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Abstract

Vector field visualization plays an important role in science and engineering. Its applications range from highly
practical, such as the design of new airplane wings, to the highly theoretical, such as the study of electromagnetic waves.
In the first part of the paper, we will visualize the radar rays intersected with target and show some results of the
analysis. While building the radar system, we are also interested in low frequency electromagnetic waves. Therefore in
the second part, a systematic approach for visualizing electromagnetic waves is proposed. Six important but complex
electromagnetic waves are visualized as field lines. In our system, field lines are clearly and efficiently rendered, and
Jfield magnitudes are indicated by different colors. And propagation, if any, is visualized by animation, with the motion

of lines along the propagation direction .

Keywords: Computer graphics, radar cross section, Doppler spectrum, vector field visualization, streamline
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1. Introduction

To design a target (airplane) by analyzing and
predicting the intensity of the reflected radar wave is an
interesting topic in the radar field [13,14,15]. The
scattered signal of the radar from the target is very
useful in target detection and recognition, hence many
researchers have investigated in this topic for years. The
Radar Cross Section (RCS) Analysis System is
developed to simulate and analyze the scattered signal of
radar from a target according to known theorems in the
radar research field.

Users. can take advantage of our system to draw
planar charts to observe lots of RCS and Doppler
spectrum numerical data. Radar waves, in a sense
similar to light rays in ray-tracing, may bounce onto the
target many times. Hence, we replace radar waves with
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rays in this paper. Similar idea first came from S. W.
Lee in [15]. We use the technique of the ray tracing [8]
to simulate the intersections of radar rays to airplane.
This helps the designers to understand the scattering
mechanism, and so is easy to modify the airplane
structure to fit the required scattering characteristics.

When we consider of electromagnetic waves,
however, it’s no longer correct to simulate the wave
behavior by ray tracing because of their low frequency
property. Instead, we must draw the vector field lines to
show the their behavior. In many elecromagnetic wave
textbooks, almost all sketches of electric or magnetic
field lines for electromagnetic waves are shown in 2D
diagrams. For instance, a skeich of the electric or
magnetic field lines for the wave named rectangular
waveguide TM;, mode in the book “Field and Wave
Electromagnetics”[1] is shown in Figurel. However,
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some important 3D information is not easy to be noticed,
when visualizing a 3D vector field in 2D diagram. To
improve upon this, a continuous representation using 3D
lines for electromagnetic waves is proposed, combining
with some visualization techniques, so that the features
of the electromagnetic waves could be clearly and
efficiently visualized.
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Figure 1. 2D diagram of electric and magnetic lines in
textbook “Field and Wave Electromagnetics”

The research of vector fields visualization focuses
on the representation of directional and multivariate data
sets. Algorithms that can show such directional
information have wide application across scientific
domains. There are some commercial packages with the
abilities to handle electromagnetic waves, which display
as arrow lines with the length of the lines proportional to
the vector magnitude. Arrow lines work well for 2D
vector fields and even for 3D vector field if slices are
taken through the field. Yet, they may cause visual
clutter when the entire volume is large and complex. In
recent years, other approaches were presented. These
include sampling the vector field, such as streamlines
[9,12], particle traces [11], and flow volume[6]. Another
approach is to generate texture via a vector field, for
example, spot noise [7] and line integral convolution
{3,10]. These methods cover a variety of applications[5].
However most of them aim to visualize common stream
lines, such as fluid dynamics, which are much different
from electromagnetic waves. For example, we may
observe a turbine stiring water; but we want to observe
the propagation of electromagnetic waves, not their field
direction. Furthermore, there are many rendered image
sets in fluid-dynamics textbooks, but almost none for
electromagnetic waves. These above facts indicate that
too few systems are developed specifically for
electromagnetic waves. Therefore it encourages us to
devote to the visualization of electromagnetic waves.

The remainder of this paper is organized as follows.
Section 2 describes the anmalysis and visualization of
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Radar waves. Section 3 explains the analysis of
electromagnetic waves using vecior field expressions.
We use fourth order Runge-Kutta method in section 4 to
solve this expression, and make some modification to
achieve predetermined accuracy with minimum
computational effort. Some specific visualization
considerations for electromagnetic waves are proposed
in section 5.

2. Radar wave analysis and visualization

First we rénder the target of the facet data which
users designed. Users can change viewing angle through
direct control or by specific value input to understand
the geometry of the target.

