FERENATAEZEERER

RIEBEBRBEIW A RO M TOER
Object-Oriented Development of a Petri Nets Modeling and Analysis System

R
Stephen J.H. Yang
Department of Computer Science
and Information Engineering,
National Central University, Taiwan.
jhyang@se01.csie.ncu.edu.tw

FRF

Jonathan Lee

Department of Computer Science

and Information Engineering,

National Central University, Taiwan.

yilee@se01.csie.ncu.edu.tw

w %

ABX At Eh KB 5 Java AppletT kR @
% #(Petri Nets Modeling and Analysis System, P
NMAS) - PNMASE# — @k R @i 2 H@EBHRR
Mg RAEE - RE IRV K -

Abstract

In this paper, we are presenting the implementation of
Petri Nets Modeling and Analysis System (PNMAS)
using Java Applet. The users of PNMAS are capable of
drawing , setting, executing and analyzing classical
Petri nets and two fuzzy Petri nets. PNMAS is now
available on the Internet via http://140.115.50.137.

Keywords: Petri nets, fuzzy Petri nets, object-oriented
pregramming, Java Applet.

1 Introduction

Petri nets are a graphical and mathematical tool for
modeling and studying systems. The graphical nature of
Petri nets is used as a visual-communication to simulate
the dynamic and concurrent activities of systems, and
the mathematical power make it possible to govern the
behavior of systems. After modeled by a Petri net, a
system can be revealed more deeper insight about its
structure and dynamic behavior by analyzing the Petri
net.

Recently, Peiri nets are utilized for modeling
fuzzy rule-based reasoning in order to improve the
efficiency of rule-based reasoning [buga94, chen90,

255
Kevin F.R. Liu
Department of Civil Engineering, Department of Computer Science
National Centra! University, Taiwan.
frliu@se01.csie.ncu.edu.tw

HEH

Sam Lin

and Information Engineering,
National Central University, Taiwan.
sam@se01.csie.ncu.edu.tw

A%
Wei T. Huang
Department of Computer Science
and Information Engineering,
National Central University, Taiwan.
wihuang@csie.ncu.edu.tw

kona96, loon88, scar96a, scar96b, yang97, 1iu97]. The
main advantages of using Petri nets for modeling fuzzy
rule-based reasoning are summarized as follows: First,
Petri net's graphical representation can help experts
construct and modify fuzzy rule bases. Second, the
graphical nature of Petri nets is suitable for visualizing
sequences of transition firing that can be utilized as an
explanation tool for rule-based systems. Third, the
mathematical foundation of Petri nets can express
structural and dynamic behaviors in algebraic forms,
i.e., a system of linear equations. Once rules have been
transformed into Petri nets, the fuzzy reasoning
problems can be transformed into the linear equation
problems which can be solved in parallel. Fourth, Petri
nets have well established formal mechanisms for
modeling and property checking of concurrent and
synchronization structures and such formalism can be
used for achieving the and/or parallelism of rule-based
systems. Fifth, Petri net's analytic capability can help
with checking properties of modeled systems for
gaining deeper insightseinto the systems.

In this paper, we are presenting the implementation
of Petri Nets Modeling and Analysis System (PNMAS)
using Java Applet. The users of PNMAS are capable of
drawing , sefting, executing and analyzing classical Petri
nets and two fuzzy Petri nets. We also propose the notion
of hierarchy to manage the complexity of Petri nets.
PNMAS consists of four subsystems: files managing
subsystem, drawing subsystem, simulation subsystems
and analysis subsystem. Files managing subsystem deals
with saving/loading files. Drawing subsystem is in charge
of drawing and setting Petri nets. Simulation subsystem is
to compute the fuzzy values and move tokens after
Judging firing conditions. Analysis subsystem analyzes

D-73

FERE/\+AEREHESY S

the properties of Petri nets. :

The organization of this paper is as follows. The
definition of Petri nets and fuzzy Petri nets are briefly
described in next section. In section 3, the
implementation of PNMAS is described, such as the
organization of PNMAS and the proceduses of
implementation. An example which illustrates how to use
PNMAS to execute the fuzzy Petri nets for modeling
fuzzy rule-based reasoning is shown in section 4. Finally,
a summary of this paper is given in the section 5.

