Proceedings of International Conference
on Computer Architecture

On the Design and Modeling of a Homogeneous VILIW Architecture

L. Wang and Ted C. Yang

Graduate Institute of Information Engineering,
Feng Chia University, Taichung, 407, Taiwan, R.O.C.
E-Mail : tcyang@fcu.edu.tw

Abstract

Following the advances in semiconductor
technology and computer architecture, we can expect
that the functional units on a single chip can grow to
tens in the future. By considering the frend in
microprocessor design, we propose a new type of
parallel architecture which combines the features of
both ILP and SIMD machines for instruction level
parallelism and loop level parallelism, respectively.

In order to verify the efficiency of the parallel
architecture, we have built an analytical model to
explore architecture performance with parallelism
ranging from different architecture features. The
analytical results show that the inclusion of SIMD
type execution can improve the execution of vector
loops and gain a speedup of 1.6 over traditional ILP
machine. When the execution for non-vector codes is
included, the proposed parallel architecture can still
gain speedups in the range of 1.023 to 1567
depending on ratio variations of vector codes.

I Introduction

The combined advancements of semiconductor
technology and computer architecture have promoted
innovations in microprocessor design from sequential
execution to parallel processing. By examining more
advanced commercial microprocessors, such as Alpha
21164[1], PowerPC 604[2], Pentium[3] etc., we can
find that they all have made use of independent
pipelined functional units(F.U.) and technologies of
static/dynamic scheduling to speed up program
execution. Based on microprocessor design in the last
decade, we can observe some trends that already
exhibited in the modern microprocessor design:

o Parallelizing a program in fine-grained
granularity to promote the performance by
instruction level parallelism(ILP).

e Using multiple independent F.Us and
pipelines to elaborate the potential of
hardware parallelisin.

e Achieving the goal of out-of-order execution
by, as in superscalar, dynamic scheduling[4]

82

and developing skills for
execution.

Although these trends are quite clear, there
exist at least two major obstacles caused by chip
layout and the method of exploiting parallelism.

1. Implementation Obstacle:

By using advanced technology of semi-
conductor, we can expect that the F.U.s on a single
chip can grow to tens in the future. However, the
restrictions on the number of ports in uni-register file
and on the number of pins on a chip are becoming
more severe due to implementation difficulties.

2. Parallelism Obstacle:

Several investigations have pointed out that if
the limitation of control dependency could be
conquered, then the level of parallelism that can be
exploited would be greatly increased. Speculative
execution[5][6] is a solution for this purpose. However,
the existence of challenges such as how to handle
multiple conirol paths and how to deal with the
interrupts raised by speculative instructions, still holds
back rapid advancement in this area.

Adequate hardware resources have provided
profound impacts on computer architecture. For
example, multiple-level on-chip caches have appeared
in modern microprocessors[1]. Multi-threading|7] is
another successful example to use the excess hardware
resources. The main goal of the multi-threading is not
to speed up the execution of single program but
promote the throughput of computer by using multiple
register files for switching among tasks to frlly utilize
the hardware resources.

There have been attempts to make use of
parallelism models other than the commonly known
SIMD/MIMD|8] to conquer the limitations directly to
achieve higher speedup of single program. The XIMD
architecture[9] is such an example. XIMD is built by
several F.U.s with each F.U. controlled by a dedicated
sequencer and program(s) can be execuied in a
manner similar to MIMD. The main difference
between XIMD and MIMD is that, in XIMD, the
F.U.s execuie in lock-step fashion and compiler can
handle the executions of each F.U. in every cycle.
There are many interesting ideas appeared in the

speculative

XIMD architecture. There is a global register file and
a condition code distribution circuit shared by all
F.U.s but the memory is distribuied. The concept
behind the synchronization method for lock-stepped
MIMD execution from the architecture is also
appealing.

Multiscalar[10] 1is another example for
including several parallelism models into a parallel
system. Different from the XIMD architecture,
multiscalar is built by a line of processing
elements(P.E.) but controlled by a central sequencer.
Compiler partitions the workload into several tasks
that can execute concurrenily and the sequencer
dispatches the tasks to different P.E.s. A most
interesting part of multiscalar is the connection of
P.E.s, researches suggest that a uni-direction ring is
adequate for parallel execution. Based on the
examples exhibited in [10], we can find that the
connection and the attached synchronization
(Forward/Mask) bits behavior well in the fashion of
SIMD style.

