Proceedings of International Conferepce
on Computer Architecture

A Method of Improving Translating Performance
in the CISC/RISC Hybrids

Wen-Bin Jian and Chang-Jiu Chen

Department of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

Abstract

This paper proposes a method to improve the
translating performance in the CISC/RISC hybrid
processors. This method iniroduces the design of a
new decoder architecture which contains an
instruction scheduler and a new translator type with a
combination of one simple, one general and one
complex translators (1S+1G+1C). To improve the
translating performance is to increase the number of
CISC instructions translated per cycle, which is the
goal of this paper.

We build a decoder architecture model for the
proposed method to measure its translating
‘performance. Besides, two different decoder
architecture models are built for comparison. These
three models are used to evaluate the effect of the
different design issues for the _translating
performance. These issues include instruction mix,
instruction dependencies, translator type, scheduler,
and search window size. '

The evaluation results show that the model for
the new decoder architecture with 1S+1G+I1C
translators and a scheduler performs better than other
models. In addition, the results also show that the
new decoder architecture has the ability to translate
more instructions every cycle than other current
CISC/RISC hybrid microprocessors do in average.

1

In recent years, CISC (Complex Instruction Set
Computer) /RISC (Reduced Instruction Set Computer)
hybrid architectures have been one of the main
trends in the computer architectures[1,2,3,11]. A
CISC/RISC hybrid processor means that the
processor has a RISC execution core but executes
CISC programs. In othre words, the CISC/RISC
hybrid processor executes CISC programs in the
RISC manners. Many companies have. introduced
their CISC/RISC hybrid microprocessors. NexGen's
Nx686, AMD's K5 and Intel's P6 are the most well-
known hybrid microprocessors [2,3,11]. They have a
common feature in which x86 programs are executed
with RISC manners. However, the methods of how
these x86 programs are translated and how they are
executed differ from one processor to another.

Introduction

74

Improving the execution performance in the
CISC systems is difficult because of the inherent
restrictions in CISCs. Every performance enhancing
trick developed recently in the research for
microprocessors is hard to be implemented in a CISC
system. One way to execute CISC programs
efficiently is to execute them in a RISC system. It
implies that it is necessary to translate instructions
from CISC to RISC.

Some CISC instructions are simple operations
which can be translated directly to internal
instructions which roughly correspond to the RISC
instructions. However, some CISC instructions are
complex. They usually contain more than one simple
operations. These instructions are cracked and

translated into internal instructions before they are

executed. .

We use the term "microinstruction" to describe
the internal format of the internal instruction words,
since they are actually like the microinstructions in
the microprogrammed control unit. For convenience
in the representation in the article, the internal,
instructions are expressed much like RISC
instructions rather than microinstructions.

2 The Proposed Method

2.1 The New Decoder Architecture

In this section, we introduce a new decoder
architecture to improve the translating performance,
and describe how it works. The decoder architecture
is shown in Figure 1.

The prefetch/predecode unit is wused to
predecode CISC instructions as they are fetched from
memory and feed them to the instruction cache. The
predecode information is stored in the instruction
cache.

The scheduler unit arranges the instructions
fetched from the instruction cache to get better
instruction mix such that at most time there are as
many instructions translated as possible. The
scheduling algorithm schedules instructions by
knowing the information of an instruction boundary
and the number of microinstructions. The
instructions scheduled are stored in the mapping
table. The details for the scheduler are described in
the next section.

Instruction cache
Prefetch/ | | (plus predecode
predecode information)
\ 4
Branch Scheduler
prediction ' A 4
v ,
Mapping
Dispatch logic [¢= table
Decoder
+#Sequencer
S]|1G]||C
| ¥ Translation
Table

Execution Unit
Bus

Figure 1 The block diagram of the new decoder
architecture.

The dispatch unit dispatches as many
instructions to the translators every cycle from the
mapping table. In fact, the translators can handle
three instructions per cycle in maximum. However,
whether an instruction can be dispatched or not
depends on the number of microinstructions it
requires and what kind of translators are available. A
CISC- instruction requiring three microinstructions
can be translated only by the complex translator (C);
an instruction implemented with two
microinstructions can be translated by the complex
(C) or the general (G) translator; and the simple
instruction requiring one microinstruction can be
translated by the complex (C), the general (G) or the
simple (8) translator. On the other hand, instructions
with more than three microinstructions can be
translated only by the sequencer. Before
dispatchingthe instruction sequences are recorded in
the mapping table. The mapping table functions as a
buffer storing the scheduled instructions which are

ready to be sent to the translators by the dispatch unit.

