
USING REDUCED ITEMSET LATTICE TO SUPPORT ONLINE MINING FOR 
DYNAMIC DATABASES 
Kuen-Fang J. Jea  Chi-Hau Hsu 

Institute of Computer Science, National Chung Hsing University,  
250 Kuo-Kuan Road, Taichung, Taiwan, R.O.C. 

Email: {kfjea, frankhsu}@cs.nchu.edu.tw 

 
ABSTRACT 

Current online techniques of mining association rules 
have incurred the problems of huge space requirement 
for the itemset lattice and of limiting the number of items 
in rules or producing an incomplete set of rules. In this 
paper, we propose an improved structure, namely RIL 
(Reduced Itemset Lattice), to keep just enough itemsets 
to support online mining for dynamic databases. Once 
built with the original database, the RIL incrementally 
adapts itself to database updates. Instead of rebuilding 
RIL, a complete set of association rules can be directly 
mined, or expanded first if necessary, from the RIL in a 
short time. Experimental evaluation shows that the RIL 
can effectively reduce the space of itemset lattice and 
mine the rules online for dynamic databases. 

1. INTRODUCTION 

Mining association rules [2,9] from databases of 
transactions has become an important and active research 
area in data mining. It discovers the association 
relationship of items or attributes in the database 
transactions and generates implication rules among them, 
such as “80% of customers who buy milk also buy 
bread” in the supermarket database. The methods of 
mining association rules usually follow Apriori algorithm 
[3]. In each iteration, the algorithm combines related 
items or itemsets into potential itemsets and counts their 
occurrences by scanning the database. They are identified 
as large itemsets for the next iteration of the algorithm if 
their occurrences exceed a user specified threshold 
(minimum support). The rules are finally generated from 
the large itemsets. 

Although Apriori algorithm offers a simple and iterative 
way to generate association rules from databases, it 
incurs the inefficiency problem due to too many database 
scans and itemset combinations. This problem may make 
it difficult to mine new association rules online as the 
user changes the threshold or modifies the database. In 
order to mine new rules online and avoid re-mining the 
whole database, techniques like online mining [1,4] and 
incremental mining [5,6,10] are proposed. 

Online mining [1,4] generates rules online as the user 
changes the threshold by pre-computing the occurrences 
of all itemsets and keeping them in an itemset lattice. The 
itemset lattice, as shown in Figure 1, is a special lattice 
data structure, where its nodes represent items or itemsets 
(i.e., combinations of items) and each link indicates a 
superset-subset relationship. Once a full itemset lattice is 

built with the occurrence of all itemsets pre-computed 
and stored, the mining algorithm can accept 
user-specified thresholds and online generates rules 
without any database scan. However, since the itemset 
lattice may take a lot of memory as the number of items 
is large, the idea of saving a full itemset lattice is 
unattractive and how to prune the lattice becomes an 
important issue in the online mining. 

 

Incremental mining [5,6,10] is the techniques to adjust 
the pre-mined rules according to the database update 
transactions. When the database is updated, traditional 
mining algorithms need to re-mine the database in order 
to get the rules that match the database. On the other 
hand, incremental mining first re-computes all the 
strength of existing rules and erases those rules below the 
threshold. It then checks all small 1-itemsets, identifies 
those becoming large and combines them into candidate 
itemsets. A procedure similar to Apriori algorithm is 
finally applied to generate new large itemsets and new 
rules. Although incremental mining may reduce the 
re-mining cost with fewer database scans, it is still 
possible to combine itemsets and scan the database many 
times, which can result in long response time.  

In dynamic databases where data may be changed 
frequently, existing incremental mining techniques do not 
guarantee a fast generation of new association rules (i.e., 
support mining online). If the idea of itemset lattices 
developed in the online mining can be integrated into 
incremental mining techniques for saving and 
incrementally updating the occurrence of itemsets, the 
number of database scans can be reduced or even 
eliminated. However, storing the full itemset lattice may 
take a lot of memory space, as mentioned before, it is 
therefore the purpose of this study to propose a new and 
space-saving structure, namely the reduced itemset lattice 
(RIL), to efficiently support online mining of association 
rules for dynamic databases. 