The ray-shooting visualizer uses the technique of
the ray tracing, and display the geometry of ray-target
interaction. Users can change view angles to observe the
ray-target interaction in arbitrary direction. Besides, user

. can specify the ray incident angle. When users set up the

desired ray ‘incident angle and launch the rays, the ray-
shooting interaction can be visualized on the screen.We
also allow users to view the rays with specific number of
bounces. For instance, a user may be interested in the
rays with 2 and 4 bounces, he or she can select the
bounce number ‘2’ and ‘4’. Therefore only those rays
with 2 and 4 bounces can display on the screen. This
provides users an ability to understand which
components of the target contribute to these rays.

(Figure 2)

Figure 2. The radar to airplane intersection with hit ray
bounce number represented as different colors



The Radar Cross Section (RCS) analysis is
developed to simulate and analyze the scattered signal
of radar from a target according to known theorems in
the radar research field. The known theorems include
the physical theory of diffraction (PTD), the physical
optics approximation (PO), and the method of shooting
and bouncing rays (SBR)[13]. The system plots the
result of the Radar Cross Section computation in XY-
plot representation, and users can analyze the scattering
mechanism of the target. We take a simple rectangular
plate as the target, and draw the diagram according the
RCS computation results. (Figure 3)
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Figure 3. The plot of Radar Cross Section

In addition, we also compute Doppler Spectrum,
which is caused by the rotating propeller hitting by radar
waves (Figure 4). The density distribution of reflection
changes as the differences of planes, and can be plotted
ag 2D figures wiht some signals transformation
techniques to help recognizing the airplane.
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Figure 4. Computation of the Doppler Spectrum

The previous system [4] implementations just treat
radar transinitter as infinite far away from the target, and

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

the incident rays are parallel beams. But in practical
condition, we must make some modification to perform
near-field dynamic analysis, which radar antenna is put
near a moving target, so as to meet to the real case.

3. Analysis of Electromagnetic Waves Field
Expressions

We are also interested in general electromagnetic

" waves. Electromagnetic waves are vector fields. We

189

consider a vector field defined by a map v:R>>R? x>
v(x), where x is a three-dimensional point (X, v, z) in the
3D volume. For example, for the rectangle waveguide
TM,, mode in a rectangular cross section of widths a
and b, the electric field component at a 3D point(x, y, z)
is

¥(x,Y, 2) = (ELX, ¥, 2), E((X, ¥, 2), EAX. ¥, 2)), where

Ex(x,y’z)z‘%(E)COS(EX)Sin(f-y)Sin(a)*[ -B*z),
pe a a b

B

Ey(x,y,2)= p(%)sln(%x)cos(%y)sln(m K- B*Z) ,

Exx, Y, z) =sin(§x)sin(%y)cos(co*[ -B*z)

The directional structure of v can be graphically
depicted by its integral curve lines, also called
streamlines or field-lines. The streamline of the vector
field has the property that its tangent vector at any point
coincides with the direction of the field at that point.
Considering a streamline P (Figure 5a), the vector at
point (x, y, z) is (Ex, Ey, Ez). Streamline P could be
treated as a curve composed of many segnument (Figure
5b )). one segnment ds is from (%, y, z) to (x+dx, y+dy,
z+dz) (Figure 6), where dx, dy, dz are the projected
length of ds on axis x, y ,z. And angle between ds and x,
¥, Z i$ 0, 0y, a,respectively. The vector field at point (%,
vy, z) is (Ex, Ey, Ez), and the angles between vecior (Ex,
Ey, Ez) and x, y, z axis are B, By, B, (Figure 7)

Since the streamline P is a curve with its tangent
vector at any point coincides with the direction of the
field at that point, we conclude that ay, = By, o = By, 0,
= B, Therefore
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cos(o,)=cos(f,) = dx/ds=E, /norm

cos(a,)=cos(By) = dy/ds=E, /norm (Eq.l)

cos(o)=cos(B,) = dz/ds=E, /morm

norm =\/Ex*Ex+Ey*Ey+Ez*Ez

v(x.y.z) = (EE.E,)
2 Sact
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Figure 5. a streamline
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Figure 6. streamline analysis
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Figure 7. vector at point(x,y,z)

To find a streamline through point(xg, vo, Zo) the
ordinary differential equation Eq.1 has to be solved,
with an initial value(xq, Vo, Zo). The initial point(xy, Vo, Zo)
is a random point located at the bounding box specified
by the user. After integrating the three ordinary
differential equations, we could construct a 3D
streamline(also a field line).

