

max( VS#+1yF — X, D)

2.2 The Combinatorial Method

European-style geometric average-rate options can
be priced by a much faster algorithm. Since the prop-
erty P, = Py = 0.5 is useful here, the Jarrow-Rudd
binomial model is employed instead.

The number of paths of length n having the same
geometric average is precisely the number of (un-
ordered) partitions of some integer into unequal parts
none of which exceeds n. This claim can be verified
as follows. Let g(m) denote the number of such a par-
tition of integer m. Any legitimate partition of m,
say A = (21,%2,...,24), then satisfies 3", z; = m,
where we impose n > z; > 3 > --- > 0 for con-
venience. Now, interpret A as the path of length n
that makes the ¢th up move at time n — z;. Each
up move at step n — z; contributes z; to the sum
m. This path has a terminal geometric average of
S5(0)MY "+ where

M= umdn(n+1)/2—m
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in which the ith up move contributes u*: to the u™
term. It can be shown that,

n(n41)/2
(1+2)(1+2”)1+2% - 1+2") =1+ >0 gl

i=0

The probability for each path is 2=" in this model.
So the option value is the present value of

n(n+1)/2
> 27"q(i) max(S(0)M T — X,0)
i=0

for the call. Since the ¢(i) can be computed in O(n?)
time, pricing European-style options can be solved in
time proportional to ns.

2.3 Experimental Data

Assume the underlying asset value is 100, the strike
price is equal to 100, the volatility is 20%, the risk-
free rate is 10%, and the time from the issuing day
to maturity is 1 year. The analytical value then is
6.769955. The experimental data are in Figure 1.
Both approaches converge quickly for European-style
options. Figure 2 compares the performance of these
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Figure 1: CONVERGENCE. The z-axis is the number
of periods, and the y-axis is the price.

two methods. Clearly, the combinatorial method is
much more efficient than the lattice approach.

Pricing American-style options using the lattice
method is illustrated in Figure 3. The option value
converges monotonically for n large enough. This
should be contrasted the case of standard American-
style options [10]. The early exercise behavior is il-
lustrated in Figure 4. It implies the call may not
be exercised merely because the underlying price is
high.
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Figure 2: COMPUTATION TIME. The z-axis is the
number of periods, and the y-axis is the computation
time in seconds.
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Figure 3: AMERICAN OPTION. The z-axis is the num-
ber of periods, and the y-axis is the option value.

3 Pricing Arithmetic Average-
Rate Interest Rate Options

With the lattice method described above, we can
price arithmetic average-rate interest rate options
under the Hull-White model [5]. This is because the
difference of the short rate between adjacent nodes
at the same period is equal. In Figure 5, the differ-
ence of the short rate between adjacent nodes at the
same time, AR, are all equal to 1.73. So the possi-
ble arithmetic sums for each node at time ¢ must be
from the set

AiE

{S + kAR, =G < | < {EHY

where S is the sum of the short rates from time 0
to time i. For example, S = 9.02% for node C in
Figure 5. »

The geometric average-rate options can be priced
by modifying our lattice algorithm for their equity
counterpart. The time complexity is O(n*) and
memory usage is O(n®). In Figure 6, the parame-
ters are: a = 0.1, 0 = 0.01, the t-year continuous
compounded zero coupon rate is 0.08 — 0.05¢70-18¢,
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Figure 4: EARLY EXERCISE BEHAVIORS." The trian-
gle denotes the lattice. The darker the point is, the more
likely the option will be exercised there.

Node A B C D E F G H I
(%) 382 693 520 347 971 798 625 452 279
Pu 0.167 0122 0.167 0222 0.887 0.122 0.167 0222 0.087
Pm 0.666 0.656 0.666 0.656 0.026 0.656 0.666 0.656 0.026
0.167 0.167  0.122 0.122 0.087 0222 0.167 0.122 0.887

Pd

Figure 5: HULL-WHITE INTEREST RATE LATTICE
MODEL.

and the time to maturity is one year. (See [5] for the

definitions of these terms.) The payoff at maturity
for this call option is defined as

100 x max(A(n) — X,0)

where X is the strike value, and A(%) is the arithmetic
average of the short rate time 0 to time 2. The payoff
at time j if the option holder exercises the option is
100 x (A7) — X).

The convergence is monotonic but slow. The com-
putation time also grows dramatically when n is
large. It took almost nine minutes on a Pentinm-Pro
processor given a 150-period lattice. The early exer-

- cise behavior for the arithmetic average-rate interest-

rate option is shown in Figure 7, which is different
from Figure 4.
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Figure 6:. EUROPEAN AND AMERICAN INTEREST
RATE AVERAGE-RATE OPTIONS UNDER THE HULL-
WHITE MODEL.

