Proceedings of International Conference
on Computer Architecture

The Analysis and Detection Method for Nondeterminacy in
Parallel/Distributed Program

Li-Wei Chu and Tsung-Chuan Huang
Department of Electrical Engineering
National Sun Yat-Sen University
Kaohsian 80424, Taiwan, R.O.C.
tch@mail.nsysu.edu.tw

Abstract

Debugging parallel programs is more difficult than
debugging traditional sequential programs. The
difficulty is mostly due to the synchronization and
communication between componenis of a parallel
program. The concurrent components of a parallel
program communicate with each other via either shared
variable or message passing. Without proper
synchronization ~— between these communications,
nondeterminacy may arise. In shared variable model,
nondeterminacy is caused by data race, and in message
passing model it is caused by message race.

In this paper, we presented a graph based analysis
technique suitable jor message passing system to detect
message race. Since this technique can be applied on
trace analysis(post-mortem analysis), it can help the
programmer find all potential races and the errors caused
more efficiently. The new detection method will enhance
parallel debuggers the capability of race detection and
nondeterminacy elimination.

1. Introduction

Parallel processing, the method of having many
small tasks solve one large problem, has emerged as a
key enabling technology in mordemn computing. As
more and more organizations have high-speed local area
networks interconnecting many general-purpose
workstations, the combined computational resources
may exceed the power of a single high-performance
compuier. We will call the parallel programs that
execute in such environment and communicaie via
message passing, as parallel/disiributed programs [8].

A parallel program exhibits nondeterminacy when
it gives different results on different runs, given the same
input [4]. When processes communicate via messages,
variations in process scheduling and message latencies
can cause race condition. The race condition is a
source of nondeterminacy.

The classic approach to debugging sequential
programs involves repeatedly stopping the program
during execution, examining the siate, and then either

continuing or reexecuting in order to stop at an earlier
point in the execution. This style of debugging is
called ¢yclic debugging. Unfortunately, because of
nondeterminacy, parallel programs do not always have
reproducible behavior; the undesirable behavior may not
appear when programs are reexecuted.

The current methods for determining potential races
in parallel programs can be roughly divided into three
groups:compiling time analysis [9,1], run time analysis
[3,10], and trace based analysis [4,5].

This paper describes a mechanism that can find
errors caused by message race and allow cyclic
debugging to be applied during reexecution. In section
2, we will give message race a formal definition.

Our approach to the detection of message races is
based on trace analysis. The trace analysis works by
firstly obtaining a process communication trace of the
program for a set of input values, then analyzing this
trace output for possible races using the algorithms
presented in this paper. For the sake of simplicity, all
programs in this paper are considered to have a fixed
number of processes and all receive events in the
programs are to be blocking, i.e, the receive retumns only
when the data is in the receive buffer.

The irace file records the information of
communication events(send events and receive events)
among the concurrent processes during the execution of
parallel/distributed program. For convenience ~ of
explanation, we will use process-time diagram [8] to
describe these information.

2. Race Condition

It is frequently possible that more than one message
is available for one receive event in a process of
parallel/distributed program if no proper synchronization.
A process-time diagram is a convenient way to describe
the communication of a message passing parallel
program. In a process-time diagram, the process's
execution is represenied as vertical lines; time flows
down from the top of each line. When there is a
message from process P; to process Pj, we draw an arrow
from P; to P; at the corresponding send event and receive

90

eveni. For example, in Figure 1, there are four
processes:P; 1o Py, 2 is a message sent from the send
event s, in P, to the receive event r, in P, and so on.

Defimition 2.1 Reachable Set: In a process, reach(r)

is the set of messages which their corresponding send
events can be concurrent with receive event r =]

sn

Figure 1. Process-time diagram.

When the computation reaches a receive event, it is
not possible for messages not in the reachable set to be
received at that receive event. For the example of
Figure 1, reach(r)) is {a, b, e, g, k}(their corresponding
send events are 8y, sy, 87, Sg, 81;). Note that, f is not in
reach(r;) because before r3 is done message d can not be
sent to r); Before r; is done message f can not be sent to
r;. That is, s; can not be concurrent with r.

In PVM(Parallel Virtual Machine), the send event
of a message can specify which process to send and
label the message with an integer identifier msgtag.
For areceive r in process P, if a message is sent to P and
its msgtag is the same with the label that r specifies, then
we say that this message is acceptable at r.