The theme of this paper is on combining
various parallelism features to promote the degree of
parallelism in program execution. We do not attempt
to propose a novel architecture. Instead, we focus on
combining existing ideas and technologies of various
parallelism models progressively to build a parallel
microprocessor architecture that is suitable for the
future, especially when scalability for the progress of
fabrication is considered. The design philosophy is
discussed in Section II. A parallel architecture named

homogeneous VLIW, abbreviated as HVLIW, which -

can execute program in traditional ILP and SIMD
fashion, is presented in Section III. Besides the
architectural design, an analytical model is presented
to verify the idea of HVLIW. The analysis is described
in Section IV. Other related researches, such as
compiler and interrupt system. and future works are
discussed in Section V.

II. Design Considerations

Computer architectures that are suitable to
combine various parallelism features exhibit a set
of common characteristics, such as on-chip multi-
cluster topology. on-chip multi-level high speed
buffer, and software-dominated process scheduling.
Is a 2-level cache with the first level distributed to
each cluster and the second level built as a global
backup an adequate solution and suitable for
implementation?

Although the scheduling of modern high-
end microprocessors is mainly implemented by the
dynamic techniques, such as Tomasulo's
algorithm[11]. the inability and complexity of

83

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

dynamic sheduling for extracting parallelism often
lead the method to become less aitractive,
especially for larger instruction windows.
Furthermore, the techniques for static speculative
execution and memory disambignation can
alleviate the inability of static scheduling caused by
the insufficient dynamic information. Based on
researches about this prospect, we tend to believe
that the scheduling for parallel processing can be
most efficiently achieved by software, mainly
statically, and by assisted hardware support.

To push our design considerations further, the
target architecture is provided with the following
additional features.

1. Clusters are distributed and homogeneous.
Although a centralized control of parallel
execution can make the design simpler, it will
certainly limit the scale of parallelism. On the
other hand, distributed resources allocation can
help avoid the bottleneck. Homogeneousity means
the clusters and the connections among clusters are
identical and makes scheduling and workload
partitioning easier than asymmetric topology.
2. Clusters are controlled by dedicated program
counters.

. A centralized sequencer violates the
distribution principle and is unfavorable to system
scalability. In order to fully facilitate the control of
various parallelism features. each cluster is
provided with its own execution stream.

3. Parallel execution is in lock-step fashion.
Identification of parallelism in a program is
completely done by the compiler. A program is
transformed into a parallel executable format
before execution. A global system clock is designed
to synchronize the execution in clusters in each
cycle. Since the target architecture is designed for
fabrication in a single chip, the building of a global
clock is much easier than traditional
multiprocessors. The complexity of clock generator
would not be increased dramatically by an
increasing on the number of clusters, either.

Fig.l1 is the block diagram of the target
architecture. Since each cluster is buili by a line of
independent F.Us that can execute instructions
simultaneously for a program stream. techniques for
the ILP machines can be included without major
modifications. Moreover, the clusters are
synchronized by a global clock, thus compiler can
schedule operations for all F.U.s in all clusters. Static
scheduling can reduce the hardware complexity for
scheduling and provide larger parallelism by adequate
hardware support. So we decide to build the clusier as
a VLIW processor[12][13] to inherit the features of
ILP machine. The issue on VLIW drawbacks needs to

Proceedings of International Conference
on Computer Architecture

be considered. For example, the drawback on bigger
code size can be reduced by code compaction. For
another example, in order to reduce the hardware
complexity for scheduling, the process of re-compiling
is an inevitable and costless way to exploit the variant
features of parallelism. The main criticism of re-
compiling is not to avoid but to use it efficiently.