CIT Tr g

The iranslation table is a two-dimension array.
Each entry of the table has four fields. These fields

78

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

record the information about instructions ready to be
issued to the execution unit. Keeping the information
has two purposes. One purpose is to issue
instructions to the execution unit, and the other is
important for recovery while interrupts occur. This
part is described in more detail in Section 5.1. Figure
2 is the diagram of the translation table.

Instruction | Instruction | Translator | D
address code Number

) @))

) @ ® ®

Figure 2 The structure of the translation table. Each
entry in the mapping table has four fields: Instruction
Address records the location of the instruction,
Instruction Code field stores the instruction code, the
possible translator number for that instruction is in
the Translator Number field, and the last field, D
field, is one-bit width-and keeps the information of
whether the instruction is the start of a dispatch stage.

2.2 Scheduler

The scheduler is mainly to schedule (rearrange)
instructions within a basic block such that the
rearranged instructions can be translated in full speed,
that is, no translators are idle in each cycle. In full
translating speed, three CISC instructions can be
translated and issued pre cycle which resulis in the
highest translating performance. However, many
constrains are involved in rearranging instructions so
that it is sometimes difficult to get the full translating
speed. The scheduler is similar to an optimized
compiler for code optimization that involves
rearranging instructions [4].

2.2.1 Considerations

Many constrains are involved in rearranging
instructions such that the scheduler is not able to
schedule instructions to get the full translating speed.
These constrains are basically considered to
maintain the correctness of program execution. They
include: @ Data Dependencies

@ Branches
@ Interrupts
@ Flags or Control Status Words

We can simplify these considerations by

analysis. There are three kinds of operand data

dependencies to be considered: true data
dependencies, antidependencies and output
dependencies. However, antidependencies and

output dependencies can be eliminated by register
renaming. The scheduler can cooperate with the
reservation station in performing register renaming,
Thereby the considerations for data dependencies

Proceedings of International Conference
on Computer Architecture

can be simplified to only the true data dependencies.
We should note that the register renaming performed
here is only for tagging the registers that causing
output and antidependencies. The physical register
assignment is carried out after the instructions are
issued to the reservation station [5].

Branch instructions affect the program
execution flow and, therefore, would affect the
instruction rearrangement. Instructions preceding a
branch, for instance, cannot be moved to the
positions succeeding that branch instruction. One
way to deal with this problem is to divide the
program into basic blocks. The scheduling algorithm
is performed in rearranging instructions within the
basic block [4].

Considering the instruction scheduling and the
occurring of interrupts, the scheduler should
maintain the correctness of program execution
results rather than the instruction sequence. The
scheduler, thus, has to rearrange instructions
carefully such that the program with rearranged
instructions has the same execution results with the
original program when the interrupts occur. In fact,
keeping the program execution correct is the basic
requirement for the scheduler.In Chapter 5, we have
a topic discusse what problems the interrupts would
cause and how we could deal them with.

The last consideration for the scheduler is of
flags. Some instructions would set the flags or
control status words (CSW) after execution, for
example (the x86 instructions), ADD, AND, CMP,
etc., and some instructions would check the flags or
CSW as the execution base before execution, for
example (the x86 instructions), JGE, JL, LOOPE,
LAHF, etc [6,7]. The instructions of setting flags and
checking flags after and before execution form
another dependency relationship. As a result, the
scheduler has to take care of these instructions to
keeps these sequences and to avoid inserting any
instruction that would modify the flags and that
would check flags for executing into the coupled
(setting and checking) instructions.

2.2.2 The Instruction-Mix Types

There are five types of instruction mixes
depending on how many instructions can be
translated in a cycle classed by us for the scheduler.
Besides, it is important that the classification is also
based on the translator type of the new decoder

architecture.
Type-1 instruction mix indicates that only one

instruction, of course the first one, can be translated.
This is because that the second instruction requires
four or more microinstructions or conflicts with the
first one in needing the complex translator. For type-
2 instruction mix, two instructions in the
arrangement window can be translated per cycle.