 

This paper is organized as follows. Section 1 describes 
the background, motivation and goal of this study. 
Section 2 presents the related work on both online 
mining and incremental mining. Section 3 describes the 
RIL, how to build RIL and use RIL to mine association 
rules online. Section 4 presents the incremental algorithm 
of adjusting RIL for dynamic databases and Section 5 
shows our performance experiments and compares our 
approach with existing techniques. Finally Section 6 
gives our conclusion of this study. 

2. RELATED WORK 

This study aims at supporting efficient online mining of 
association rules for dynamic databases by employing the 
reduced itemset lattice (RIL). Therefore, this section will 
review the related research work on both areas of 
incremental mining and online mining.  

2.1. Incremental Mining 

Incremental mining [5,6,10] is the technique to adjust 
existing rules for dynamic databases according to the 
update transactions. When the database is modified, the 
technique first erases all itemsets that become small and 
re-computes all the strength of rules in order to erase 
those below the threshold. It then identifies all small 
1-itemsets that become large and use them to combine 
with other large 1-itemsets for generating candidate 
2-itemsets. A procedure similar to Apriori algorithm is 
applied to these candidate 2-itemsets, which repeatedly 
scans the database, computes the strength of and 
combines new candidate itemsets until no more new 
high-order candidate itemset can be generated. New rules 
are finally generated from the new large itemsets. As 
compared to re-mining using Apriori algorithm, 
incremental mining scans the database fewer times and 
handles fewer itemsets. 

In order to reduce the database scanning time, two kinds 
of methods have been proposed. In [5,6], only the update 
transactions are scanned while computing the strength of 
candidate itemsets, and the whole database is scanned 
once for computing the actual strength of large itemsets 
at the final step of deriving new rules. On the other hand, 
[10] starts from finding all large itemsets of the update 
transactions and compares them with existing large 
itemsets to generate the new rules. This method also 
needs to scan the whole database once for the actual 
strength of large itemsets at the final step. Although 
reducing the times of scanning the whole database to 
once, these methods may spend much time in the 
strength checking at the final step. And even worse, they 
may miss some large itemsets and thus produce 
imprecise rules. For example, if some itemset X seems to 
be large in the update transactions but it is indeed small 
in the whole database, these methods would erase X and 
leave the subset of X unconsidered. 

2.2. Online Mining 

Online mining [1,4] is the technique to generate rules in a 
short time according to the threshold change. Without 
scanning databases, this technique generates rules by 

using the pre-computed occurrences of all itemsets saved 
in the itemset lattice structure. But for the consideration 
of memory space limit, saving the full itemset lattice may 
not always be possible.  

[1] proposes an online mining approach for dynamic 
databases. By setting the maximum cardinality of 
itemsets (i.e., maximal number of items occurred in an 
itemset), it stores only those itemsets without exceeding 
the maximum cardinality in order to reduce the space 
requirement of itemset lattice. The lattice is 
incrementally adjusted according to the update 
transactions, and rules are derived online from the lattice 
while the user inputs a threshold of minimum support. 
This approach however has two drawbacks. First, the 
maximum cardinality is not easy to determine in advance 
because if the value is set too high, the itemset lattice 
will take a lot of memory space, and on the other way, 
the rules of cardinality higher than the value would lack. 
Second, the size of itemset lattice is still too large. For 
instance, if the maximum cardinality is 6 in a database of 
1000 items, the lattice will have 
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is still too large to save. 

[4] uses the itemset lattice to offer online mining for 
static databases. For saving the lattice space, this 
approach keeps only the most possibly used itemsets in 
the itemset lattice. By setting a default threshold of 
minimum support, it erases all the itemsets not confirmed 
to the threshold while building the lattice. Rules are 
generated online by choosing itemsets from the lattice for 
different minimum support values. Although this 
approach may reduce the size of itemset lattice, it has 
two drawbacks. First, it cannot generate all rules when 
the user inputs a minimum support value lower than the 
default one. Second, if the database is dynamically 
modified, in order to make rules consistent with the 
database, this approach needs to rebuild the lattice very 
often, which is a very time-consuming task. 

