
USING REDUCED ITEMSET LATTICE TO SUPPORT ONLINE MINING FOR
DYNAMIC DATABASES
Kuen-Fang J. Jea Chi-Hau Hsu

Institute of Computer Science, National Chung Hsing University,
250 Kuo-Kuan Road, Taichung, Taiwan, R.O.C.

Email: {kfjea, frankhsu}@cs.nchu.edu.tw

ABSTRACT

Current online techniques of mining association rules
have incurred the problems of huge space requirement
for the itemset lattice and of limiting the number of items
in rules or producing an incomplete set of rules. In this
paper, we propose an improved structure, namely RIL
(Reduced Itemset Lattice), to keep just enough itemsets
to support online mining for dynamic databases. Once
built with the original database, the RIL incrementally
adapts itself to database updates. Instead of rebuilding
RIL, a complete set of association rules can be directly
mined, or expanded first if necessary, from the RIL in a
short time. Experimental evaluation shows that the RIL
can effectively reduce the space of itemset lattice and
mine the rules online for dynamic databases.

1. INTRODUCTION

Mining association rules [2,9] from databases of
transactions has become an important and active research
area in data mining. It discovers the association
relationship of items or attributes in the database
transactions and generates implication rules among them,
such as “80% of customers who buy milk also buy
bread” in the supermarket database. The methods of
mining association rules usually follow Apriori algorithm
[3]. In each iteration, the algorithm combines related
items or itemsets into potential itemsets and counts their
occurrences by scanning the database. They are identified
as large itemsets for the next iteration of the algorithm if
their occurrences exceed a user specified threshold
(minimum support). The rules are finally generated from
the large itemsets.

Although Apriori algorithm offers a simple and iterative
way to generate association rules from databases, it
incurs the inefficiency problem due to too many database
scans and itemset combinations. This problem may make
it difficult to mine new association rules online as the
user changes the threshold or modifies the database. In
order to mine new rules online and avoid re-mining the
whole database, techniques like online mining [1,4] and
incremental mining [5,6,10] are proposed.

Online mining [1,4] generates rules online as the user
changes the threshold by pre-computing the occurrences
of all itemsets and keeping them in an itemset lattice. The
itemset lattice, as shown in Figure 1, is a special lattice
data structure, where its nodes represent items or itemsets
(i.e., combinations of items) and each link indicates a
superset-subset relationship. Once a full itemset lattice is

built with the occurrence of all itemsets pre-computed
and stored, the mining algorithm can accept
user-specified thresholds and online generates rules
without any database scan. However, since the itemset
lattice may take a lot of memory as the number of items
is large, the idea of saving a full itemset lattice is
unattractive and how to prune the lattice becomes an
important issue in the online mining.

Incremental mining [5,6,10] is the techniques to adjust
the pre-mined rules according to the database update
transactions. When the database is updated, traditional
mining algorithms need to re-mine the database in order
to get the rules that match the database. On the other
hand, incremental mining first re-computes all the
strength of existing rules and erases those rules below the
threshold. It then checks all small 1-itemsets, identifies
those becoming large and combines them into candidate
itemsets. A procedure similar to Apriori algorithm is
finally applied to generate new large itemsets and new
rules. Although incremental mining may reduce the
re-mining cost with fewer database scans, it is still
possible to combine itemsets and scan the database many
times, which can result in long response time.

In dynamic databases where data may be changed
frequently, existing incremental mining techniques do not
guarantee a fast generation of new association rules (i.e.,
support mining online). If the idea of itemset lattices
developed in the online mining can be integrated into
incremental mining techniques for saving and
incrementally updating the occurrence of itemsets, the
number of database scans can be reduced or even
eliminated. However, storing the full itemset lattice may
take a lot of memory space, as mentioned before, it is
therefore the purpose of this study to propose a new and
space-saving structure, namely the reduced itemset lattice
(RIL), to efficiently support online mining of association
rules for dynamic databases.