76

This is because that the third instruction requires
more than three microinstructions or conflicts with
the first two instructions in needing of translators.
Type 3 is the perfect case that all the three
instructions in the arrangement window can be
translated in a cycle. Several conditions have to be
satisfied to form an instruction mix of type 3. The
three instructions in the arrangement window with
the first instruction having four or more
microinstructions are classified to type 4. Ass a result,
only the first instruction is dispatched to the
sequencer, and the other two are stalled. The type 5
is similar to the type 1. It is separated from type 1
because of the convenience for the scheduling
algorithm.

2.2.3 Scheduling

The scheduler first reads in a basic block of
instruction sequence plus predecoding information
from the instruction cache into the instruction queue.
The first three entries in the instruction queue are
marked as the Arrangement Window. The other
entries that the scheduler can search for candidates
for arranging are marked as Search Window. The
scheduler, then, find the instruction-mix type of the
instructions in the arrangement window. If the
instruction-mix type is 3, 4 or 5, no rearrangement is
necessary. The scheduler records the information for
the instructions that would be retired from the
arrangement window according to the instruction-
mix types in the mapping table. The arrangement
window and search window are moved to reflect the
fact that some instruction are retired from the
arrangement window (or the instruction queue), and
to be ready to perform the next scheduling.

Otherwise, if the instruction-mix type is 1 or 2,
the rearrangement process starts. The key point of
the scheduler is to find the instructions in the search
window with the number of needed
microinstructions to satisfy the requirements in the
arrangement window forming the instruction mix of
type 3. If the scheduler finds the proper instructions
they are exchanged The exchange implies that the
scheduler has to rearrange the instruction sequence
within the basic block. Several requirements or
constrains described in the above section are required
for the instruction rearrangement to maintain “the
correctness of instruction execution.

Following is an example explaining the
scheduling process. Figure 3 lists the x86 instruction
sequence of a basic block plus a conditional jump
instruction. The number in the front of each
instruction indicates the number of microinstructions
required for that instruction.

i 3 PUSH MEM _1

i+1 2 ADD CX, MEM 2
i+2 3 SUB MEM 3, CX
i+3 1 MOV BX, AX

i+4 3 SHR MEM 3, 1
i+5 2 ADD AX, MEM 3
i+6 2 XOR DL, MEM 4
i+7 1 DEC CL

i+8 4 LODSB STRING
i+9 1 CMP AX, BX
i+10 1 INE LABEL

Joint Conference of 1996 International Cofﬁputer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

i 3 PUSH MEM _1

i+1 2 ADD CX,MEM 2

i+2 1 MOV BX, AX

i+3 3 SUB MEM 3,CX +J
i+4 3 SHR MEM 3,1

i+5 2 ADD AX,MEM 3

i+6 2 XOR DL, MEM 4

i+7 1 DEC CL

i+8 4 LODSB STRING

+9 1 CMP AX,BX

i+10 1 JNE LABEL

Figure 3 Instruction sequence in a basic block plus a
conditional branch instruction before scheduling.

Note that the instruction i+/ is true dependent
with instruction i+2 and i+7. So are instruction i+4
with i+3, and instruction /+5 with /+9. Instruction
i+3 and instruction j+5 are antidependent. The
arrangement window size is three because three
instructions can be translated at most per cycle.
Assume the search window size is six (tunable).

First, instruction /+2 and instruction i+3 are
exchanged. So now instructions PUSH, ADD and
MOV (instruction i, i+ and i+2 respectively) are in
the arrangement window as show in Figure 4(a), and
they will be retired to the mapping table later. In the
next step, instruction i+4 and instruction i+6 are
exchanged, and instruction i+5 and instruction i+7
are exchanged, too. It is shown in Figure 4(b).

After retired instructions i+3, i+4 and i+5,
instructions +6, i+7 and i+8 are in the arrangement
window. The instruction i+8, then is exchanged.with
instruction /+9. Note that, although, instruction i+9
will set the flags and instruction i+70 will check the
flags before executing, instruction i+8 can still
exchange with instruction i+9 because instruction
i+8 does not affect the flags. This step is shown in
Figure 4(c). Finally, for the basic block, instructions
LODSB and JNE are sent to the mapping table.

In contrast, if the instruction sequence in
Figure 3 does not be scheduled by the scheduler,
these instructions are then directly dispatched to the
translators. Figure 5 gives a detailed description for
this case. Note that in the case of without scheduling,
the instructions do not have to be retired to the
mapping table first. In fact, the mapping table is not
needed anymore, however. Besides, we do not have
to care the instruction dependencies because we do
not rearrange instructions. They will be directly
dispatched to the translators according to the
translators’ translating ability. In addition, the
translation table is not needed, either.