In summary, current incremental mining techniques have 
the problems of scanning the whole database and/or 
producing imprecise rules for dynamic databases. On the 
other hand, besides the huge space requirement for the 
itemset lattice, current online mining techniques have the 
problems of limiting the number of items in rules or 
producing an incomplete set of rules while the user needs 
rules for different support values. As a result, in this 
study we shall use the RIL (reduced itemset lattice) to 
reduce the space requirement of the itemset lattice, and 
keep just enough itemsets in the RIL to produce a 
complete set of precise rules. Once built, the RIL will be 
incrementally adjusted in response to the dynamic 
changes of the database and employed to produce all the 
rules in a short time according to the threshold of 
minimum support specified by the user. 

 

3. REDUCED ITEMSET LATTICE (RIL) 

In this section, we will describe the RIL, how to build 
RIL and use RIL to mine association rules. 

The reduced itemset lattice (RIL) is a subset of the full 



 

itemset lattice (as shown in Figure 1), which consists of 
nodes and directed links. Each node represents an itemset, 
and each directed link represents a superset-subset 
relationship indicating a reduction from the superset 
itemset (i.e., parent) to the subset one (i.e., child). Similar 
to [4], an RIL is built according to a default minimum 
support. If the support of an itemset node is no less than 
the default value, it is called large itemset node; 
otherwise, it is called small itemset node. A small node 
without any small child node is called bottom small 
itemset node. Unlike the itemset lattice of [4] which 
keeps only the large itemset nodes, the RIL keeps all 
large itemset nodes as well as all bottom small itemset 
nodes. With this extra information, instead of being 
rebuilt, the RIL can be incrementally adjusted in response 
to the dynamic changes of the database. 
 

3.1. Building RIL 

The procedure of building RIL is similar to Apriori 
algorithm. It is described by the following algorithm 
Build_RIL. 

Algorithm Build_RIL (DB) 
Step 1: Select an appropriate default threshold of 

minimum support, and let k = 1; 
Step 2: Scan the database DB to count the 

occurrence of every k-itemset; 
Step 3: Identify each k-itemset as large or small 

according to the default support; 
Step 4: Keep all large itemset nodes and bottom 

small itemset nodes in RIL; 
Step 5: Use large itemset nodes to form candidate 

(k+1)-itemsets, and let k = k+1; 
Step 6: Repeat Steps 2-5, until no more candidate 

itemset is formed. 
 
When building the RIL, we maintain two lists, top-level 
large-node list (TLL) and bottom-level small-nodes list 
(BSL), for efficiently generating rules and updating the 
RIL. The lists TLL and BSL help us easily find the 
top-level large nodes and bottom-level small nodes, 
respectively.  

Example 1. Assume we have the following database DB 
with the default support 0.4. 

 
TID Items 
100 ABD 
200 ABCE 
300 CDE 
400 ABDE 
500 BDE 

By applying the algorithm Build_RIL on this DB, the 
procedure proceeds as follows. In the first iteration, the 
following support values (i.e., occurrence over the total 
number of transactions) for each 1-itemset are obtained 
after Step 2.  

 

 

Itemset Support 
A 3/5 
B 4/5 
C 2/5 
D 4/5 
E 4/5 

Using the default threshold 0.4, Step 3 identifies nodes A, 
B, C, D, and E as large itemset nodes. Step 4 then 
combines them into candidate 2-itemset nodes and stores 
them into RIL. In the second iteration, the following 
support values are computed. 

Itemset Support 
AB 3/5 
AC 1/5 
AD 2/5 
AE 2/5 
BC 1/5 
BD 3/5 
BE 3/5 
CD 1/5 
CE 2/5 
DE 3/5 

Similarly, nodes AB, AD, AE, BD, BE, CE, and DE are 
identified as large nodes, and others as small nodes. The 
following candidate 3-itemset nodes are generated with 
their support values computed. 