Definition 2.2 AMessage Race: A message race
occurs at a receive event r, iff reach(r) consists of at least
~ two messages p and g, such that p and q are acceptable
atr 8

If we can create the reachable set for each receive
event, we are able to test whether there exists a message
race at that receive.

During the execution of a program, it is possible
that, for a particular process, before a send event is done
all the messages appearing in the reachable set of the
receives following this send event can not be sent. In
other words, under this circumstances, the send events
sending the messages in the reachable set of the receives
following this send event are controlled by this send, and
the number of the messages conirolled by this send event
is equal to the number of receives following this send.

But how can the send event in process P conirol the
messages that are sent to P? We know that, in parallel

21

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

programs, the synchronization between concurrent
processes is through communication. Thus, by sending
messages to other processes, the send events in P can
control the execution of those send events in other
processes which will send messages o P.

Definition 2.3 Control Point: A control point in a
process P is a point locating at the send event s that
occurs immediately after a receive r in the process-time
diagram, such that the number of the messages
controlled by s is equal to the number of the receives
following s. @

For example, in Figure 1, process P, contains a
control point at s;, and process P, contains another
control point at s;. Definition 2.3 implies that the
number of messages received at the receives above a
control point is equal to the number of these receives. In
addition, only messages that are received between two
consecutive control points of a process may cause race.

3. Task Graph

Since we concentrate on trace analysis, it is much
easier to prove certain properties about the execution of
message passing programs when the execution is
represented as a graph. For this purpose, a graph is
constructed from the significant events that are recorded
in a log file by executing an instrumented version of the
program being debugged.

Theorem 3.1 Ina process, for any two receives, r; and
15, if there is no any send existing between them, then
reach(r)) = reach(r).

proof: Letr, locate at the position behind r; in process-
time diagram. If there exists a message m such that
m € reach(r)butm ¢ reach(r;), then there must
exist a send between r; and r, such that m is controlled
by this send. This contradicts with the condition given
above.

But, is it possible to exist a message n such that
n € reach(r)butn ¢ reach(r)? This condition
also can not be true because if n ¢ reach(r:) then
before 1, is done n can not be sent. This means that when
the execution reaches ry, n must have not been sent. Butr,
is before r,, n ¢ reach(r) implies n ¢ reach(r) .

.This contradicts withn € reach()) .

From the above discussion we can conclude that
m e reach(r) iff m & reach(r) . @

In a task graph, the vertices set is formed by the
collection of tasks, and the transformation from a
process-time diagram to its corresponding task graph is
defined as follows:

Proceedings of International Conference

on Computer Architecture

Definition 3.1 Process-Time Diagram to Task Graph
Transformation [2]:
1. First Task: For each process represented in the
process-time diagram, the process segment in the
diagram starting with the beginning of the process and
terminating with either the instruction immediately
followed by a receive, or termination of the process,
forms a task.
2. ‘Other tasks: A process segment in the process-time
diagram which is not included in any task, starting
with the receive following an instruction that terminates
an existing task and ending with either the instruction
immediately followed by the first receive after a send or
the termination of process, forms a task.
3. Edges: All messages in the process-time diagram are
preserved in the task graph, and we call such edges the
" message edges. In addition, the edges from a task to
the immediately following task are called the task
edges. &

For example, the process-time diagram in Figure 1
can be.transformed into its corresponding task graph
shown in Figure 2. In the process-time diagram, tasks
are represented by shadows labeled with T;, which form
the vertices of task graph. We can see that T starts with
the beginning of process P, and terminates at the
instruction before r;. T, starts with r; and terminates at
the instruction before 1, and so on. Note that, we
represent each task edge with a broken line.

B P P B
. — ¢
4] S
il a || o™i
T s E s s
&
n ¢ . /
g T
5
T i

Al S ryj

T 07 |
11|

T

] y

(a) Process-time diagra

(b) Task graph

Figure 2. Process-time diagram and its corresponding task graph.