i Cl ck ,]
G J o« Tnstruction Cache
_'; N | I— ?__17[
} (Cluster VAN Cluster 2@ Cluster Nj/)
|| CEetchUni - | _L < Eztch Unit Tgich Uni =
HTFU'& TRUl| HE .. FU[[FU).. [F
I -
I | | Register File i
K, ; i)
; L_Jl-st level] \-stlevel] 1-stlevel
‘ | | cache | cuche cuche
l ’ ‘ Intcrcom]lecuon Network
l | 2-nd Level Global Cache !
\
i]

Chip Interface
Fig. 1. Target Architecture Diagram

By checking the dependence relationship in a
loop and arranging independent iterations so that they
can be executed simultaneously, data parallelism
exploits the loop-level parallelism existing in
iterations. Commercial SIMD machines are all so
designed to speedup the program execution.

Since for either SIMD or VLIW processors,
programs are scheduled by the compiler in a form
suitable for parallel processing, so we started out to
include the merits of SIMD into the target
architecture. Although some well-known scheduling
techniques such as loop unrolling and software
pipeline[14] can extract massively parallelism in a
loop. they would not be suitable for a multi-cluster
environment. This criticism can be explained clearly
by the next few paragraphs and an example.

Assume there exists a vector loop with a data
dependence graph as described in Fig.2. Loop
unrolling is to unroll the loop codes several, even tens
of, times for scheduling. Since complexity in
obtaining the optimal solution for the scheduling is
NP-complete, heuristic list scheduling is usually
adopted to assign codes to clusters. The algorithm of
list scheduling is based on a greedy method that
schedules the instructions according the precedence
order and arranges instructions into empty operation
slots as earlier as possible. By assuming that the target
architecture is built by 4 clusters with 1 issue
capability per cluster and the instruction latencies are
1, the scheduled object codes by data parallelism can
fully utilize the hardware resources as shown in
Fig.3.a The object codes scheduled by unrolling the
loop 4 times is shown in Fig.3.b.

84

(88)

Y
(89)
Fig.2. Data Dependence Graph of a Sample Loop
If the loop is unrolled even more times, the
possibility to fully occupy all the instruction slots will
be increased to what the SIMD can achieve. However,
this does not necessarily mean that the parallelism
will be promoted to the exact achievable level in
SIMD. Since the instructions of an iteration may be
distributed to distinct clusters, additional instructions
for communication among clusters are added and may
lead to a less condensed density of effective operations.
Furthermore, the larger code size produced by -
unrolling can lead the hit ratio of instructions to be
degraded.

Clock 1

Gyete 1 [s1t[s12]s *ls1* Gy [si] s sels?
2ists?|s3|s? 2| 53] 54 |s?lsd
3 |sd|s#| 57| 53 3isd|s7lsdtls?
4|sd|sd|sd|sd 4| sé|s *ls¢|s?
s |59 s?!s9) s¢ s|sé|s7 s |54
6 56| sé¢| s6)| s 6|sd| s5|sdt|s7
7|s?|s?|s7| st 7| | séls1*s?
s 1 5¢] s s8] s8* s| | selsd|sd
9 | sd| s¢| 9] so ol | sod|sdlst

. 10 sé|
(2) SIMD Scheduling
1 5,84 :
12 394
(b) Loop Unrolling

Fig.3. Schedulmg for the Example in Fig.2

The above example is not meant to negate the
value of loop unrolling. Quite contrary, loop unrolling
is an effective method to schedule codes for non-
vectorized loops. What we iry to point out is that
traditional scheduling algorithm designed by greedy
method may not be suitable for the environment of
multi-clusters. Software pipeline[14] is another well-
known scheduling method for vector loops. Again, the
kernel of software pipelining is siill a greedy method
as discussed above. If the algorithm needs to be
modified to make it more suitable for the environment,
then the complexity of the algorithm will increase
dramatically and still may not be proven to be an
optimal solution. The inclusion of SIMD type
execution is a choice we believe that is suitable for the
circumsiances.

III. Homogeneous VLIW Architecture

The block diagram of a homogeneous very
long instruction word(HVLIW) processor architecture
is proposed in Fig.4. The organization of the basic
execution engine, a cluster. is classified as a VLIW
processor. The major components of the cluster
include two integer functional units(I0 and I1), a
floating point functional unit for addition/subtraction
(FA), and a floating point functional unit for
multiplication/division(FM).