This paper is organized as follows. Section 1 describes
the background, motivation and goal of this study.
Section 2 presents the related work on both online
mining and incremental mining. Section 3 describes the
RIL, how to build RIL and use RIL to mine association
rules online. Section 4 presents the incremental algorithm
of adjusting RIL for dynamic databases and Section 5
shows our performance experiments and compares our
approach with existing techniques. Finally Section 6
gives our conclusion of this study.

2. RELATED WORK

This study aims at supporting efficient online mining of
association rules for dynamic databases by employing the
reduced itemset lattice (RIL). Therefore, this section will
review the related research work on both areas of
incremental mining and online mining.

2.1. Incremental Mining

Incremental mining [5,6,10] is the technique to adjust
existing rules for dynamic databases according to the
update transactions. When the database is modified, the
technique first erases all itemsets that become small and
re-computes all the strength of rules in order to erase
those below the threshold. It then identifies all small
1-itemsets that become large and use them to combine
with other large 1-itemsets for generating candidate
2-itemsets. A procedure similar to Apriori algorithm is
applied to these candidate 2-itemsets, which repeatedly
scans the database, computes the strength of and
combines new candidate itemsets until no more new
high-order candidate itemset can be generated. New rules
are finally generated from the new large itemsets. As
compared to re-mining using Apriori algorithm,
incremental mining scans the database fewer times and
handles fewer itemsets.

In order to reduce the database scanning time, two kinds
of methods have been proposed. In [5,6], only the update
transactions are scanned while computing the strength of
candidate itemsets, and the whole database is scanned
once for computing the actual strength of large itemsets
at the final step of deriving new rules. On the other hand,
[10] starts from finding all large itemsets of the update
transactions and compares them with existing large
itemsets to generate the new rules. This method also
needs to scan the whole database once for the actual
strength of large itemsets at the final step. Although
reducing the times of scanning the whole database to
once, these methods may spend much time in the
strength checking at the final step. And even worse, they
may miss some large itemsets and thus produce
imprecise rules. For example, if some itemset X seems to
be large in the update transactions but it is indeed small
in the whole database, these methods would erase X and
leave the subset of X unconsidered.

2.2. Online Mining

Online mining [1,4] is the technique to generate rules in a
short time according to the threshold change. Without
scanning databases, this technique generates rules by

using the pre-computed occurrences of all itemsets saved
in the itemset lattice structure. But for the consideration
of memory space limit, saving the full itemset lattice may
not always be possible.

[1] proposes an online mining approach for dynamic
databases. By setting the maximum cardinality of
itemsets (i.e., maximal number of items occurred in an
itemset), it stores only those itemsets without exceeding
the maximum cardinality in order to reduce the space
requirement of itemset lattice. The lattice is
incrementally adjusted according to the update
transactions, and rules are derived online from the lattice
while the user inputs a threshold of minimum support.
This approach however has two drawbacks. First, the
maximum cardinality is not easy to determine in advance
because if the value is set too high, the itemset lattice
will take a lot of memory space, and on the other way,
the rules of cardinality higher than the value would lack.
Second, the size of itemset lattice is still too large. For
instance, if the maximum cardinality is 6 in a database of
1000 items, the lattice will have

151000
1

1000
2

1000
3

1000
4

1000
5

1000
6 10≈+++++ CCCCCC nodes, which

is still too large to save.

[4] uses the itemset lattice to offer online mining for
static databases. For saving the lattice space, this
approach keeps only the most possibly used itemsets in
the itemset lattice. By setting a default threshold of
minimum support, it erases all the itemsets not confirmed
to the threshold while building the lattice. Rules are
generated online by choosing itemsets from the lattice for
different minimum support values. Although this
approach may reduce the size of itemset lattice, it has
two drawbacks. First, it cannot generate all rules when
the user inputs a minimum support value lower than the
default one. Second, if the database is dynamically
modified, in order to make rules consistent with the
database, this approach needs to rebuild the lattice very
often, which is a very time-consuming task.