4. Streamline Integration

To integrate Eql, one approach is o iy to
determine the solution in a form from which we can
compute exact numerical values. However, this
approach doesn’t always work, since the ordinary
differential equations discussed in section 3 are too
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complicate. Another approach is to develop schemes for
approximating numerical values of solutions to
prescribed degree of accuracy. We have employed
traditional fourth-order Runge-Kutta method (a fast and

accurate general purpose streamline's integrator)[2].

From Eql, we define a map f R*>>R3, x> f{x),
where x is a 3D point. Let f{x,y,z)=( E, /norm, E, /norm,
E, /norm). The fourth-order Runge-Kutta method
requires 4 evaluations of the right hand side to proceed
from some point x to some other point x;, located a
stepsize h away on the same streamline, i.e.

ki=hf(x)

k= h f (x+0.5k;)
ky=hf(x+0.5 ko)
ky=hf@x+ k)

A x=k/6+ ko/3+ k3/3+ k 4/6
Xp=x+A x +O(h°)

The equation is called fourth-order because it
approximates the solution with an error less than the
power of h'. As the Runge-Kutta method treats every
step in a sequence of steps in identical manner, one must
be careful of choosing the stepsize h. If h is too big, we
save computational time, but lose accuracy. If h is too
small, we achieve accuracy in these ordinary differential
equations solutions with more computational effort.

In order to achieve some predetermined accuracy in
these ordinary differential equations solution with
minimum computational effort, we combine the Runge-
Kutta method with an adaptive stepsize algorithm[2].
Implementation of adaptive stepsize control for Runge-
Kutta method requires that the stepping signal truncation
error information. With fourth-order Runge-Kutta
method, the most straightforward technique is to
doubling step[2]. We will take each step twice, once as a
full stepsize h, then, independently, as two half stepsize
h/2. Let us denote the exact solution from some point x
to other point located a stepsize ahead on the same
streamline by x* and the two approximate solution by
xy(one step h) and x;, ( two steps each of size h/2).
Because the basic method is fourth-order, the exact
solution and the two approximate solution are related by



x° = xp+ OO+
X = xpt 2% (0/2)+ O )+

Let A= xp—xp, = (15/ 16)*h®, we can obtain the
difference between the two numerical estimates. The
value A is a convenient indicator of truncation error.
The idea of adaptive stepsize is to choose h as large as
possible while achieve a user defined error tolerance A.
Since A scales as I’, if a stepsize h resulis in error A,
an optimized stepsize h’ can be obtained by

Ao
h'=h* /——
A

The equation is used in two ways: If A is larger
than A o, we repeat the current step with h=h’. If A is
smaller than A o, on the other hand, we proceed and
take h=min(h’,hy,,) for next iteration, where hy,, is the
maximum allowed stepsize. Obviously, the calculation
of error information A will add to the computational
overhead, but the investment will generally be repaid
handsomely.

We apply fourth-order Runge-Kutta method and
adaptive stepsize Runge-Kutta method to solve the
rectangle waveguide TM,, mode field expression
respectively, and compare their computational time and
memory space utilization.

The rectangle waveguide TM,;, mode propagates in
a rectangular cross section of widths a and b. Ifa or b is
larger, the field lines (electric and magnetic lines) in the
rectangular cross section are longer. The average
computational time for constructing 200 field lines(100
electric lines and 100 magnetic lines) and average
memory space utilization for each line are given in
Table 1. We find that when a>=2.0 and b>=2.0, time
and memory utilization are both saved. It’s easy to
explain the result: Using the adaptive stepsize Runge-
Kutta method, as a field line stretches longer(a or b
becomes larger), a few smaller steps tiptoe through the
region of high streamline curvature, while many great
strides speed through smooth part of the field line.
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Adaptive stepsize | Fourth order

Runge-Kutta Runge-Kutta
a=1.0, b=1.0 11 8
a=2.0, b=2.0 13 16
a=3.0, b=3.0 14 24
a=4.0, b=4.0 16 31
a=5.0,b=5.0 17 39

Table 1. Computational time(seconds). where a and b
are the width and height of a rectangular waveguide

5. Implementation of FElectromagnetic Wave
Visualization

In this section, we discuss some characteristic of
electromagnetic waves, that needed to taken into
account when developing the electromagnetic waves
visualization system.