Clock | [mterrup
(,Geo,f,) Instruction Cache)
H = T 1

('_r(:luster }/q 3 _Cllist'e; EA \ Cluster N
[P i

} ’ Reg:istr:r FileJ 17 Register Fiﬂ

dul dulk
Interconnection Bus]

1 I I

r Global Memory Buffer J

Chip Interface
Fig. 4. The HVLIW Block Diagram

Two Execution Modes

With N clusters, the two execution modes of
HVLIW are shown in Fig. 5. The first execution mode
is called the Long-instruction mode, abbreviated as L-
mode. In this mode, the system operates like a
conventional large-scale VLIW machine driven by
very long instructions with 4*N operation fields.

e

Cache

CIIPCI@IPC;I

T

-COlPCI
<z

a [b Jc [d
Pl B g [} very Long Instruction
Time X
m
n_jm
o I8 |__} Time-Skewed Exccution in D-mode
o m

CNELE]

E

Fig. 5. Two E);zecution Modes of HVLIW

The second mode is called the Duplication
mode, abbreviated as D-mode. In this mode, all

85

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

clusters will execuie identical instructions, for
different loop iterations, concurrenily. It should be
noted that each cluster can still exploit very fine grain
parallelism within an iteration instance because there
are four functional units in each cluster. In the D-
mode, the HVLIW system acts almost like an SIMD
machine. The only difference is that there are N
program counters in HVLIW but only one in an SIMD.
For the smooth execution of D-mode, a scheme
called time-skewed execution[15], as shown in Fig.5,
is adopted to reduce the demand on bandwidth due to
possible burst data traffic and to avoid the use of
expansive non-blocking network. It distribuies the
same operation regularly into consecutive time slots.
In L-mode, operations that should be executed
at the same time are scheduled in the same long
insiruction. When there is a need to change into D-
mode, the compiler can generate proper branch
operations as the last L-mode long instruction. Fig.6
shows the events necessary for swiiching from L-
mode to D-mode. By executing the normal JMP
instructions simultaneously, the clusters are forced
into D-mode. To switch from D-mode to L-node, the
reverse operations can be arranged by the compiler.

Program_Inside Hemory Codes _in_Caches
’ a p3: 1 NoP Co Cl C2 C3
v} i
R e D2: | NoP a b ¢ d
s R . f : b
: i DE: | NOP i j k 1
< o] po: » R-L0 |R<-LL R<-12 |R<- L3
: JHP DO JHP DI JUP D2 “§, JUP D3
weoo| | o N h ... D
Common o
Space D3: NOP NOP NOP NOP
e D D2: NOP NOP NOP NOP
: b D1: NOP NOP NoP NoP
cl D0: = [] [
Spacef__f IR REE n a n n
T J . Q 0 0 0
P [P
/- 11 °
JUP D1
s Prograp Execution Timming
c
CZ g Co Cl v C2 C3
Spdce] i N a b c d
H Time e £ g b
- L2 i j k 1
0P D2 R<-L0 Re-Ll R<-L2 R« L3
= JHP DO JHP DL Jup D2 JUP D3
SET! NOP Nop Nop
S T _NOP Hop
NoP
d m
‘] on : :
€3 = BRI
Spdce, 3 T
P R-L3 v
i fowp b3

Fig.6. Switching from L-mode to D-mode
On-Chip Memory Hierarchy

if a memory access is not completed in one
instruction cycle, the pipeline will be stalled for the

Proceedings of International Conference
on Computer Architecture

access and thus the performance will be seriously
degraded. A general solution of this problem is to insert
a high speed data cache between the processors and the
main memory. However, this is not suitable for the
HVLIW machine. The efficiency of a cache depends
mainly on spatial locality and parallel execution
reduces the spatial locality. Furthermore, a significant
waste of bandwidth can result if a whole block is
feiched when the execution is vector-like and the stride
is greater than one. :

Since the compiler can predict the reference
behavior for most instants of program execution, using
a line of buffers to store the data expected to be
referenced soon is a feasible alternative to provide fast
reference.