In summary, current incremental mining techniques have
the problems of scanning the whole database and/or
producing imprecise rules for dynamic databases. On the
other hand, besides the huge space requirement for the
itemset lattice, current online mining techniques have the
problems of limiting the number of items in rules or
producing an incomplete set of rules while the user needs
rules for different support values. As a result, in this
study we shall use the RIL (reduced itemset lattice) to
reduce the space requirement of the itemset lattice, and
keep just enough itemsets in the RIL to produce a
complete set of precise rules. Once built, the RIL will be
incrementally adjusted in response to the dynamic
changes of the database and employed to produce all the
rules in a short time according to the threshold of
minimum support specified by the user.

3. REDUCED ITEMSET LATTICE (RIL)

In this section, we will describe the RIL, how to build
RIL and use RIL to mine association rules.

The reduced itemset lattice (RIL) is a subset of the full

itemset lattice (as shown in Figure 1), which consists of
nodes and directed links. Each node represents an itemset,
and each directed link represents a superset-subset
relationship indicating a reduction from the superset
itemset (i.e., parent) to the subset one (i.e., child). Similar
to [4], an RIL is built according to a default minimum
support. If the support of an itemset node is no less than
the default value, it is called large itemset node;
otherwise, it is called small itemset node. A small node
without any small child node is called bottom small
itemset node. Unlike the itemset lattice of [4] which
keeps only the large itemset nodes, the RIL keeps all
large itemset nodes as well as all bottom small itemset
nodes. With this extra information, instead of being
rebuilt, the RIL can be incrementally adjusted in response
to the dynamic changes of the database.

3.1. Building RIL

The procedure of building RIL is similar to Apriori
algorithm. It is described by the following algorithm
Build_RIL.

Algorithm Build_RIL (DB)
Step 1: Select an appropriate default threshold of

minimum support, and let k = 1;
Step 2: Scan the database DB to count the

occurrence of every k-itemset;
Step 3: Identify each k-itemset as large or small

according to the default support;
Step 4: Keep all large itemset nodes and bottom

small itemset nodes in RIL;
Step 5: Use large itemset nodes to form candidate

(k+1)-itemsets, and let k = k+1;
Step 6: Repeat Steps 2-5, until no more candidate

itemset is formed.

When building the RIL, we maintain two lists, top-level
large-node list (TLL) and bottom-level small-nodes list
(BSL), for efficiently generating rules and updating the
RIL. The lists TLL and BSL help us easily find the
top-level large nodes and bottom-level small nodes,
respectively.

Example 1. Assume we have the following database DB
with the default support 0.4.

TID Items
100 ABD
200 ABCE
300 CDE
400 ABDE
500 BDE

By applying the algorithm Build_RIL on this DB, the
procedure proceeds as follows. In the first iteration, the
following support values (i.e., occurrence over the total
number of transactions) for each 1-itemset are obtained
after Step 2.

Itemset Support
A 3/5
B 4/5
C 2/5
D 4/5
E 4/5

Using the default threshold 0.4, Step 3 identifies nodes A,
B, C, D, and E as large itemset nodes. Step 4 then
combines them into candidate 2-itemset nodes and stores
them into RIL. In the second iteration, the following
support values are computed.

Itemset Support
AB 3/5
AC 1/5
AD 2/5
AE 2/5
BC 1/5
BD 3/5
BE 3/5
CD 1/5
CE 2/5
DE 3/5

Similarly, nodes AB, AD, AE, BD, BE, CE, and DE are
identified as large nodes, and others as small nodes. The
following candidate 3-itemset nodes are generated with
their support values computed.

Itemset Support
ABD 2/5
ABE 2/5
ADE 1/5
BDE 2/5

In the third generation, nodes ABD, ABE, and BDE are
identified as large nodes, and node ADE as small node.
Because no more candidate itemset can be combined, the
algorithm finishes and the resulting RIL is shown in
Figure 2.

Figure 2. Building RIL before mining.