Figure 4(a) Instructions /2 and /+3 are exchanged.
Now the instructions 7, i+7/ and i+2 form the
instruction mix of type 3.

i+3 3 SUB MEM 3,CX

i+4 2 XOR DL,MEM 4 +—
i+5 1 DEC CL <

i+6 3 SHR MEM 3,1 <

i+7 2 ADD AX,MEM 3 +——1|
i+8 4 LODSB STRING

i+9 1 CMP AX,BX

i+10 1 JNE LABEL

Figure 4(b) Instructions 7, i+7 and i+2 are reiired 1o
the mapping table. Instruction i+4 exchanges with
i+6, so does instruction /i+5 with i+7 such that
instruction i+3, i+4 and i+5 form the instruction mix
of type 3. :
i+6 3 SHR MEM 3,1

i+t7 2 ADD AX, MEM 3

i+8 1 CMP AX,BX

i+9 4 LODSB STRING

i+10 1 JNE LABEL
Figure 4(c) Instructions 7+3, i+4, and i+ are retired
to the mapping table. Instruction i+8 exchanges with
instruction j+9. Note.that, instruction LODSB
does not affect the flags.

i+9 4 LODSB STRING

i+10 1 JNE LABEL
Fingre 4(d) The final scheduling step. Instructions
i+6, i+7 and i+8 are retired to the mapping table.
Instruction /+9 and i+70 will be retired individually
in the later two steps.

In comparison, the numbers of translation for
the eleven instructions for the case of with
scheduling and the case of without scheduling are
five and six respectively. We can evaluate the
translating performance for the two cases by dividing
the number of instructions by the number of
translation. Thus, the performance of the case with
scheduling is 11/5 = 2.2, and on the other hand, the
performance of the case without scheduling is 11/6 =
1.833. Accordingly, the case with scheduling has
better performance than the one without scheduling.

77

Proceedings of International Conference
on Computer Architecture

i 3 PUSH MEM 1

i+1 2 ADD CX, MEM 2

i+2 3 SUB MEM 3,CX

i+3 1 MOV BX, AX

i+4 3 SHR MEM 3,1

i+5 2 ADD AX, MEM 3

i+6 2 XOR DL, MEM 4

i+7 1 DEC CL

i+8 4 LODSB STRING
i+9 1 CMP AX,BX

i+10 1 JNE LABEL ____|
Figure 5 The 1nstruction sequence without

scheduling of Figure 3. The instructions 7 and i+/ are
dispatched first. Instructions i+2 and i+3 are the
second, then, instructions i+4 and i+J5 are the third,
and the following are instructions i+6 and /+7, then
instruction i+8 is dispatched individually, and finally,
instructions i+9 and i+70 are dispatched.

3 The Evaluation Method

3.1 Performance Issues

Designing the decoder architecture involves
several issues. These issues can be classified into two
types: issues for architecture design and issues for
program characteristics. The issues for architecture
design include whether a scheduler is combined with
the translators, what types of the translators, the
number of the translators, and the search window
size. The issues for program include the ratio of
instruction dependencies and the ratio of simple
instructions.

In summary, we list these issues mentioned
above for the convenience of later discussion.

@ I1: Scheduler

@ 12: Translator Type

@ [3: Search Window Size

@® 14: Instruction Mix

@ [5: Instruction Dependency

3.2 The Evaluation Method

We construct three models to evaluate the
translating performance. The evaluation results
provide us some guides or hints in determining or
discussing the effects of the issues (I1~I5) to the
decoder architecture. The three models are:

@ M1: A decoder architecture with a scheduler and
one simple translator, one general translator
and one complex translator.

@ M2: A decoder architecture with a scheduler and
with x simple translators, y general

translators and z complex translators.

@ M3: A decoder architecture without a scheduler
and with one simple translator, one general
translator and one complex translator.

The x, y and z can be any value depending on
how many translators and what types we design. For
the reasons of balancing hardware costs for each
model and referencing Intel P6’s decoder

78

architecture, we assign the x, y and z values as 2, 0
and 1 respectively in model M2. The M1 is our target
model, but M2 and M3 are the opposite models.

Three simulators are built for the three models.
Two options, translator type and with/without
scheduler, are dedicated to each simulator by default.
Other options, basic block size, instruction
dependency ratio, instruction mix type, and search
window size, are controlled as variables in these
simulators.