For each HVLIW cluster there are up to two
meimory references per instruction cycle. In D-mode, N
cycles, one for each cluster, will be required for each
memory reference in a loop, or there will be bus
conflicts. For a matched memory system in which the
memory access time is equal to the reference cycle of a
cluster, up to 2*N2 words of data would be accessed,
and the bus must have a bandwidth of 2*N words per

cycle.
|
Cluster O . I Cluster 1 ! Cluster N
i i
[Module | [Module | (Module]
\ Buffer | . Bufter { Bufter
I I Permutation Bus I

i
| Memory Bufters]

T
t - :]Pipeljned Bus Interface

S e
| Memory
' - . . - H Bank

PR

i T
| Memory
! Bank

! | Memory
! Bank

[

! Interleaved Oft-Chip Pipelined Main Memory

Fig.7. Memory Hierarchy in HVLIW

|
|

As a result, a high speed two-level buffer
system|15] is proposed instead of a 2-level cache, as
shown in Fig.7. The first level is a line of module
buffers. one in front of each cluster. A module buffer
will catch the 2*N words of data to be referenced by
the respective cluster. This allows the clusters to
perform one-cycle LOAD/STORE operations. The
second level is called memory buffer. It is inserted
between the module buffers and the memory banks to
hold the 2*N2 words of data. A permutation bus 2*N
words wide connects the two levels of buffers. This
memory hierarchy is named a 3-stage memory.

With the support of time-skewed execution. the
memory hierarchy can satisfy the demand of the
HVLIW system at a cost lower than that of a
conventional parallel memory system. Furthermore, a
dynamic storage scheme is applied in our design for
an interleaved memory to avoid memory bank

86

conflicis.
IV. Theoretical Analysis

In order to evaluate the features of HVLIW, a
theoretical analysis is performed. Since the main
difference between HVLIW and ILP machine is the
method for exploiting parallelism from vector loop,
we shall first present a simplified comparison for the
performance characteristics between the D-mode
execution i HVLIW and the traditional ILP
machines. Then the performance model of HVLIW is
modified to include considerations on 3-stage memory
as well as on non-vector codes. From the analysis
results - for HVLIW model and ILP machines, the
efficiency of the HVLIW architecture is clearly shown.

In the following discussion, T represents the
total number of operations in a program, and S
represents the number of stages in a pipeline. Since
HVLIW is constructed by a line of N clusters, the
clusters of ILP machine is defined by N VLIW
processors each with K FUs for an equitable
COMparison.

Evaluation for Vector Loop Execution

For verifying the efficiency of D-mode
execution, the execution time spent for vector loop
execution in a program is estimated. Assumne that the
ratio of vector codes in a program is R, then there
exist T* R; operations that can be scheduled for
execution in the D-mode. Since each iteration is
scheduled to a dedicated cluster with K FUs, a
parallelism with degree p that is less than or equal to
K can be exiracted from an jteration. Let I stands for a
positive integer and I = “\7} then I iterations can be
arranged into a cluster for full use of the potential
structural parallelism supported by clusier. As a result,
the number of cycles spent for the D-mode execution
is:

_ T*R,
U Y7,

Let us define two additional parameters:

Oj: operations needed for the initialization of a
vector loop execution.
Nj: the number of vector loops in a program.

If there are four operations in an instruction
word, then , for the worst case, a total of WN*(N-1)/2
*K operations slots could be wasied during mode
switching. The slots spent for the aforementioned
time-skewed execution are N*(N-1)/2*¥K*2 for each
pair of mode switching. The delay, C,, caused by loop
initialization and time-skewed penalty can be
calculated as :

Co= Cycles for Loop Initialization + Cycles for
Time-skewed Penalty
_O;*N; N*¥(N-D)*K*N;
N*I*py N*I* gy

Finally, the total number of cycles required by
D-mode execution can be estimated by the sum of C,
and C,. In equation (2). O; stands for the number of
initialization operations. Although O; is difficult to
estimate, it should be proportional to the size of
registers in each cluster. Therefore, we say that O;
siiould never be greater. than 32*N, if each cluster is
equipped with 32 registers. Nj is another parameter
that is difficult to determine. We can only assume that
Nj is a small constant value and independent to the
other parameters.