From Theorem 3.1 and the definition of
transformation from process-time diagram to task graph,
we can see it is true that all the receives in a task have
the same reachable set. This implies that when we are
detecting message races, we do not have to analyze each
receive’s reachable set one by one, but can just do it task
by task. Therefore, for simplicity, we will use reach(?)
to represent the reachable set of every receive in task ¢,
because the reachable sets in task t are all the same,

4. Message Race Detection

- Definition 4.1 In a task graph, all the tasks, in a

92

process, locating between two consecutive conirol points
are said to be at the same control point level. If a process
contains no control point, then all the tasks are at control
point level 1. The control point level receive of a
control point level i is defined as the set of messages
appearing in the reachable sets of receives at control
point level i, denoted by CPLR(i). B

Thus, all of the tasks from the first task in a process
to the task containing the first control point are at control
point level 1. For example, in process P; of Figure 3,
because T, contains a control point, tasks T, and T, are
at control point level 1 and Tj is at control point level 2.
Because process P, contains no control point, all the

tasks in P, are at control point level 1. In addition, the
contents of CPLR(1) in P, is {d}.
Py P2 P3 Py
cf ;/-? N
A"
control point J/ g " .. control point
fevel 1 = PA Alevel 1
.{*
control poin|
level 1
g ’ ™ . control point
control poini 6\/ N\Tﬁ P el
i S :
level 2 <" 7Y _J,> S L P~ /X\i B 1
R TGL’ contlrol poin/% ,V; e
S~ p g o level 1 X @\,
\

7

__/ ~ -

Figure 3. Control point level in task graph.

Theorem 4.1 For a particular process, let i be a
control point level. If a message is in CPLR(i), then it
will not be in the reachable set of receives at other
control point levels.

proof: For two control point levels i and j in the same
process P, leti <j. Ifamessagem € CPLR(i) then,
from the definition of control point, we can get that m
can not be in the reachable sets of receives in control
point level j. Because there is a control point existing
at conirol point level i, m € CPLR(j) means that m is
controlled by that control point. This contradicts with
m € CPLR(i), therefore m & CPLR(j).

In another aspect, definition 2.3 implies that the
number of messages received at the receive events
above a conirol point is equal to the number of these
receive events. Thus, for any message in CPLR(j), it
must have been consumed when the execution reaches
the receives at control point level j. So, if message
n € CPLR(j), it follows thatn & CPLR(i). From the
above discussion, the theorem follows. B

Theorem 4.1 indicates that, in a -process, only
messages received at the same control point level can
race with each other. Since the messges received at
control point level i can never be received at another
control point level j, they will not be in the reachable set
of the receives at control point level j. Thus, when
building reachable set, we can just analyze those
messages at the same control point level to find potential
races rather than analyzing the messages received at all
tasks in that process.

Definition 4.2 Control Set: The control set of a task ¢
contains all the messages controlled by task ¢ and we

denote it as cs(¥). =
Let task ¢ be at control point level j. Definition 4.2
implies that cs(?) is equal to ycprrri). Since the
i<j

messages received at the receives above task # can not be
conirolled by ¢, the content of cs(?) must be the messages
received by all the receives below ¢ For example, in
Figure 3, the contents of cs(T) is {d, h}.

The following algorithm can build the control set
for every task by tracing a matrix, sm, which keeps a
record of the communication between tasks. If there
exists a message sent from task i to task j, then sm[i][j]
will increase by one.

[Algorithm 4-1] Building control set
Input:
Sm: Matrix that keep a record of the communication
between tasks .
Tskent: The chararcteristic table for every task.
Process _char: The characteristic table for every process.
All tasks: The total number of tasks in a task graph.

Output:
CS: the control set for every task.

Method:
/* This procedure is used to trace the sm, if sm[i][j] = 1,
then it denotes that task i send a message to task j */
procedure find _send(ct, target);
{
/* check the current task ct and others tasks that it
sends messages to them*/
i=1;
while (i != (all_tasks+1))
/* check every element in sm */
{
if (smftarget][i] '= 0) /* if task target sends a
message to task i */
/* if task i and task ct is in the same process */
if (tskentfct].process = tskentfi]. process)
put_message(ct,target,i);
else
find_send(ct,i),

23

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

i+
} .
/* check the tasks that follows the current task in the same
process */
x = tskentftarget].process_index+1;
y = tskentftarget].process;
if (x <= process_char[y].total task)
find_send(ct,process_char[y].tasks[x]);
}
/* MAIN PROGRAM */
{
/* begin building the control set with the last task*/
for (every process)

current_task = process_char(j].last_task;
while(current_taskc>=process _char{j]first task)
{
i=1;
while (i != (all_tasks+1))
{
if (sm[current_task][i] != 0)
find_send(current_taski);
i+
}
current_task = current_task - 1;
}
}
}

For a task t, messages received at upper control
point level and in cs(?) will not race with the messages in
reach(®). Theorem 4.2 will show this.