Itemset Support 
ABD 2/5 
ABE 2/5 
ADE 1/5 
BDE 2/5 

In the third generation, nodes ABD, ABE, and BDE are 
identified as large nodes, and node ADE as small node. 
Because no more candidate itemset can be combined, the 
algorithm finishes and the resulting RIL is shown in 
Figure 2. 

 

Figure 2. Building RIL before mining. 

3.2. Using RIL to Mine Association Rules 

To mine association rules from the RIL, we need to 
check whether it contains enough large itemset nodes to 
generate all the rules. Since the RIL is built with a default 
threshold and all its large nodes have the support values 
greater than this threshold, these large nodes may not be 
real large nodes with respect to the user-specified 
minimum support value. If the user-specified threshold is 
higher than the default threshold, the large nodes in the 
RIL are a subset of real large itemsets and we can screen 



 

those unreal large nodes from the RIL. But if the 
user-specified threshold is lower than the default 
threshold, those nodes with support values lower than the 
default but higher than the user-specified threshold are 
not in the RIL. Therefore, we must find these nodes and 
expand the RIL to fill in them before rule generation. The 
algorithm of expanding the RIL (Algorithm 
Expand_RIL) will be described in the next subsection 
(Section 3.3).  

The following algorithm describes how to generate 
association rules from the RIL. Assume df-supp denotes 
the default minimum support, and min_supp and 
min_conf denote the user-specified minimum support 
and confidence values respectively. 

Algorithm Mine_RIL (Reduced_IL) 
Step 1: Execute Expand_RIL (Reduced_IL) if 

min_supp ≦ df_supp; 
Step 2: Perform Steps 3–6 for each node N in TLL of 

Reduced_IL; 
Step 3: If N’s support ≦ min_supp,  

then perform Step 4;  
otherwise, perform Steps 5-6; 

Step 4:  For each child X of N,  
if X’s support ≧ min_supp,  
then let N=X and go to Step 5; 
otherwise, let N=X and perform Step 4  

until X has no child;  
Step5: For each child C of N,  

if (N’s support/C’s support)≧ min_conf, 
then output the rule N→(N-C);  
otherwise, go to Step 6; 

Step 6: For every child K of N (K≠N),  
let N = K, and perform Step 5 

until N has no child; 

The algorithm basically starts from TLL and checks if the 
node N in TLL and its child C can form a rule (Step 5). If 
they cannot form a rule, the algorithm reduces N to its 
subset K and further checks if K and its child can form a 
rule (Step 6). Since the RIL is built with df_supp, if 
df_supp is larger than the user-specified minimum 
support, the algorithm needs to expand the RIL and fill in 
all real large nodes (Step 1); otherwise, it needs to screen 
out those unreal large nodes from the RIL (Steps 3) and 
further consider its descendants (Step 4). The following 
example illustrates the algorithm Mine_RIL. 

Example 2. Continue with Example 1, and assume the 
user specifies a minimum support value (min_supp) 0.6 
and a minimum confidence (min_conf) 0.6. The 
algorithm proceeds as follows, and the resulting RIL is 
shown in Figure 3. 

(1) Compare the support values of nodes in TLL 
with min_supp, and screen out those nodes 
ABD, ABE, BDE and CE (which become 
small nodes). 

(2) Check their child nodes with min_supp and 
identify the real large nodes AB, BD, BE and 
DE. (note that they become top-level itemset 
nodes with respect to min_supp.) 

(3) Use these large nodes to generate the rules A→
B, B→A, B→D, D→B, B→E, E→B, D→E 
and E→B. 

 
Figure 3. Mining rules from RIL. 

3.3. Expanding RIL 

As mentioned in the previous subsection, if the 
user-specified threshold is lower than the default 
threshold, those nodes with support values lower than the 
default but higher than the user-specified threshold are 
not in the RIL. Therefore, we must find these nodes and 
fill in them to expand the RIL to fill in them before rule 
generation. Fortunately, because the RIL keeps the 
bottom-level small itemset nodes, we can use this extra 
information to expand the RIL easily and this also makes 
it possible to generate all rules in a short time. As 
compared with the method of [4], it totally ignores these 
nodes and thus generates an incomplete set of rules. 