Figure 7: THE EARLY EXERCISE BEHAVIOR. The
triangle denotes the lattice. The darker the point is, the
more likely the option will be exercised there.

4 Pricing Arithmetic Average-
Rate Options

Pricing arithmetic average-rate options when the un-
derlying asset value follows the log-normal distribu-
tion is a well-known hard problem. There are at least
two problems with most existing approaches. One is
that they may not be used for pricing American-style
options, and the other is that most approaches fail
to get acceptable results under some cases [2].

The novel lattice method by Hull and White [4] is
one approach that can be used to solve American-
style options. But it seems that this approach fails
on some data. In Figure 8 we replicate the algorithm
that Hull described in [3].! The initial stock price is
50, the risk-free rate is 10% per year, the volatility is
0.3, and the life of the option is 0.5 year. We found
that the series increases monotonically, but it’s not
clear if it converges when n is large.

The original Hull and White’s algorithm in [4] us-
ing a different interpolation scheme ( The parameter
h, following the suggestions in [4], is defined as 0.005

1The interpolated values between the maximum and the
minimum arithmetic sums at each node are equally spaced.
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Figure 8: HULL AND WHITE’S METHOD USING LIN-
EAR INTERPOLATION. The interval between Low Lv.
and High Lv. is the 95% confidential interval that we get
from [1]. The z-axis represents the number of periods of
the lattice model.

in our experiments) also seems to perform poorly at
some extreme cases. See Figure 9. It seems that
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Figure 9: HuLL AND WHITE’S METHOD USING
EXPONENTIAL INTERPOLATION SCHEMES Parameters
are the same as in Figure 8.

the series will converge when n becomes large, but
the value is out of the range of the 95% confidential
interval.

4.1 A New Lattice Model

Consider a lattice with the following property: the
underlying asset value for each node is a positive in-
teger.? Since the natural numbers are closed under
addition, the possible arithmetic sums for any node
N(¢,7) must also be positive integers. Assume the
maximum arithmetic sum from time O to ¢ for node
N(i,7) i8 Npax(%,j) and the minimum arithmetic

2The initial value of the underlying assets is set to be an
integer for ease of discussion. This algorithm still works if this
is not the case.



sum is Npin (%, 7). The set of all possible arithmetic
sums at N (i, ) is

Neum(3,5) = {4 : A € ¥, Niin(4, ) < A < Ninax(i,5) }-

Obviously, | Nsum (4, )} is a finite number, which im-
plies that we can solve the problem efficiently if there
is a way to build the lattice such that the growth rate
of |Ngum(%,7)| is acceptable.

Out algorithm is described here. The lattice
is trinomial. Redefine N(¢,j) as the node that
has the j-th biggest value at time i. The sym-
bols u(s),v(s),w(s) denote the up, flat ,and down
branches from node s,

w(N(i, ) = N(@E+1,j)
v(N(i,§)) = N(@+1,j+1)
w(N(i,§)) = N@E+1,5+2)

Define At = T'//n. V(N is the underlying asset value
at node N, M(N, At) and Var(N, At) are the mean
and variance at the next time if the current state is
N, respectively, and P,(N), Pn(N), P4#(N) denote
the up, flat, and down probabilities from node N.
See Figure 10. Since we will calibrate the first and
second moments of the underlying asset value, the
variables at node N satisfy the following equations:

S+u+v

Figure 10: A NEW TRINOMIAL MODEL

M(N, &t) = V(u(N)) x Pu(N) + V(¢(N)) x
Prn(N) + V(w(N)) x Pa(N),

©)

Var(N, &t) = (V(u(N)) — M(N, 5t))* x Pu(N)  (4)
+HV((N)) = M(N, At))? % Pm(N)
+(V(w(N)) = M(N, At))” x Pa(N),
1= P,(N)+ Pnp(N)+ Py(N)

Note that V(N) — V(u(N)) and V(N) — V(w(N))
are integers. Impose V(N) = V(¢(IV)) for the flat
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branch. Since P,(N), Pn(N), and P4{IV) are prob-
abilities, the following inequalities must hold,

OSPu(N)7Pm(N)7Pd(N) Sl

So the problem is, how to select proper up and down
displacements to fit the conditions above? This can
be done by specifying

[VVar] (5)
for both the up and the down displacement. We

finally impose the condition that the tree combines.