5.1 System configuration

Our system is developed on an SGI Indigo graphics
workstation in C language with Motif and OpenGL.
Current version visualizes six electromagnetic waves.
The six electromagnetic waves are rectangle waveguide
TEmn and TMmm modes, electric dipole(near field and
far field), and circular waveguide TEmn and TEmn
modes. Users can adjust the parameters of these
electromagnetic waves through graphical user interfaces.
The field expressions of these six electromagnetic waves
are so complex that the field lines of these waves could
not be solved completely and so cannot clearly
visualized by the famous mathematics software
“Mathematica”.

5.2 Vector Field Directions

Because the vector field directions coincide with
the tangent vector of streamline, we can visualize the
vector field directions by injecting one tracer particle
into each sireamline. When a tracer particle are injected
to a streamline(for instance, inject an antielectron to a
electric field line), it will trace the streamline
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continuously to show the directions of vector field.
5.3 Plane Cutting

Sometimes 2D slices of 3D vector fields offers
more meaningful information than 3D streamlines. For
example, Figure 8 shows the 3D electric field lines of an
electric dipole. Figure 9 shows the 2D electric field lines
at plane x=0.0. We can see that the 2D slices of the
electric field lines irradiated by a dipole show the wave
pattern more clearly than that of the 3D one. We use the
OpenGL command—yplane clipping to complete the
work. If we want to cut a 3D volume at plane
Ax+By+Cz+D=0.0, we first reject the points on the half-
space defined by . a clipping plane

Ax+By+Cz+D+d>0.0(d is a small value), then reject the
points on the other half-space defined by a cutting plane
Ax+By+Cz+D<0.0.
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Figure 8. The 3D electric field lines of an electric
dipole(far field)

Figure 9. The 2D eleciric field lines at plane
x=0.0(far field)
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5.4 Depth Cueing

A depth-cueing algorithm provides the way to
simulate the atmospheric attenuation from the model to
the viewer. Figure 10 shows the effect of depth-cueing.

Figure 10. The effect of depth-cueing.
5.5 Pick a field line

Sometimes user want to focus on a specific
streamline to see the behavior of the line. Our system
offer a selection function to let user pick any streamline
in the 3D volume.

5.6 Other Considerations

The magnitude of electromagnetic waves is
indicated by color to clearly visualize the magnitude
scattered over the whole 3D volume. If the
electromagnetic waves will propagate with time, the
transmission of waves is visualized by animation. Since
some parameters are involved in the electromagnetic
waves field expressions, user can adjust the parameters
through a user—friendly interface to inspect the change
of waves.

5.7 Results

Some of the results are shown is the following:
Figure 11 and Figure 12 are the electromagnetic-wave
named rectangle-waveguide TM,;, modes, which was
drawn in the form of streamlines. Figure 13 is the
electric field lines of an electric-dipole Field expression
of this wave is described in spherical coordinate. Figure
14 is circular-waveguide TM;, mode, which propagates
inside round pipes. The field expression of this wave is
described in cylindrical coordinate and a special
function—Bessel function is involved in its field
expressions.



Figure 12. Rectangle-waveguide TM,,
modes(another view)

Figure 13. The electric field lines of elctric~
dipole(near field)

7,

Figure 14, Circular-wavegude TMI mode
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6. Conclusions and Future directions

In this paper we analyzed two kinds of waves.
including radar and electromagnetic waves. First, we
implement the radar visualization system to help the
design of airplanes. In particular the Radar Cross
Section and Doppler Spectrum carry important
information for designers. We will also extend our
system to another kind of target — battleships, which
incur more difficulities since the ocean itself is partially
radio reflective.

We have proposed a streamline model for
visualizing eléctromagnetic waves and present an
electromagnetic wave analysis and visualization system
that incorporated six types of electromagnetic waves,

. Combining with some visualization techniques, the

features of electromagnetic waves could be clearly and
efficiently visualized. The system is useful for better
understanding of the Eleciromagnetic. In fact, one
author, Shyh-Keng Jeng, used these rendered images
and a sample aimation video to illustrate these complex
waves in his electromagnetic course. The response from
the students is both positive and highly encouraging.
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