Assume that the average number of effective
operations that can be scheduled in a cycle by ILP
scheduling is o, and that there are o, additional
communication operations to be added into a cycle for
cross-cluster references. The total number of cycles
required can be estimated as:

,=T"R Gy, <N*K ... 3)

g

The relation between o and o, can be further
considered. Assume that each operation needs two
operands for execution and that the operands are
provided by preceding calculations of clusters. Also
-assume that the scheduling algorithm is modified to
arrange an instruction into a dedicated clusier only
under the situation that there is at least one operand
already existed in the cluster. Then the possibility for
needing communication to obtain the other operand is

(1 - E) Thus the expect number of communications
o

-

in a cycle, o, is o¥(1- Z) . By assuming the usage

of operation slots is perfect, that is o+ o, = N*K,
the value of o can be calculated by equation (3) and

) (N+D*K
the result is 0 = -

Table 1. Parameters for Analysis
N@umber of processors) 4
R,(Ratio of vectorized codes) 0.1~0.9
Nj(Number of vector loops) 10
K. (Number of functional units) 2.48.16
T(Total operations) 1000600
w(Achieved ILP from iteration) |1~16
Qi(Operations for initialization) |32N

By setting reasonable values io the parameters,
we can compare the performance characteristics of
these two types of execution. With the sei of
parameter ‘values in Table 1. the speedup of D-mode
execution over ILP scheduling is shown in Fig. 8.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Speedup

—¢~=D-mode with K=2
—0—D-mode with K=4
—=¥— D-mode withK =8
——D-mode with K=16

1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16

m

Fig.8. Speedup of D-mode Execution over ILP
Scheduling

The lines on Fig.8 indicate that the speedups
are clearly affected by the pair of parameters,
structural paralielism (K) and extracted parallelism
(n). Aithough most of speedup values are 1.6, the
worst case of speedup is degraded to 0.9 when (K, p)
are (16.9). The reason for the degradation is caused
by a mismaich of the pair which leads the usage of
effective operations per cycle to become lower than
that in the ILP machine. The degradation can be
eliminated by reducing the value of p from 9 to 8,
which would in turn make a recovery on the speedup
to 1.6. We believe that the speedup would actually be
higher than 1.6 since the cycles spent for time-skewed
penalty and loop initialization can be overlapped and
the value of o may be lower than the estimated
optimal.

The analysis described above is simplified for
easy understanding. However, from the analysis above,
we conclude that whenever a vector loop is suitable
for SIMD type execution, D-mode is an easier and at
least as effective way for execution.

Performance Models for HVLIW/ILP Machines

In the following discussion, analytical models
are built for the HVLIW and ILP machines in Fig.4
and Figl, respectively. Since the method for
exploiting the parallelism of non-vector codes are
similar in both machines, the effects of inter-cluster
communication, speculative execution and branch
penalty, etc. are not considered in the modeling for
simplication reasons. A main point of the analysis is
on the effects of memory hierarchy. Since HVLIW is
equipped with two-level buffer, the memory hierarchy
of ILP machine is equipped, for fairness, with two-
level caches with the same probability of miss raie
and miss penalty. ‘

The cycles spent for ILP machine are estimated
first. Assnome that the length of the pipelines of all the
functional units are equal to S. Then the number of
cycles needed to execute the program, excluding
delays caused by branches and/or memory references,
can be estimated using the following equation. where

Proceedings of International Conference
on Computer Architecture

pn means the average parallelism extracted from

machine codes.

T*(1-R))-Min(g, N*K)
Min(2, N*K)

For the delay caused by branch operations and
memory references, let us assume the following
parameters:

R,: the ratio of memory operations in the entire

program.

Ry : the miss rate of first-level cache.

R,»: the miss rate of second-level cache.

Dy the number of pipeline stages stalled due

to a first-level cache miss.

D,»: the number of pipeline stages stalled due

to a second-level cache miss.