Algorithm Expand_RIL (Reduced_IL) 
Step 1:  Set df_supp = min_supp, and let k = 1; 
Step 2: Identify all small k-itemset nodes that become 

large; 
Step 3:  Use these nodes to combine with other large 

nodes (includes potential large nodes) into 
candidate (k+1)-itemsets, which are called 
potential large nodes. 

Step 4:  k = k + 1; 
Step 5:  Repeat Steps 2-4 above until no more 

candidate itemset node occurs; 
Step 6:  Scan the database once to count the 

occurrence of potential large nodes; 
Step 7:  Identify them as large nodes if their support 

≧ df_supp; 
Step 8:  Update TLL and BSL, and erase all small 

nodes that are above the BSL; 

Example 3. Continue with Example 1, and assume the 
user specifies a minimum support value (min_supp) 0.2 
and a minimum confidence (min_conf) 0.6. The 
algorithm proceeds as follows.  

(1) Because there is no small 1-itemset node in the 
RIL, the algorithm identifies those small 
2-itemsets that become large, i.e., AC, BC, and 
CD. 

(2) It combines them with other large itemsets into 
potential large itemsets, including ABC, ACD, 
ACE, BCD, BCE, and CDE. 

(3) Then it finds the small 3-itemset ADE becomes 
large and combines ADE with origin large 
nodes into potential large itemsets, ABCE, 
ABDE, ABCD, and BCDE, which are further 
combined into ABCDE, as shown in Figure 4. 



 

(4) The algorithm scans the database once, and 
counts the occurrence of these potential large 
itemsets.  

(5) It identifies these itemsets as large or small 
according to df_supp, and updates the TLL to 
(ABCE, ABDE, CDE) and the BSL to (ACD, 
BCD). The resulting RIL is shown in Figure 5. 

 
Figure 4. The expended RIL with potential large 
nodes. 

 
Figure 5. The RIL after database scan and node 

reidentication. 

 
Figure 6. The final RIL after expansion. 

(6) The algorithm finally erases all small itemset 
nodes above the BSL, including ABCDE, 
ABCD, ACDE, BCDE. The final RIL is shown 
in Figure 6. 

4. INCREMENTAL UPDATE OF RIL FOR 
DYNAMIC DATABASES 

For dynamic databases where data are changed 
frequently, the RIL must be incrementally adjusted so as 
to make it consistent with the databases. Dynamic 
databases may impact the RIL in two ways: 

(1) Affect all itemsets. Data insertion or deletion 
may change the total number of transactions in 
the database, and thus the support value of all 
itemsets. 

(2) Affect the occurrence of related itemsets. If an 
itemset is involved in some update transaction 
(including the insertion and delete operation), 
its occurrence will be increased/decreased by 
one.  

Both impacts must be taken into account in the 
incremental update of the RIL. 

4.1. Incremental Update Algorithm  

When the database is modified, instead of rebuilding, we 
use algorithm Adjust_RIL to update the RIL. The 
algorithm includes two steps: it first finds all the itemsets 
related to the modified data for changing their occurrence, 
and then makes the whole RIL consistent with the default 
threshold. (For the details of the algorithm, please refer 
to [7].) Assume db is the set of update transactions and T 
is the itemset in each transaction. 