Theorem 4.2 In a process, if task t is at control point
level i then reach(t) = {all messages in this process} -
(CPLR(1) \J CPLR(2) U ++-\U CPLR(i-1)) - CS(T).

proof: From Theorem 4.1 and the definition of control
set, the theorem follows. z

Applying this theorem we can find the reachable set
of every task as follows:

[Algorithm 4-2] Building reachable set
Input:
Process_char: The characteristic table for every process.
CS: The control set of each task.
Tskent: The chararcteristic table for every task.

Output:
Reach: The reachable set of each task.

Method:
/* MAIN PROGRAM */

{

for every process

{

Proceedings of International Conference
on Computer Architecture -

current_task = process_char{j]first_task; /* from
the first task in a process*/ -
below_cp = process_char(j].first_task;
cp_level=1;
while (current_task<=the last_task in process)
{

index=1;

i=current task+1;

tskent[current_task].cp_level =cp_level,

/% set the total receive number below
current_task */

for every task below the current_task
for (x=1;x<=tskent(i].total_recv;x-++)

~ index-++; .

tskent[current_task].total_under=index-1;

/* if the number of ¢s is the same with the
number of receives below current_task, then it
is a control point*/

ifics[cwrrent task].total message=
tskentcurrent_task].total under)

{/* for every control point, build the control
point table*/
index =1;
for all messages in the control point level
{/* put all the messages in the control point
level into cpl to get CPLR(cp_level)*/
cplfjlicp_level]. message[index]=
rsmftskent[x].recvy]];
index++;
}
}

current_task++;

for every task in this process
{
index=1;
for every message received in this process
{/* if this message is not in the cs() of the
taskc*/
if (in_cs =0)
{ /* if the task is in control point level 1*/
if (tskentfthis task].cp_level = 1)
/* reach(task) total message of a
process - cs(task)*/
reachfthis task].message[index] = this
message;
else /* if the task is not in control point
level 1 */
if (in_cplr == 0)/* if this message is not
in upper control point level*/
reach[this task].message[index] = this
message;

}
H
reach(this task].total_message = index - 1;
3/*end of this task®/

94

According to the definition of message race, we can
see that only when the number of messages accepted at
the currently analyzing receive are larger than or equal to
2, message race may happen at that receive.

[Algorithm 4-3] Detecting message race
Input:
Reach: The reachable sets of receives for every task.

Output:
Information about messages possible to arise racing.
Method:
/¥ MAIN PROGRAM */
for every process
if{reach[current task].total_message >=2)
for every receive in current task
{
index=1;
for every message in reach(current task)
if ((the tag of the send is the same with the receive) || -
- (the tag of the receive is any))
{
" acceptfthe current
receive]. message(index]=reach(the current
task].message]z];
index++;
}
accept{the current receive].total message = index-1;
if (accept[the current receive].total_message >=2)
{
report the identifier of receive to user;
¥
¥
h
h

/* for every task */
/* for every process */

5. Simulation

The simulation of the message race detection is
done by first getting a PVM trace file as the input to
build the process-time diagram and the tag-table, and
then uses these tables to construct the task graph. After
constructing the task graph, we can then build control set
for every task and by theoremn 4.2 build the reachable set.

The process-time diagram obtained from the trace
file in our simulation is shown in figure 4.

For each send event, the first argument specifies
which process to send and the second argument specifies
the message tag. Similarly, the first argument of the
receive event specifies from which process the receive
event can receive and the second argument specifies the
message tag. For example, sendy(2,3) specifies the
message with tag=3 is sent to process 2; recvs(l,-1)
specifies this receive event is waiting for a message with
any tag number to be sent from process 1.

receive any message

send to Py
P Py 33 Ps
send)(2,8) ‘\\\\‘\~\-\£§£
! recvs(l,-1)
tag =3
) / sendg(L sendo(2,4) send)3(2,3)
send7(4,4)
recv((2.3)
4.3
senda(2.4) m N
recv2(3,3)
recv7(4,3) | recva(ld)
recva(2,-1) sendg(1,5)
d3(2,4
send3(2.4) \ o)
|_recvgth#y | send) (1,3
| f"/“(/)/ send4(1.3)
recv3(3,3) [
recv4(4,3) /
R
>
send (3,5)] recvy(1,-1)
sends(4,4) recv)o(1,4)
recv4(3,-1)
send)9(4,4)

Figure 4. The process-time diagram for our simulation.