It should be noted that the memory reference
will lead to a situation where only D,/ D,,» operation
slots be stalled. In the model, there are Min(p,
N*K)/o effective slots exist in an instruction cycle.
Then the total delay can be briefly defined as:

C; = Cycles for memory references =
er, *(R0 Rml (Ot +Dmy "Rpny)
: Min(2, N*K)
B Ry "D +Dpg "Ry)

Cy=C3+(5+

)

The total number of cycles required by an ILP
machine can be estimated by the sum of C, and Cs.

The number of cycles needed by HVLIW,
again excluding delays caused by memory delay, can
be estimated by the following equation:

* — 3 *K
Cg = Cy+Cs +(S+T (I—R'I) I\r/lln(N K, 1)
Min(N*K.)

In order to consider the delays caused by the 3-
stage memory preload/poststore operations, let us
assume that the miss rate and miss penalty of 3-stage
memory are the same as those in the two-level caches,
as described above, and that P represents the number
of data words that can be packaged in a
preload/poststore instruction. Now, the penalties
caused by the 3-stage memory preload/poststore
operations can be estimated by equations (7) and (8),
for the D-mode and the L-mode, respectively.

C, = (T*Rl *R,)*(sz *R~m2 +Dm
N 2*N

)*le

__T*(-R*R,)*(sz*RmZ"'Dml»
Min(z. K*N) / K P

3

The total number of cycles required by HVLIW
can be estimated by the sum of Cs. C; and C;.

Amnalysis Results

88

We first define a standard model by setiing
values to the parameters as shown in Table 2. As a
second step, the ratio of vector codes(R)) is tuned from
0.1 t0 0.9 and the average ILP parallelism(y) is varied
from 2 to 16. The resultant speedups of HVLIW over

 ILP machine are listed in Table 3.

Table 2. Parameters for Standard Model

N 4 S 4

N| 10 |Ry 0.25
D, 1 D, 10

P K*N/4 T 1000000
K 4 |oj 32N
Ry 005 |R. 0.1
Dm N Pm N

Table 3 shows that HVLIW can always gain a
better performance than ILP machine. This situation
becomes more evident when the vectorized portion is
increased. Fig.9 shows the curves of the speedups by
varying vector rate. From the curves that proportional
io the growth of vector rate, we can conclude that
HVLIW inherits not only the feature of fine-grained
arallelism. but also that of the data parallelism.

N=4K=4

Fig. 9. Speedup of HVLIW over ILP Machine by
Varying Vector Rate

The maximum speedup can be achieved is
about 1.567 when both the vector rate and the ILP
parallelism are high enough. It should be noted that it
is mainly the SIMD type execution which provides the
HVLIW an edge over the ILP machine. When the
execution for non-vector codes is included, the benefit
gained may become less obvious. Ii is the reason about
the degradation of the speedup than the value
estimated for D-mode execution with 1.6 speedup.

The 3-stage memory is designed not only for
reducing the complexity of interconnection network
from cross-bar to bus connection, but also for
promoting the efficiency of on-chip memory hierarchy.
We find that the performance of 3-stage memory is
2.534~5.811 times better than two-level cache for
different (p.R)) pairs.

Many other observations can be made by
tuning values of different parameters. For one
example, we find that the packing ability of compiler
for 3-stage memory (P) . will obviously influence the

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Table 3. Speedups of HVLIW Over ILP Machine

u=2 p=4 u=6 uw=8 | p=10 | u=12 | p=14 | p=16
Ry;=0.1 11023] 1.031 | 1.039 | 1.047 | 1.054 | 1.061 | 1.068 | 1.075
R=03] 1.046 | 1.074 | 1.099 | 1.122 | 1.144 | 1.163 | 1.181 | 1.198
R;=05 | 1.083 | 1.137 | 1.182 | 1.219 | 1.25 1.277 | 1.300 | 1.321
R=07 | 1.153 | 1.240 | 1.300 | 1.345 | 1.378 | 1.405 | 1.426 | 1.444
R=09 1339|1439 | 1.488 | 1.516 | 1.535 | 1.549 | 1.559 | 1.567
efficiency of 3-stage memory in non-vector execution. Models for Compiler-Controlled -Speculative
When the value of P is tuned to 1, 2, 4 and &, the Execution,” IEEE Trans. Comput., Vol. 44, No.
efficiencies over two-level cache are changed from 4, pp.481-494, April 1995
0.25, 1, 2.5 to 5, respectively. For another example, [6] M. D. Smith, M. S Lam and M

when the latency of off-chip memory access (Dyo) is
increased to 20, the performance, of 3-siage memory
decreases from 2.534~5.811 to 1.523~4.2.