3.2. Using RIL to Mine Association Rules

To mine association rules from the RIL, we need to
check whether it contains enough large itemset nodes to
generate all the rules. Since the RIL is built with a default
threshold and all its large nodes have the support values
greater than this threshold, these large nodes may not be
real large nodes with respect to the user-specified
minimum support value. If the user-specified threshold is
higher than the default threshold, the large nodes in the
RIL are a subset of real large itemsets and we can screen

those unreal large nodes from the RIL. But if the
user-specified threshold is lower than the default
threshold, those nodes with support values lower than the
default but higher than the user-specified threshold are
not in the RIL. Therefore, we must find these nodes and
expand the RIL to fill in them before rule generation. The
algorithm of expanding the RIL (Algorithm
Expand_RIL) will be described in the next subsection
(Section 3.3).

The following algorithm describes how to generate
association rules from the RIL. Assume df-supp denotes
the default minimum support, and min_supp and
min_conf denote the user-specified minimum support
and confidence values respectively.

Algorithm Mine_RIL (Reduced_IL)
Step 1: Execute Expand_RIL (Reduced_IL) if

min_supp ≦ df_supp;
Step 2: Perform Steps 3–6 for each node N in TLL of

Reduced_IL;
Step 3: If N’s support ≦ min_supp,

then perform Step 4;
otherwise, perform Steps 5-6;

Step 4: For each child X of N,
if X’s support ≧ min_supp,
then let N=X and go to Step 5;
otherwise, let N=X and perform Step 4

until X has no child;
Step5: For each child C of N,

if (N’s support/C’s support)≧ min_conf,
then output the rule N→(N-C);
otherwise, go to Step 6;

Step 6: For every child K of N (K≠N),
let N = K, and perform Step 5

until N has no child;

The algorithm basically starts from TLL and checks if the
node N in TLL and its child C can form a rule (Step 5). If
they cannot form a rule, the algorithm reduces N to its
subset K and further checks if K and its child can form a
rule (Step 6). Since the RIL is built with df_supp, if
df_supp is larger than the user-specified minimum
support, the algorithm needs to expand the RIL and fill in
all real large nodes (Step 1); otherwise, it needs to screen
out those unreal large nodes from the RIL (Steps 3) and
further consider its descendants (Step 4). The following
example illustrates the algorithm Mine_RIL.

Example 2. Continue with Example 1, and assume the
user specifies a minimum support value (min_supp) 0.6
and a minimum confidence (min_conf) 0.6. The
algorithm proceeds as follows, and the resulting RIL is
shown in Figure 3.

(1) Compare the support values of nodes in TLL
with min_supp, and screen out those nodes
ABD, ABE, BDE and CE (which become
small nodes).

(2) Check their child nodes with min_supp and
identify the real large nodes AB, BD, BE and
DE. (note that they become top-level itemset
nodes with respect to min_supp.)

(3) Use these large nodes to generate the rules A→
B, B→A, B→D, D→B, B→E, E→B, D→E
and E→B.

Figure 3. Mining rules from RIL.

3.3. Expanding RIL

As mentioned in the previous subsection, if the
user-specified threshold is lower than the default
threshold, those nodes with support values lower than the
default but higher than the user-specified threshold are
not in the RIL. Therefore, we must find these nodes and
fill in them to expand the RIL to fill in them before rule
generation. Fortunately, because the RIL keeps the
bottom-level small itemset nodes, we can use this extra
information to expand the RIL easily and this also makes
it possible to generate all rules in a short time. As
compared with the method of [4], it totally ignores these
nodes and thus generates an incomplete set of rules.

Algorithm Expand_RIL (Reduced_IL)
Step 1: Set df_supp = min_supp, and let k = 1;
Step 2: Identify all small k-itemset nodes that become

large;
Step 3: Use these nodes to combine with other large

nodes (includes potential large nodes) into
candidate (k+1)-itemsets, which are called
potential large nodes.