4 The Evaluation Results

Table 1 lists the translating performance in
different instruction mix (I4), different search
window sizes (I5) and different instruction
dependencies (I3) in model M1 which has a
scheduler and one simple, one general and one
complex translators. In Table 1, (45, 40, 10, 5)
means that the number of CISC instructions with one
microinstructions is 45%of all, the number of CISC
instructions with two microinstructions is 4094, the
number of CISC instructions with three
microinstructions is 10 95, and the number of
instructions with four and more microinstructions is
595, and DEP means the ratio of instruction
dependency, and SWS indicates the size of the
search window,

From Table 1, we will see that the
performance is increased if we widen the search
window or decrease the instruction dependency ratio
or increase the number of simple instructions and
decrease the number of complex instructions.

Window IDEP_1(25.25,25,25) |(35.35,20,10) |(45,40,10,5
Size)
0% 1.717 2.242 2.560
20% 1.696 2.200 2.541
SWS =1]40% 1.654 2.171 2.519
60% 1.646 2.155 2511
80% 1.632 2.143 2.480
0% 1.735 2292 2.603
120% 1.721 2.287 2.575
SWS =3140% 1.702 2.220 2.563
60% 1.674 2.203 2.535
80% 1.663 2.188 2.528
0% 1.753 2.293 2.610
20% 1.744 2.296 2.602
SWS =6|40% 1.729 2.289 2.581
60% 1.718 2.249 2.582
80% 1.695 2217 2.556
Table 1 The hist of performance under different

issues: instruction mix, dependency ratios and search
window sizes in M1. Each performance value is the
average number of instructions being able to be
translated per cycle.

‘Table 2 compares the translating performance
in different instruction mix (I4), different search
window sizes (I5S) and different instruction
dependencies (I3) in model M2. The results in Table
2 are used to compare with the results in Table 1 in

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

performance results in M1 for the instruction mix
(55,15,15,10,5) are not tested.

Dependency Ratio: 20%, Instruction Mix:
M1(45,40,10,5), M2(55,15,15,10,5)

evaluating the effects of translator types (1S + 1G + 3
1C vs. 28 + 1C) (I2) under the considerations of 2 BMml
issues 13, 14 and I5. Note that models M1 and M2 1 BM2
have the same scheduler, but they have different l
translator types. 0 » =
Window |DEP [(25.25, [(35.35, (45,40, | (55,15, SWS=1 SWS=3 SWS=6
Size 25,15,10) [20,5,5) [5.5.5)]15,10,5) Search Window Size
0% 1.349] 1.564] 1.822] 2.110
20% 1.337) 1.553) 1.820; 2.088 Figure 7 The performance comparison for model M1
SWS=1 [40% 1336 1539 1814 2.057 and M2 in different search window sizes. Model M1
60% 1336 1535 1.801] 2.031 has better performance than M2 in every case of
80% 1328] 1527| 1.804] 2.030 search window sizes.
0% 1.348] 1.560) 1.840 2.150 Search Window Size: 6, Instruction Mix:
20% 1.354] 1570 1.845] 2.145 MI1(45,40,10,5), M2(55,15,15,10,45)
SWS=3 [40% 1.349 1.566] 1.826 2.113 3 .
60% 1347] 1.547| 1834] 2088 25 |
80% 1.341 1.552} 1.817 2.067 2
BMl1
0% 1355 1.571] 1841 2157 L5 i
30% 1354] 1570| 1853] 2.145 1 am2
SWS=6 [40% 1.348 1.572] 1.844 2.144 0.5 l
60% 1353] 1570] 1.858] 2132 0 .
80% 1.346 1.564 1.833 2.092 0% 20% 40% 60% 80%
able 2 The list of performance under different Dependency Ratio

issues: instruction mix, dependency ratios and search
window sizes in M2. Each performance value is the
average number of instructions being able to be
translated per cycle. ‘

Figure 6 to Figure 8 show the performance
comparison of models M1 and M2 under different
issues according to the values in Table 1 and Table 2.