 
Algorithm Adjust_RIL (Reduced_IL, db)  
Step 1:(1) For each T in db, perform Lines (2) –(9) of 

step 1 
(2)  If T appears in Reduced_IL then 

increase the occurrence of T and its  
descendants in Reduced_IL by one, and 
go to (9); 

(3)   For each node (itemset) N in TLL 
(4)  If N ⊆ T, increase the occurrence 

 of N and N′s descendants; go to 
(9); 

(5)   If N ∩T ≠ ∅, then 
(6) For each non-1-itemset 

child node M of N, let N = 
M, and go to (4); 

(7)   For each node N in BSL  
(8)  If N ⊆ T, increase the occurrence 

of N; go to (9); 
(9) End of For loop in Line (1); 

Step 2: (1) For each node N in TLL, perform Lines (2)-(4) 
of step 2; 

(2)  If N’s support ≧ df_supp then go to 
(1) for next N in TLL; 

(3)  Remove N from TLL and insert N into 
BSL; 

(4)  For each child node M of N, let N = 
M, and go to (2); 

(5) For each node N in BSL, perform (6)-(10); 
(6)  If N’s support < df_supp then go to (5) 

for next N in BSL; 
(7)  Combine N with other large nodes into 

potential large itemsets; 



 

(8)  Scan database to count these itemset’s 
occurrences; 

(9)  Use df_supp to identify all potential 
large itemsets as large or small; 

(10)  Erase all the small nodes that are not 
bottom-level small nodes; 

 

Example 4. Continue with Example 1, and assume two 
transactions ABD and ACDE are inserted into the 
database respectively. The algorithm of adjusting RIL 
proceeds as follows. 

(1) For the first insertion, since the itemset ABD is 
in the RIL, its occurrence is increased by one, 
so are the occurrences of all nodes in its 
sublattice (i.e., AB, AD, BD, A, B, and D). 
After the increment, the RIL is adjusted as 
Figure 7 shows. 

 
Figure 7. The affected RIL after inserting transaction 

ABD. 
 

(2) For the second insertion, since the itemset 
ACDE is not in RIL, all the nodes in TLL and 
BSL must be checked: 

(a) Because the large nodes ABD, ABE and 
BDE are partly related to transaction 
ABCE, their occurrences remain 
unchanged and the algorithm continues 
to check their child nodes (described 
below in (3)). 

(b) Because large node CE is a subset of 
ACDE, the occurrences of CE and its 
subnodes C and E are all increased by 
one. 

(c) Because small nodes ADE, AC and CD 
are all subsets of ACDE, their 
occurrences are increased by one, but 
their subnodes are not affected. 

(3) Check all subnodes of (2)(a) above, including 
AB, BD, AD, BE, AE and DE: 

(a) Because large nodes AD, AE and DE are 
subsets of ACDE, the occurrences of 
them and all their subnodes are increased 
by one. 

(b) Because itemsets AB, BD and BE are 
partly related to ACDE, the algorithm 
continues to check their subnodes A, B 
and E. But nodes A and E can be skipped 
because they have already been visited in 
early steps ((2)(b) and (3)(a)). And 
because node B is not related to ACDE, 
its occurrence remains unchanged. 

(4) Because the large nodes ABD and BDE become 
small, both TLL and BSL must be updated. 
The resulting RIL is shown in Figure 8. 

 
Figure 8. The RIL after inserting transaction ABCE. 

4.2. Complexity Analysis 

The complexity of incremental update algorithm can be 
analyzed in three cases: 

(1) No large node becomes small and no small 
node becomes large. In this case, the 
algorithm only adjusts the occurrence of nodes 
in RIL. If there are K nodes in RIL, and the 
number of update transactions is t, the time 
complexity of adjusting RIL is O(Kt). 

(2) Some large nodes become small. Besides the 
time spent in Case (1), this case needs to take 
into account of the time to adjust TLL and 
BSL, so the total time complexity is O(Kt+K) 
= O(Kt). 

(3) Some small nodes become large. Besides the 
time spent in Case (1), this case needs to take 
into account of the time to insert large nodes 
into RIL and the time to scan the database. If 
the number of transactions in the whole 
database is T and the number of nodes to be 
inserted is K′, the time complexity of 
incrementally adjusting RIL is O(Kt+K′T). 

5. EXPERIMENTS AND COMPARISON 

5.1. Experimental Results 

In order to verify the feasibility of using RIL to support 
online mining in dynamic databases, we implement a 
prototype mining system that includes those algorithms 
described in Sections 3 and 4. Our platform is Sun Ultra 
SPAC10 with 333 MHz CPU, the database system is 
Oracle 8i, and programs are written in C++.  