Step 4: k = k + 1;
Step 5: Repeat Steps 2-4 above until no more

candidate itemset node occurs;
Step 6: Scan the database once to count the

occurrence of potential large nodes;
Step 7: Identify them as large nodes if their support

≧ df_supp;
Step 8: Update TLL and BSL, and erase all small

nodes that are above the BSL;

Example 3. Continue with Example 1, and assume the
user specifies a minimum support value (min_supp) 0.2
and a minimum confidence (min_conf) 0.6. The
algorithm proceeds as follows.

(1) Because there is no small 1-itemset node in the
RIL, the algorithm identifies those small
2-itemsets that become large, i.e., AC, BC, and
CD.

(2) It combines them with other large itemsets into
potential large itemsets, including ABC, ACD,
ACE, BCD, BCE, and CDE.

(3) Then it finds the small 3-itemset ADE becomes
large and combines ADE with origin large
nodes into potential large itemsets, ABCE,
ABDE, ABCD, and BCDE, which are further
combined into ABCDE, as shown in Figure 4.

(4) The algorithm scans the database once, and
counts the occurrence of these potential large
itemsets.

(5) It identifies these itemsets as large or small
according to df_supp, and updates the TLL to
(ABCE, ABDE, CDE) and the BSL to (ACD,
BCD). The resulting RIL is shown in Figure 5.

Figure 4. The expended RIL with potential large
nodes.

Figure 5. The RIL after database scan and node

reidentication.

Figure 6. The final RIL after expansion.

(6) The algorithm finally erases all small itemset
nodes above the BSL, including ABCDE,
ABCD, ACDE, BCDE. The final RIL is shown
in Figure 6.

4. INCREMENTAL UPDATE OF RIL FOR
DYNAMIC DATABASES

For dynamic databases where data are changed
frequently, the RIL must be incrementally adjusted so as
to make it consistent with the databases. Dynamic
databases may impact the RIL in two ways:

(1) Affect all itemsets. Data insertion or deletion
may change the total number of transactions in
the database, and thus the support value of all
itemsets.

(2) Affect the occurrence of related itemsets. If an
itemset is involved in some update transaction
(including the insertion and delete operation),
its occurrence will be increased/decreased by
one.

Both impacts must be taken into account in the
incremental update of the RIL.

4.1. Incremental Update Algorithm

When the database is modified, instead of rebuilding, we
use algorithm Adjust_RIL to update the RIL. The
algorithm includes two steps: it first finds all the itemsets
related to the modified data for changing their occurrence,
and then makes the whole RIL consistent with the default
threshold. (For the details of the algorithm, please refer
to [7].) Assume db is the set of update transactions and T
is the itemset in each transaction.

Algorithm Adjust_RIL (Reduced_IL, db)
Step 1:(1) For each T in db, perform Lines (2) –(9) of

step 1
(2) If T appears in Reduced_IL then

increase the occurrence of T and its
descendants in Reduced_IL by one, and
go to (9);

(3) For each node (itemset) N in TLL
(4) If N ⊆ T, increase the occurrence

 of N and N′s descendants; go to
(9);

(5) If N ∩T ≠ ∅, then
(6) For each non-1-itemset

child node M of N, let N =
M, and go to (4);

(7) For each node N in BSL
(8) If N ⊆ T, increase the occurrence

of N; go to (9);
(9) End of For loop in Line (1);

Step 2: (1) For each node N in TLL, perform Lines (2)-(4)
of step 2;

(2) If N’s support ≧ df_supp then go to
(1) for next N in TLL;

(3) Remove N from TLL and insert N into
BSL;

(4) For each child node M of N, let N =
M, and go to (2);

(5) For each node N in BSL, perform (6)-(10);
(6) If N’s support < df_supp then go to (5)

for next N in BSL;
(7) Combine N with other large nodes into

potential large itemsets;

(8) Scan database to count these itemset’s
occurrences;

(9) Use df_supp to identify all potential
large itemsets as large or small;

(10) Erase all the small nodes that are not
bottom-level small nodes;

Example 4. Continue with Example 1, and assume two
transactions ABD and ACDE are inserted into the
database respectively. The algorithm of adjusting RIL
proceeds as follows.