V. Concluding Remarks

With the trends of microprocessor design in
mind, we have proposed in this paper a new type of
parallel architecture that combines the features of
both ILP and SIMD machines. By using special
execution modes, this architecture can exploit both

instruction level parallelism and loop level parallelism.

A special on-chip 3-stage memory hierarchy is
proposed. From the results made by theoretical
analysis, we expect that the parallel architecture will
have a gain in performance of up to 1.567 times over
traditional ILP machine.

We have reached the first step of our design
goals so far. There are at least four directions of
research that can be studied in the future: the
inclusion of MIMD style execution, the design of
speculative execution in. multi-cluster environment,
the design of a fast inter-cluster communication
network, and, above all, the implementation of an
effective compiler.

References

[1] E.McLellan, "The Alpha AXP Architecture and
21064 Processor," IEEE Micro, pp. 36-47, June
1993.

21 S. P Song et al, "The PowerPC 604 RISC
Microprocessor," IEEE Micro, pp. 8-17, Ociober

1994,

[3] D. Alpert and D. Avnon, “Architecture of the
Pentiuvm Microprocessor,” IEEE Micro, pp. 11-
21, June 1993.

[4] J. L. Hennessy and D. A. Peiterson, Computer
Architecture: A Quantitative - Approach, 2nd
edition, Aforgan Kaufionann Publisher, Inc.,
1996.

[5] P.P. Chang, N.J. Warter, S. A. Mahlke, W. Y.
Chen, and W. W. Hwu, “Three Architectral

&9

Horowitz, “Boosting beyond static scheduling in
a Superscalar Processor,” Proc. 17th Annual Int.
Symp. Computer Architecture, pp. 344-253,
1990.

[71 S. W. Keckler and W. J. Dally,“Processor
Coupling: Integrating Compile Time and
Runtime Scheduling for Parallelism,” Proc. 19th
Annual Int. Symp. Computer Architecture, pp.
202-213, 1992.

(8] M. J. Flynn,"Some Computer Organizations and
Their Effectiveness ", IEEE' Trans. Comput.,
21(9), pp.948-960, 1972

[9] A Wolfe and J. P. Shen,“A Variable Instruction
Stream Extension to the VLIW Architecture,”
Proc. of the 4th International Conference on
Architectural ~ Support. for Programming
Languages and Operating Systems, pp.2-14,
April 1991.

[10] G. S. Sohi, S. E. Breach, T. N
Vijaykumar, “Multiscalar Processors,” Proc. 22th
Annual Int. Symp. Computer Architecture, pp.
414-425, 1995.

[11] R. M. Tomasulo, “An Efficient Hardware
Algorithm for Exploiting Multiple Arithmetic
Units,” IBM Journal, pp.25-33, Jan. 1967.

[12] G. R. Beck, D. W. L. Yen, "The Cydra 5
Minisupercomputer: Architecture and
Implementation," The Journal of
Supercomputing, vol. 7, no. 1/2, pp. 143-180,
1993, ‘

[13} J. A. Fisher, "The VLIW Machine: A
Muliiprocessor for Compiling Scientific Code,"
IEEE Computer, pp. 45-53, July 1984.

{14] M. S. Lam, "Software Pipelining: An Effective
Scheduling Technique for VLIW Machines,"
Proc. ACM SIGPLAN Conf. Prog. Lang. Design
and Implementation, pp. 318-328, 1988.

[15] L. Wang, C. T. Kan, J. W. Jou, "A Dual-Mode
Homogeneous VLIW Computer and Its Memory
Hierarchy," Proceeding of the Iniernational
Computer Symposium, Taiwan, pp.457-464,
December 1994,