Dependency Ratio: 20%
Search Window Size: 3

—

T

0

(25,25,25, (35,35,20, (45,40,10, (55,15,15,
25) 10) 5) 10,3)

BMl
@mMm2

Instruction Mix

Figure 6 The performance comparison for models
M1 and M2 in different instruction mix Obviously,
The translating performance in M1 is better than that
in M2 for every case of instruction mix. Note that the

79

Figure 8 The performance comparison for model M1
and M2 in different dependency ratios. Note that in
all cases of dependency ratios, model M1 has better
performance than M2,

Table 3 compares the translating performance
in different instruction mix (I4) in model M3. Since
the model M3 has no scheduler, issues I3 (the search
window size) and I5 (the dependency ratio) which
relate to the design of the scheduler do not affect the
performance results. The results in Table 3 are used
to compared with the results in Table 1 in evaluating
the effects of the issue of with or without scheduler
(I1) under the same translator types (1S + 1G + 1C)

(2).

(25.25.25.35) | (35,35,20,10) | (45,40,10.5)

1.563 2.082 2428
Table 3 The list of performance for the three cases of
instruction mix in model M3. The values represents
the average number of instructions being able to be
translated per cycle. '

Figure 9 and Figure 10 show part of the
comparison results. In these figures, we compare
M3’s performance with M1’s in the consideration of

Proceedings of International Conference
on Computer Architecture

search window sizes and dependency ratios for M1
because model M1 involves a scheduler but model
M3 does not.

4.1 Performance Summary

First, Table 1 reveals messages that the
translating performance is improved if we widen the
search window size, and the programs have the
characteristics of low number of instruction
dependencies and have more simple instructions. In
Table 1, we can find that the best performance is
appeared in the case of the search window size of
being six, the instruction dependency ratio of being
0%, and the instruction mix of being (45,40,10,5). In
this case, the performance is about 2.61 which means
that the decoder architecture can decode about 2.6
CISC instructions per cycle in average. On the other
hand, the performance improvement of increasing
the search window size from one to three, from three
to six and from -one to six is 2.2%, 1.5% and 3.2%
respectively. Similarly, the performance
improvement caused by changing the mixture of
instructions from (25, 25, 25, 25) to (35, 35, 20, 10)
and from (25, 25, 25, 25) to (45, 40, 10, 5) is about
31.4% and about 49.5% respectively. Besides, the
performance improvement resulted from decreasing
the instruction dependency ratio from 80% to 20%
and from 80% to 0% is about 3.0% and 4.3%
respectively.

The results of Table 2 also supports the
conclusion drew in the above paragraph. However,
Table 2 is used to compare with the results in the
Table 1. The comparison between them explains
what kind of translator types, 1S+1G+1C or 25+1C,

has better performance. Figures 6, 7 and 8 show part .

of the comparison results. From these figures, we
find that the model M1 always has better
performance than model M2 no matte which issue is
considered. In summary, M1 has more than 20%
better translating performance than M2.

Table 3 is the results of evaluating the model
M3. The resulis are also used to compare with the

results in Table 1 for comparing the effects of with.

or without scheduler for performance. Figure 9 and
Figure 10 show part of the comparison resulis. In
summary, model M1 can decode about 8.0% more
instructions than model M3.

Table 4 lists the factors or issues that affects
the translating. performance. These values are
calculated by fixing the instruction-mix types and the
dependency ratios that relate to the program
characteristics from Table 1,Table 2 and Table 3.
The overall effects of the three factors is 37.9%. In
other words, our new model M1 can improve
performance by near 38% better than other current
CISC/RISC hybrid microprocessors.

80

BM3

B MI1(SWS=1,DEP=20%)
OMI1(SWS=3,DEP=20%)
OM1(SWS=6,DEP=20%)

3
2.5 -
2 u |
1.5 - o -
1 | n u
0.5 = - -
0
(2525252 (353520,1 (45,40,10,5
5) 0))

Instruction Mix

Figure 9 The performance comparison for model M3
and M1 in different instruction mix and search
window size under fixed dependency ratios. From
this figure, M1 has better performance than M3. In
fact, we can compare the performance of M3 with
that of M1 in other cases of dependency ratios, for
example, 0%, 40%, 60% or 80%.

BM3

EMI1(SWS=3,DE
P=80%)

OMI1(SWS=3,DE
P=60%)

OMI(SWS=3,DE
P=40%)

@MI1(SWS=3,DE
P=20%)

BMI(SWS=3,DE
P=0%)

(25,25, (35,35, (45,40,

25,25) 20,10) 10,5)

Instruction Mix

Figure 10 The performance comparison of model M3
and M1 in different instruction mix and dependency
ratios under fixed search window size (3). From this
figure, M1 has better performance than M3. On the
other hand, we can compare the performance of M3
with that of M1 in the case of search window size of
1oré.