(1) For the first insertion, since the itemset ABD is
in the RIL, its occurrence is increased by one,
so are the occurrences of all nodes in its
sublattice (i.e., AB, AD, BD, A, B, and D).
After the increment, the RIL is adjusted as
Figure 7 shows.

Figure 7. The affected RIL after inserting transaction

ABD.

(2) For the second insertion, since the itemset
ACDE is not in RIL, all the nodes in TLL and
BSL must be checked:

(a) Because the large nodes ABD, ABE and
BDE are partly related to transaction
ABCE, their occurrences remain
unchanged and the algorithm continues
to check their child nodes (described
below in (3)).

(b) Because large node CE is a subset of
ACDE, the occurrences of CE and its
subnodes C and E are all increased by
one.

(c) Because small nodes ADE, AC and CD
are all subsets of ACDE, their
occurrences are increased by one, but
their subnodes are not affected.

(3) Check all subnodes of (2)(a) above, including
AB, BD, AD, BE, AE and DE:

(a) Because large nodes AD, AE and DE are
subsets of ACDE, the occurrences of
them and all their subnodes are increased
by one.

(b) Because itemsets AB, BD and BE are
partly related to ACDE, the algorithm
continues to check their subnodes A, B
and E. But nodes A and E can be skipped
because they have already been visited in
early steps ((2)(b) and (3)(a)). And
because node B is not related to ACDE,
its occurrence remains unchanged.

(4) Because the large nodes ABD and BDE become
small, both TLL and BSL must be updated.
The resulting RIL is shown in Figure 8.

Figure 8. The RIL after inserting transaction ABCE.

4.2. Complexity Analysis

The complexity of incremental update algorithm can be
analyzed in three cases:

(1) No large node becomes small and no small
node becomes large. In this case, the
algorithm only adjusts the occurrence of nodes
in RIL. If there are K nodes in RIL, and the
number of update transactions is t, the time
complexity of adjusting RIL is O(Kt).

(2) Some large nodes become small. Besides the
time spent in Case (1), this case needs to take
into account of the time to adjust TLL and
BSL, so the total time complexity is O(Kt+K)
= O(Kt).

(3) Some small nodes become large. Besides the
time spent in Case (1), this case needs to take
into account of the time to insert large nodes
into RIL and the time to scan the database. If
the number of transactions in the whole
database is T and the number of nodes to be
inserted is K′, the time complexity of
incrementally adjusting RIL is O(Kt+K′T).

5. EXPERIMENTS AND COMPARISON

5.1. Experimental Results

In order to verify the feasibility of using RIL to support
online mining in dynamic databases, we implement a
prototype mining system that includes those algorithms
described in Sections 3 and 4. Our platform is Sun Ultra
SPAC10 with 333 MHz CPU, the database system is
Oracle 8i, and programs are written in C++.

Five test databases are generated by the program from
IBM Data Mining Research Group [8]. Every test
database has 1000 items and 100000 transactions. These
test databases are named in the form of “TxIyDz”
according to the parameters (x, y, and z) used by the IBM
program to generate them. Parameters x, y and z are all
integers, indicating the average number of items in the
transaction, the average number of items in the large
itemsets, and the number of transactions in the database,

respectively. For each test database, the same set of
parameters is used to generate three sets of update
transactions, which have 1000, 2000 and 3000
transactions respectively.

Two experiments have been performed on the RIL. The
first one measures the building time and size of RIL for
the five test databases. Due to different database
characteristics, the first three databases are tested with
three default support values 0.30%, 0.40% and 0.50%,
while the last two databases are tested with the other
three support values 0.80%, 0.90% and 1%. The results
are shown in Table 1 and Table 2 respectively. It is
observed from Table 1 that the average number of items
in the transaction dominates the RIL building time, which
ranges from 18 to 696 seconds. Table 2 shows that the
RIL can reduce the size of itemset lattice to average 105
nodes, as compared to the lattice size 1015 of [1]
mentioned in Section 2.