For example, assume the initial node is A in Fig-
ure 10. Then u and d can be solved by applying (5)
and imposing v = d. Note that u and d here are ad-
ditive instead of multiplicative. For the nodes whose
underlying asset value is larger then S, like node B,
the equation e = u must hold to make the C — G
branch flat. The value of v can then be determined
by applying (5) again .> For the nodes whose un-
derlying asset value is smaller than S, similar steps
must be taken.

A problem with this method is that the magni-
tudes of the upward and downward displacements
may not be natural numbers when the variance of
the underlying asset is small. This is because no so-
lution can satisfy all the constraints then. One more
idea is needed. Define A; as

2 1 11

AT TR

if j is a positive integer, then A; is closed under
addition. So the problem can be solved by setting
the upward displacement for node N, call it u, and
the downward displacement, call it dy. In such a way

AjE{...,—

‘that if N, uy, dy € A;, then all possible arithmetic

sums under the algorithm will also be in A;.

4.2 Reducing the Memory Require-
ments

In order to save computer memory, the lattice should
be divided into partitions. Refer to Figure 11 in the
following. Assume nodes A and B are on line L3.
Lines L1 and L2 are composed of the nodes that can
be reached by taking the up-moves from A and B,
respectively. Define Sa(N) to be the function that
returns the smallest integer j such that uy,dy € Ay,
where N is a node. Let F(N) = max(0,Sa(N)).
Assume for each node a,

V(a) < V(B) = F(a) =2
V(B)<V(a) <V(4)= Fla)=1
V(a) > V(4) = Sa(a) =0

3We need modify the up and down displacements slightly
if one of the probabilities becomes negative.



Table 1: Compare the Required working Space.

Before Reduction

After Reduction

Periods 100 160

100 135 150 160

Required Space | 16,106,074 | 118,524,029

2,969,062

9,065,895 | 14,030,903 | 18,280,584

“Before Reducing” means the technique described in this section is not applied, whereas “After Reducing”
means the technique is used. The required space denote the magnitude of array. (Eight bytes are needed to

store an element in a array for C programs.)

Natural
Number

Figure 11: THE CLOSURE PROPERTY.

Then all possible arithmetic sums for the nodes in the
lower part of the lattice are closed in A,, all possible
arithmetic sums for the nodes in the central part of
the lattice are closed in A, and all possible arith-
metic sums for the rest of the nodes are closed for
natural number. Applying this technique can help
save the working space dramatically. =~ A numeri-
cal calculation shows why this is necessary. Assume
the value of the underlying asset is 100, the strike
price is also 100, the volatility is 0.2, the risk-free
rate is 0.1, and the time to the maturity is one year.
The required space computed by the programs are
listed in Table 1. The saving is significant. Notice
that the required working space still grows dramati-
cally when the number of periods becomes large. So
this algorithm may be inappropriate for cases that
convergence is slow. Finally, we need a recurrence
formula similar to (2) to compute the option value
for each state.

4.3 Experimental Results

First, we price a standard option with our method to
check if it works in the simplest case. Figure 12 shows
that the performance is excellent. The convergence is
quick, implying that the lattice model approximates
the distribution of the underlying asset value well.
We next test the settings identical to the ones
in Figure 8 and 9 (see Figure 13). It can be seen
that our new method converges extremely well. This
method does not over-price the options much, which
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Figure 12: NEW LATTICE FOR STANDARD CALL
OPTIONS. The initial stock value is 100, the strike
price is equal to 100, the volatility is 0.2, the risk-free
rate is 0.06, and the time to maturity is one year. The
benchmark value derived from the Black-Scholes formula
is 10.989547.

0.335
0.33 -

0325 :
0.32 . ; — Lattice

oo I../M.--.--.a.........-.n.u :;?;Iii
0.31 / .

0.305 - !
03 —— ‘
20 35 50 65 80 95 110 125 140 155 170

Figure 13: OUR LATTICE METHOD FOR ARITH-
METIC AVERAGE-RATE OPTIONS. The assumptions
are the same as Figure 8.



Table 2: The Value of Arithmetic Average-Rate Options Derivated by Various Algorithms.

Maturity Exercise Exercise Exercise Exercise Exercise
(Years) | Algorithm Price=40 Price=45 Price=50 Price=55 Price=60
0.5 H-W 10.755 6.363 3.012 1.108 0.317