Factors Effects
Translator Type 26.5%
(IS+1G+1C vs. 25+1C)
Scheduler 8.2%
(with vs. without)
Search Window Size 3.2%
(6vs. 1)
Total 37.9%
Table 4 The list of the factors and their effects that

affects the translating performance according to the
values in Table 1 to Table 3.

Finally, we compare the translating performance
of the decoder architecture, model M1, with that of
other current x86/RISC hybrid microprocessors’
decoder architectures [8]. Table 5 shows that model
M1 has better decoding performance (2.56) than others
but the K5 and Nx686 have better translator usage. The
translator usage is got by dividing the number of
instructions physically being translated by the maximal
number of instructions being able to be translated per
cycle.

Model M1 | Nx686] P6 K5
nstr/cycle 2.56 1.9 2.1 1.9
Max 1nstr/cycle 3 2 3 2-3
translator usage [85.3% 95.0% |70.0% | 100%

able 5 The translating performance comparisons for
model M1, Nx686, P6 and K5. The value of the field
inst/cycle for model M1 is under the conditions:
instruction mix is (45,40,10,5), search window size is
3 and the dependency ratio is 40%. On the other hand,
the values of the field inst/cycle for Nx686, P6 and K5
are for the 32-bit codes.

S Conclusion

This paper proposes a method to improve the
translating performance for the CISC/RISC hybrid
microprocessors. In this architecture, there is
predecoding information describing the number of
microinstructions needed to implement the CISC
instructions like the K5 [11]. Using this information we
can avoid the uncessary translating delay in the P6 due
to the instruction hand-off from a simple translator to a
complex one in the instruction queue [10]. These
predecode bits, however, increase the size of
instruction cache array by about 309 (the data cache
array is increased by 3/8, but tags and prediction bits
are not increased). It does not increase seriously the
instruction cache size compared to the K5 that
increases the instruction cache size by about 5094.

Besides, the evaluation results show that the
decoder architecture with the combination of the
translator type (1S+1G+1C) and the scheduler has

81

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

better translating performance. The results also exhibit
that if programs have more simple instructions, there
will be much better translating performance. The
effects of other issues like dependency ratio and search
window size is relatively small.

References

[1] Sebastian Rupley, and John Clyman, "P6: The
Next Step", PC Magazine, September 12,
1995, pp.102-118.

[2] The Complete x86: The Definitive Guide to
386, 486, and Pentium-Class Microprocessors,
vol. 1, Micro Design Resources, CA, 1994,

[3] Linley Gwennap, “NexGen Enters Market
with 66-Mhz Nx586: First Pentium
Competitor Uses RISC-like Core and Optional
FPU”, Microprocessor Report, March 28,
1994, pp. 12-17.

[4] Leland L. Beck, System Software: In
Introduction To System Programming, 2nd ed.,
Addison-Wesley Publishing Co., Reading,

Mass., 1990.
[5] Brian Case, “x86 Has Plenty of Performance
Headroom: Aggressive Superscalar

Techniques Just Beginning to Appear”,
Microprocessor Report, August 22, 1994, pp.
9-14.

[6] Michael Thorne, Programming the 8086/8088
Jor the IBM PC and Compatibles,
Benjamin/Cummings Publishing Company,
1986.

[7] Pentium Processor User's Manual Volume 3:
Architecture and Programming Manual, Intel,
1993.

[8] Linley Gwennap, “Nx686 Goes Toe-to-Toe
with Pentium Pro: NexGen Rolls Out First
Competitor to Intel’s High-End Chip”,
Microprocessor Report, Vol. 9, No. 14,
October 23, 1995, pp. 1-10.

[9] A. Silberschatz, J. Peterson and P. Galvin,

Operating System Concepts, 3rd ed. Addison-

Wesley Publishing Co., Reading, Mass., 1991.

Linley Gwennap, “Intel’s P6 Uses Decoupled

Superscalar Design: Next Generation of x86

Intergrates L2 Cache in Package with CPU”,

Microprocessor Report, February 16, 1995, pp.

9-15.

Michael Slater, “AMD’s K5 Designed to

Outrum Pentium: Four-Issues Out-of-Order

Processor Is First Member of K86 Family”,

Microprocessor Report, Vol. 8, No. 14,

October 24, 1994, pp. 1-11.

[10]

[11]