Default support 0.30% 0.40% 0.50%
T5I2D100K 29 20 18
T10I2D100K 365 136 53
T10I4D100K 150 146 52

Default support 0.80% 0.90% 1%
T20I2D100K 696 683 682
T20I6D100K 681 675 673
Table 1. The RIL building time (in seconds) for five

test databases.

Default support 0.30% 0.40% 0.50%
T5I2D100K 150331 112628 76855
T10I2D100K 247114 201663 170653
T10I4D100K 255578 220456 181300

Default support 0.80% 0.90% 1%
T20I2D100K 201477 186950 171891
T20I6D100K 215441 199212 182535
Table 2. Number of nodes in RIL for five test

databases.

The second experiment measures the rule mining time
and the RIL adjusting time for the five test databases.
The RIL’s built in the first experiment are tested with five
user-specified minimum support values (0.3%, 0.4%,
0.5%, 0.6% and 0.7% for the RIL’s from first three
databases, and 0.7%, 0.8%, 0.9%, 1.0%, 1.1% for those
from last two databases) in order to measure their rule
mining time. The results are shown in Table 3 and Table
4 respectively. It is observed from these tables that the
default threshold affects the RIL mining time. If the
user-specified minimum support is higher than default
threshold, the mining time is less than 1 second. On the
other hand, if the user-specified minimum support is
lower than default threshold, the mining process takes 10
to 700 seconds due to database scan.

User support 0.30% 0.40% 0.50% 0.60% 0.70%
T5I2D100K 0.01 0.01 0.01 0.01 0.01

T10I2D100K 0.01 0.01 0.01 0.01 0.01
T10I4D100K 0.01 0.01 0.01 0.01 < 0.01

Default support = 0.3%

User support 0.30% 0.40% 0.50% 0.60% 0.70%
T5I2D100K 13 0.01 0.01 0.01 0.01

T10I2D100K 90 0.01 0.01 0.01 0.01
T10I4D100K 71 0.01 0.01 0.01 < 0.01

Default support = 0.4%

User support 0.30% 0.40% 0.50% 0.60% 0.70%
T5I2D100K 12 13 0.01 0.01 0.01

T10I2D100K 91 54 0.01 0.01 0.01
T10I4D100K 71 51 0.01 0.01 < 0.01

Default support = 0.5%

Table 3. The mining time (in seconds) of RIL for first
three databases.

User support 0.70% 0.80% 0.90% 1.00% 1.10%
T20I2D100K 685 0.01 0.01 < 0.01 < 0.01
T20I6D100K 103 0.01 0.01 < 0.01 < 0.01

Default support = 0.8%

User support 0.70% 0.80% 0.90% 1.00% 1.10%
T20I2D100K 673 304 0.01 < 0.01 < 0.01
T20I6D100K 105 104 0.01 < 0.01 < 0.01

Default support = 0.9%

User support 0.70% 0.80% 0.90% 1.00% 1.10%
T20I2D100K 687 308 228 < 0.01 < 0.01
T20I6D100K 105 105 104 < 0.01 < 0.01

Default support = 1%

Table 4. The mining time (in seconds) of RIL for last
two databases.

In this experiment, the RIL’s built in the first experiment
are also tested with three sets of update transactions in
order to measure their adjusting time. Three RIL’s were
built from the first three databases with default support
0.3%, while the other two were from the last two
databases with default support 0.8%. The test results are
shown in Table 5.

Update transactions 1000 2000 3000
T5I2D100K 0.58 1.09 1.6
T10I2D100K 1.17 2.16 3.16
T10I4D100K 1.12 2.03 2.95
 Default support = 0.3%
Update transactions 1000 2000 3000
T20I2D100K 1.33 2.47 3.66
T20I6D100K 1.26 2.36 3.42
 Default support = 0.8%
Table 5. The RIL adjusting time (in seconds) for

various number of update.

It is observed from Table 5 that the RIL adjusting time in
every case is no more than 4 seconds. And the adjusting
time is almost proportional to the number of transactions
to be updated, rather than database characteristics. From
Table 1 and Table 3, we observe that the RIL adjusting

time is about 0.19% to 5.5%, with an average 1.27%, of
the rebuilding time.