Five test databases are generated by the program from 
IBM Data Mining Research Group [8]. Every test 
database has 1000 items and 100000 transactions. These 
test databases are named in the form of “TxIyDz” 
according to the parameters (x, y, and z) used by the IBM 
program to generate them. Parameters x, y and z are all 
integers, indicating the average number of items in the 
transaction, the average number of items in the large 
itemsets, and the number of transactions in the database, 



 

respectively. For each test database, the same set of 
parameters is used to generate three sets of update 
transactions, which have 1000, 2000 and 3000 
transactions respectively.  

Two experiments have been performed on the RIL. The 
first one measures the building time and size of RIL for 
the five test databases. Due to different database 
characteristics, the first three databases are tested with 
three default support values 0.30%, 0.40% and 0.50%, 
while the last two databases are tested with the other 
three support values 0.80%, 0.90% and 1%. The results 
are shown in Table 1 and Table 2 respectively. It is 
observed from Table 1 that the average number of items 
in the transaction dominates the RIL building time, which 
ranges from 18 to 696 seconds. Table 2 shows that the 
RIL can reduce the size of itemset lattice to average 105 
nodes, as compared to the lattice size 1015 of [1] 
mentioned in Section 2. 

 
 

Default support 0.30%    0.40%    0.50%    
T5I2D100K 29 20 18 
T10I2D100K 365 136 53 
T10I4D100K 150 146 52 

Default support 0.80%    0.90%    1%    
T20I2D100K 696 683 682 
T20I6D100K 681 675 673 
Table 1. The RIL building time (in seconds) for five 

test databases. 

 
 
Default support 0.30%    0.40%    0.50%    
T5I2D100K 150331 112628 76855 
T10I2D100K 247114 201663 170653 
T10I4D100K 255578 220456 181300 

Default support 0.80%    0.90%    1%    
T20I2D100K 201477 186950 171891 
T20I6D100K 215441 199212 182535 
Table 2. Number of nodes in RIL for five test 

databases. 
 
 
The second experiment measures the rule mining time 
and the RIL adjusting time for the five test databases. 
The RIL’s built in the first experiment are tested with five 
user-specified minimum support values (0.3%, 0.4%, 
0.5%, 0.6% and 0.7% for the RIL’s from first three 
databases, and 0.7%, 0.8%, 0.9%, 1.0%, 1.1% for those 
from last two databases) in order to measure their rule 
mining time. The results are shown in Table 3 and Table 
4 respectively. It is observed from these tables that the 
default threshold affects the RIL mining time. If the 
user-specified minimum support is higher than default 
threshold, the mining time is less than 1 second. On the 
other hand, if the user-specified minimum support is 
lower than default threshold, the mining process takes 10 
to 700 seconds due to database scan. 
 
 

 

User support 0.30% 0.40% 0.50% 0.60% 0.70%
T5I2D100K 0.01 0.01 0.01 0.01 0.01

T10I2D100K 0.01 0.01 0.01 0.01 0.01
T10I4D100K 0.01 0.01 0.01 0.01 < 0.01

Default support = 0.3%

User support 0.30% 0.40% 0.50% 0.60% 0.70%
T5I2D100K 13 0.01 0.01 0.01 0.01

T10I2D100K 90 0.01 0.01 0.01 0.01
T10I4D100K 71 0.01 0.01 0.01 < 0.01

Default support = 0.4%

User support 0.30% 0.40% 0.50% 0.60% 0.70%
T5I2D100K 12 13 0.01 0.01 0.01

T10I2D100K 91 54 0.01 0.01 0.01
T10I4D100K 71 51 0.01 0.01 < 0.01

Default support = 0.5%

Table 3. The mining time (in seconds) of RIL for first 
three databases. 