The information obtained from process-time
diagram is as follows :
1. The receive and send events in a process :
process 1 P, : send, recv; send, recvy

recv, send, sends
recvs sends send; recvg
recvg Sends recve recvy
process 3 Py :sends send), send;; recvy sendyp
process 4 P, :send;; recvy, recvi; sendy recvy

send; recv;

process 2 P, : recv,

2. The send events and their corresponding receives :

In process 1, the send events are :

<send 1> - corresponding to —> [recv 5] {in process 2}
<send 2> - corresponding to —> [recv 8] {in process 2}
<send 3> — corresponding to —> [recv 9] {in process 2}
<send 4> - corresponding to —> [recv11] {in process 3}
<send 5> - corresponding to > [recv10] {in process 2}

In process 2, the send events are

<send 6> — comresponding to —> [recv 1] {in process 1}
<send 7> - corresponding to —> [recv13] {in process 4}
<send 8> - corresponding to —> [recv 2] {in process 1}

In process 3, the send events are :

<send 9> — corresponding to —> [recv 6] {in process 2}
<send10> — corresponding to —> [recv12] {in process 4}
<send11> - corresponding to —> [recv 3] {in process 1}
<send12> — corresponding to > [recv14] {in process 4}

In process 4, the send events are :
<send13> ~ comesponding to —> [recv 7] {in process 2}
<send14> — corresponding to —> [recv 4] {in process 13

The task graph obtained from the process-time diagram
is:

95

Joint Conference of 1996 international Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

prcess 1 : preess 2 ¢ prcess 3 : precess 4
| I | |
taskll task 5 . task 8 task 10
{send 1} [recv 5] ‘,:":{ send 9} 4 send 13)
| { send 6 } { send ‘0;» |
task 2 £ (send7) A resk 11
[recv 1]'.) > [reev 12]
{ send 2 } task 6.7 task 9 [recv 13]

| R recﬂy"g]/9 /f [reco 11) T send 14)
task 3 <. .',Fé:(.:v 7] { sen»d”l2 } |
[recv 2 1™ recv",S"l]'; . \X task 12
{ send 3 } ’ 4 se,n"é' 8]-
[recv 14]
| Vz dl
task 4 task 7
[recy 3] [recv 9]
[recv 4] [recv 10]
{ send 4 }
{ send 5 }
There are 12 tasks in 4 processes
After the analysis, the send-metrix is :

(1 23 456 7 8 9 1011 12\
10000100O0O0OGOCGOO
20000601000O0O0CCO0°O0
30000001O0O0O0O00O0
4 00000O0T1O0OT1QO0O0CTO0
501 000O0O0O0O0CO0OT1 O
6 001 00 0O0O0O0CO0CO0OTUO0
7 000 000O0O0O0CO0OO0OTO0
8§ 0001 010O0O0CO0T1O0
9000 000O0O0OO0O0O01

10 0 0 0001 00O0O0CO0O0

1 00 01 00 0O0O0CO0OCO0O0

\12 0 000O0O0OOOOOCO ()

For each task, we build its reachable set as follows where
reach(i) represents the reachable set of task i :

fask 1
Task 1 has no receive instruction.
task 2
message:send 6 -—>recv 1
message:send 11-----—--- ->1ecy 3
message:send 14---——--—- > pecv 4

There are total 3 messages in reach(2).

For each receive event in a task, we will checlc if every
message in its reachable set can be received by i

ek Apalyzing recvl (tag = J)Frke*

Proceedings of International Conference

on Computer Architecture

message : send 6-—-->recv | is accepted at recv 1

No message race here.

task 3
message:send 6------—--—->recv |
message:send §---------—--- >1ecv 2
message:send 11--------- -->r1ecv 3
message:send 14------------ >tecv4

There are total 4 messages in reach(3).

ek Analyzing recv2 (tag = -1)¥¥*

message : send 6------>recv 1 is accepted at recv 2
message : send 8----—-->recv 2 is accepted at recv 2
message : sendl1----->recv 3 is accepted at recv 2
message : send14----->recv 4 is accepted at recv 2

There are 4 messages racing with each other (in recv 2) : 6,
811,14

task 4
message:send 6-----wm--=-- >recv |
message:send §------------>recv 2
message:send 11------------ > recv 3
message:send 14--------—---- >recv 4

There are total 4 messages in reach(4).