5.2. Comparison

This subsection compares RIL with other online mining
approaches [1,4] in terms of the memory cost and lattice
adjusting time for dynamic databases. The full itemset
lattice of [1] keeps full information for both rule
generation and incremental update of the lattice.
However, the full itemset lattice may contain a lot of
redundant nodes that would not generate rules. As
mentioned in Section 2, [1] may keep 1015 nodes in the
itemset lattice for a database of 1000 items with
maximum cardinality 6. In contrast, the RIL uses less
memory (about 105 nodes as shown in Table 2) for the
same situation and provides the same functionality.
Furthermore, unlike the lattice in [1], the RIL does not
set a limit on the maximum cardinality of the itemsets,
which makes the RIL adaptable to different dynamics of
the database.

The full itemset lattice of [4] may use less memory as it
is built with respect to a default threshold and it does not
keep bottom small itemset nodes (as the RIL does). But it
must be rebuilt when the database is modified. Observed
from Table 1, the rebuilding process is very
time-consuming (in hundreds of seconds) and not
suitable for dynamic databases. In contrast, the RIL
needs not to be rebuilt and its incremental adjusting time
is on the average about 1.27% of the rebuilding time. It is
efficient enough to mine rules online for dynamic
databases. Moreover, unlike [4] which may miss rules as
the user-specified minimum support is lower than the
default threshold, the RIL always generates a complete
set of rules corresponding to the user-specified threshold.

6. CONCLUSION

In this paper, we presented a data structure RIL to
support online mining for dynamic databases. By
keeping fewer (than the full itemset lattice) but enough
itemsets, the RIL can incrementally adjust itself in
response to the database changes. As the user specifies a
support threshold, the RIL can expand itself first if
necessary, and mine a complete and correct set of
association rules in a short time. Experimental results
showed that the RIL not only effectively reduces the
space of full itemset lattice but also adjusts itself in
1.27% (on the average) of lattice building time. It takes
about two to ten minutes to expand the RIL. If the user
specifies a support value larger than the default threshold
(i.e., the expansion is not necessary), the RIL can mine
association rules in less than 0.01 seconds.

7. REFERENCES

[1] A. Amir, R. Feldman, and R. Kashi, “A new and
versatile method for association generation,”
Principles of Data Mining and Knowledge
Discovery, First European Symposium, PKDD '97,
pp. 221-231, 1997.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large

databases,” Proc. of the ACM SIGMOD Conference
on Management of Data, pp. 207-216, 1993.

[3] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” Proc. of the 20th VLDB
Conference, pp. 487-499, 1994.

[4] C. C. Aggarwal and P. S. Yu, “Online generation of
association rules,” Proc. of the IEEE ICDE'98, pp.
402-411, 1998.

[5] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong,
“Maintenance of discovered association rules in
large databases: An incremental updating
technique,” Proc. of the IEEE ICDE'96, pp. 106-114,
1996.

[6] D. W. Cheung, S.D. Lee, and B. Kao, “A general
incremental technique for maintaining discovered
association rules,” Proc. of the Fifth International
Conference On Database Systems For Advanced
Applications, pp. 185-194, 1997.

[7] C.-H. Hsu, Online Generation of Association Rules
in Dynamic Databases, Master Thesis, National
Chung-Hsing University, Taiwan, 2000.

[8] “IBM Almaden-Quest Data Mining Synthetic Data
Generation Code,”
http://www.almaden.ibm.com/cs/quest/syndata.html

[9] J. S. Park, M. S. Chen, and P. S. Yu, “An effective
hash based algorithm for mining association rules,”
Proc. of the ACM SIGMOD, pp. 175-186, 1995.

[10] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka,
“An efficient algorithm for the incremental updation
of association rules in large databases,” Proc. of the
3rd International Conference on Knowledge
Discovery and Data Mining (KDD97), pp. 263-266,
1997.

http://www.almaden.ibm.com/cs/quest/syndata.html