 
User support 0.70% 0.80% 0.90% 1.00% 1.10%
T20I2D100K 685 0.01 0.01 < 0.01 < 0.01
T20I6D100K 103 0.01 0.01 < 0.01 < 0.01

Default support = 0.8%

User support 0.70% 0.80% 0.90% 1.00% 1.10%
T20I2D100K 673 304 0.01 < 0.01 < 0.01
T20I6D100K 105 104 0.01 < 0.01 < 0.01

Default support = 0.9%

User support 0.70% 0.80% 0.90% 1.00% 1.10%
T20I2D100K 687 308 228 < 0.01 < 0.01
T20I6D100K 105 105 104 < 0.01 < 0.01

Default support = 1%

Table 4. The mining time (in seconds) of RIL for last 
two databases. 

In this experiment, the RIL’s built in the first experiment 
are also tested with three sets of update transactions in 
order to measure their adjusting time. Three RIL’s were 
built from the first three databases with default support 
0.3%, while the other two were from the last two 
databases with default support 0.8%. The test results are 
shown in Table 5. 

 
# Update transactions 1000    2000    3000    
T5I2D100K 0.58 1.09 1.6 
T10I2D100K 1.17 2.16 3.16 
T10I4D100K 1.12 2.03 2.95 
 Default support = 0.3%
# Update transactions 1000    2000    3000    
T20I2D100K 1.33 2.47 3.66 
T20I6D100K 1.26 2.36 3.42 
 Default support = 0.8%
Table 5. The RIL adjusting time (in seconds) for 

various number of update. 

It is observed from Table 5 that the RIL adjusting time in 
every case is no more than 4 seconds. And the adjusting 
time is almost proportional to the number of transactions 
to be updated, rather than database characteristics. From 
Table 1 and Table 3, we observe that the RIL adjusting 



 

time is about 0.19% to 5.5%, with an average 1.27%, of 
the rebuilding time.  

5.2. Comparison 

This subsection compares RIL with other online mining 
approaches [1,4] in terms of the memory cost and lattice 
adjusting time for dynamic databases. The full itemset 
lattice of [1] keeps full information for both rule 
generation and incremental update of the lattice. 
However, the full itemset lattice may contain a lot of 
redundant nodes that would not generate rules. As 
mentioned in Section 2, [1] may keep 1015 nodes in the 
itemset lattice for a database of 1000 items with 
maximum cardinality 6. In contrast, the RIL uses less 
memory (about 105 nodes as shown in Table 2) for the 
same situation and provides the same functionality. 
Furthermore, unlike the lattice in [1], the RIL does not 
set a limit on the maximum cardinality of the itemsets, 
which makes the RIL adaptable to different dynamics of 
the database.  

The full itemset lattice of [4] may use less memory as it 
is built with respect to a default threshold and it does not 
keep bottom small itemset nodes (as the RIL does). But it 
must be rebuilt when the database is modified. Observed 
from Table 1, the rebuilding process is very 
time-consuming (in hundreds of seconds) and not 
suitable for dynamic databases. In contrast, the RIL 
needs not to be rebuilt and its incremental adjusting time 
is on the average about 1.27% of the rebuilding time. It is 
efficient enough to mine rules online for dynamic 
databases. Moreover, unlike [4] which may miss rules as 
the user-specified minimum support is lower than the 
default threshold, the RIL always generates a complete 
set of rules corresponding to the user-specified threshold. 

6. CONCLUSION 

In this paper, we presented a data structure RIL to 
support online mining for dynamic databases. By 
keeping fewer (than the full itemset lattice) but enough 
itemsets, the RIL can incrementally adjust itself in 
response to the database changes. As the user specifies a 
support threshold, the RIL can expand itself first if 
necessary, and mine a complete and correct set of 
association rules in a short time. Experimental results 
showed that the RIL not only effectively reduces the 
space of full itemset lattice but also adjusts itself in 
1.27% (on the average) of lattice building time. It takes 
about two to ten minutes to expand the RIL. If the user 
specifies a support value larger than the default threshold 
(i.e., the expansion is not necessary), the RIL can mine 
association rules in less than 0.01 seconds.  
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