*Hkxk Analyzing recv3 (tag = 3):%*k*

message : send11----->recv 3 is accepted at recv 3
No message race here.

#rE* Analyzing recvd (tag = 3): 4 #++*

message : send14----->recv 4 is accepted at recv 4

No message race here.
6. Conclusion

In this paper we describe a graph based technique
which can detect message races in a parallel program. In
PVM, we can use the libpvm trace facility to trace the
events we are interested in. By editing the trace mask, we
can select the events to be collected into the trace file.
The trace output contains all the information needed to
build a task graph.

We have demonstrated algorithms that can identify
which messages at a receive will race with each other.
An advantage of our approach is that it does not place
any restriction on the control structure of the programs.
Tterative control structures such as loops, which are

96

difficult to analyze statically, can easily be traced by our
approach. In addition, our approach have a better
performance than run time analysis. Because the time
delay of run time analysis may be caused by CPU
scheduling or network delay, it is even possible for a
process to take several hours to wait for the arriving of a
message. Thus, our approach have a averagely betier
performance than run time analysis.

Since our technique can be applied to parallel
debugger, we can help users who are troubled by
nondeterminacy to isolate errors caused by message race
when writing and debugging parallel programs.

References

[1] D. Callahan, K. Kennedy, and J. Subhlok, “Analysis
of event synchronization in a parallel
programming tool,” in Proc. Second ACM
SIGPLAN = Symp. Principles- and Practice of
Paralleled Programming(PPOPP).

[2] Damodaran-kamal, S. K., and Francioni, J. M.
“Nondeterminacy: testing and debugging in message
passing parallel program,” in Proc. 3rd ACM/ONR
Workshop on Parallel and Distributed Debugging,
San Diego, May 1993.

[31 A. Dinning and E. Schonberg, “An expirical
comparison of monitoring algorithm for access
anomaly detection,” in Proc. Second ACM
SIGPLAN Symp. Principles and Practice of Parallel
Programming(PPOPP), 1990.

[4] P. A. Emrath and D. A. Padua, “Automatic detection
of nondeterminacy in parallel programs,” in Proc.
Workshop Parallel and Distributed Debugging, May
1988, pp. 89-99.

[5] P. A. Emrath, S. Ghosh, and D. A. Padua, “Event
synchronization analysis for debugging parallel
programs,” in Proc. Supercomputing’89, Reno, NV,
Nov. 1989.

[6] Gait, J. “A debugger for concurrent programs,”
Softw. Pract. Exper., Vol 15, No. 6, pp. 539-554.

[7] German S. Goldszmidt, and Shaula Yemini. “High-
level lanaguage debugging for concurrent programs,”
ACM Transactions on Computer Systems, Vol. 8, No.
4, November 1990.

[8] Ming-Jer Lee, “The design and implementation of a
parallel debugger,” Master Thesis EE. NSYSU.
June 21, 1995.

[9]1 C. E. McDowell, “A practical algorithin for static
analysis of parallel programs,” J. Parallel and
Distributed Comput., June 1989.

[10] Netzer, R.H.B., and Miller, B.P., “Optimal tracing
and replay for debugging message-passing parallel
programs,” in Proe. Supercomputing, MNovember
1992, pp. 502-510.

[11] P. Bates and J. Wileden, “High-level debugging
of distributed systems: The behavioral abstraction
approach,” The Journal of Systems and Software

1983, Vol. 3, No.4, pp. 255-264.

[12] R. S. Side and G. C. Shoja, “A debugger for
distributed programs,” Sofiware-Practice and

Experience, Vol. 24, No. 5, pp. 507-525, May 1994.

97

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[13] T. J. Leblance and J. M. Mellor-Crummey,
“Debugging parallel programs with instant replay,”
IEEE Trans. Comput., Vol. C-36, No. 4 pp. 471-482,
Apr. 1987.