M.C. 10.759 6.359 2.998 1.112 0.324
S.D. 0.003 0.005 0.007 0.005 0.003
A.(30) 10.754 6.356 2.997 1.104 0.317*
Levy 10.765 6.386 3.024 1.105 0.313
1.0 H-w 11.545 7.616 4.522 2.420 1.176
M.C. 11.544 7.606 4.515 2.401 1.185
S.D. 0.006 0.008 0.01 0.009 0.007
A.(30) 11.547 7.616 4.517 2.412 1.170*
Levy 11.576 7.662 4.557 2.431 1.172
1.5 H-W 12.285 8.670 5.743 3.585 2.124
M.C. 12.289 8.671 5.734 3.577 2.135
S.D. 0.008 0.01 0.012 0.012 0.01
A.(30) 12.284 8.674 5.750 3.585 2.118
Levy 12.337 8.738 5.801 3.619 2.133
2.0 H-W 12.953 9.582 6.792 4.633 3.057
M.C. 12.943 9.569 6.786 4.639 3.055
S.D. 0.01 0.013 0.014 0.015 0.013
A.(30) 12.944 9.577 6.786 4.625 3.045
Levy 13.024 9.671 6.874 4.691 3.087

The initial underlying asset value is 50; the risk free rate is 10% per year; the volatility is 0.3 per year;
averaging is between the beginning of the life of the options to maturity. H-W denotes the Hull and White
algorithm based on 40 time steps and h = 0.005. Monte Carlo simulations are based on 40 time steps and
100,000 trials. A.(30) is our lattice method with the number of periods equal to 30. Levy denotes Levy’s

approach described in [8].

1200 - -
1000 -
800 -
600 - of * Time
400 -

200 - /:

1 15 29 43 57 71 85 99 113127141

Figure 14: CompUTATION TiME USED BY THE
New METHOD. The numbers are in seconds.

happens to the Hull-White method when the the
number of periods is large. The computation time
however grows dramatically when the number of pe-
riods is beyond a certain threshold. See Figure 14
for a plot. Fortunately, it converges much earlier.
Some numerical results are illustrated in Table 2.
The numerical data about the Hull-White method
and Monte Carlo simulations are taken from [1]. The
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number of periods used for our new method is 30.
It took about 2 seconds on a Pentium-Pro 300MHz
computer. Most of the values computed by our al-
gorithm are close to the value computed by Monte
Carlo simulation. Only two value are out of the range
of 95% confidence interval. They are marked with an
wkn

Another set of experiments is focused on extreme
cases mentioned in [2]." In that paper, the authors
compare many proposed algorithms and conclude
that some algorithms may fail in extreme cases. We
test their extreme cases in Table 3 and show that our
lattice model performs well in each one of them.

5 Conclusions

This paper develops several methods for pricing
average-rate options. The combinatorial method was
founded to improve upon the computational speed
of the standard lattice method. Such a method has
been found useful in single and double barrier options
pricing [9]. Combining the idea with the interest rate
model of Hull and White, we can price arithmetic
average-tate interest rate options for normal models.



Table 3: Testing the Lattice Model under Some Extreme Cases

T o |T]|50)| GE | Shaw | Euler | PW | TW | MC10 [ MC100 | S.E. | A.(30)
005|105 1] 19 [0195] 0193 | 0.194 | 0.194 | 0.195 | 0.192 | 0.196 | 0.004 | 0.193
005 | 05 |1 20 [0.248 | 0.246 | 0.247 | 0.247 | 0.250 | 0.245 | 0.249 | 0.004 | 0.246
005§ 05 1] 21 |0.308]| 0.306 | 0.307 | 0.307 | 0.311 | 0.305 | 0.309 | 0.005 | 0.306
002 | 0.1 | 1| 2.0 |0.058]| 0.520 | 0.056 | .0624 | .0568 | .0559 0565 | .0008 | 0.0558
018 | 0.3 | 1| 2.0 |0.227| 0.217 | 0.219 | 0.219 | 0.220 | 0.219 | 0.220 | 0.003 | 0.219
01251025 | 2| 2.0 | 0172 | 0172 | 0.172 | 0.172 | 0.173 | 0.173 | 0.172 | 0.003 | 0.172
005 | 05 | 2| 2.0 |0.351] 0.350 | 0.352 | 0.352 | 0.359 | 0.351 0.348 | 0.007 | 0.351

The exercise price is 2.0, r is the risk-free rate, T is the life of the options from the issuing day to maturity,
o is the volatility, S(0) is the initial price of the underlying asset, and A4.(30) denotes our method. The
other approximation methods for comparison are: Geman-Eydeland (GE), Shaw, Buler, Post-Widder(PW)
and Turnbull-Wakeman (TW). The benchmark values (A C'10 and M C 100) and the approximation values are
copied from [2]. 8.E. is the standard error, also from [2].

A new lattice method is designed for solving arith-
metic average-rate options. We use the closure prop-
erty of natural numbers to reduce the number of
states needed to an acceptable level. Experimnents
show that this new method compares favorably with
the Hull-White method and a host of other methods.
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