2 Petri Nets and Fuzzy Extensions of Petri Nets

The Petri Nets Modeling and Analysis System (PNMAS)
is currently developed based on three Petri net-based
theories - the classical Petri nets [mura89] and two kinds
of fuzzy extensions of Petri nets [yang97, 1iu97]. In this
section, we introduce the three theories as follows.

2.1 Petri Nets

A Petri net is a directed, weighted, bipartite graph
consisting of two kinds of nodes, called places (p;) and
transitions_ (¢j). where arcs are either from a place to a
transition or from a transition to a place. Murata
[mura89] has formally defined Petri nets as a S-tuple:
PN=(P,T.F,W,Mp), where P={p], p2,...pm} is a finite set
of places, T={ty, t2,..., ty} is a finite set of transitions,
Fo(PxTY/(TxP) is a set of arcs, W: F—~{123,...} is a
weight function, and Mp: P—{1,2,3,...} is the initial
marking. A marking A is a m-vector, {M(p)),...,
M(pp)}, where M(p;) denotes the number of the tokens in
place p;. The incidence matrix 4=[a;j] is a nxm matrix of
integers and its typical entry is defined by ajj= ag'*- ai’,
where aij"’ is the weight of the arc from a transition ¢; to
its output place pj, and aj;~ is the weight of the arc to a
transition ¢; from its input place pj. The evolution of
markings, used to simulate the dynamic behavior of a
system, is based on the firing rule, such as: a transition ¢
is enabled if each input place ¢ is marked with at least
w(p,t) tokens, where w(p,t) is the weight of the arc from p
to ¢; an enabled transition may or may not enabled; and a
firing of an enabled transition ¢ removes w(p,t) tokens
from each input place p of ¢, and adds w(t,p) tokens to
each output place p of 1, where w(t,p) is the weight of the
arc from ¢ to p.

2.2 Fuzzy Extensions of Petri Nets

A typical interpretation of Petri nets is to view a place as
a condition, a transition as the causal relationship of
conditions, and a token in a place as a fact used to claim
the truth of the condition associated with the place. The
real-world problems often contain fuzzy or uncertain
information, for example: (1) conditions are fuzzy; (2)
the causal relationship of fuzzy conditions are uncertain;
(3) the values of facts are fuzzy, and may partially match
the value of the related condition; and (4) the confidence

about the truths of the facts is not complete.

In [yang97], the authors defined fuzzy Petri nets 9-
tuple: FPN=(P,T,4,M,C.O,F,B,L), where P is a set of
places, i.e., P={py, p2....pm}, T is a set of transitions,
i€, T={t], £2,..., tn}, 4 is a n’m matrix in which a;* is
the weight of the arc from a transition ¢; to its output
place pj, and aj;~ is the weight of the arc to a transition ¢;
from its input place pj, I is a set of marking with m-
vector, {M(p]),..., M(pm)}, where M(p;) denotes the
numbers of the tokens in place pj, My denotes the initial
marking, C is a set of mapping between rules and
transitions, i.e., C(rj)=tj, C(tj)=r;, O is a set of mapping
between antecedent/consequent parts and places, i.e.,
O(sp)=pi» C(pi)y=sj, F is a set of mapping from the places
to their corresponding degree of truth, i.e., F(p))=q;, B is
a set of mapping from the transitions to their
corresponding degree of truth, ie., B(¢)=8;, L is set of
thresholds of transition firing; L(sj)=4;. Let et; denotes ‘
the input places of #;, and ¢+ denotes the output places of
4j. For a transition ¢ in FPN to be enable, the degree of
truth of all #’s input places must be greater than or equal
to ¢’s threshold. That is, a transition is enabled when a;>

- 4j, where gje e and in 4j €[0,1]. Thus, FPN is a

generalized version of PN. When all transitions fjin a
FPN with 4; =1, a FPN becomes a PN.

In [liu97], the authors defined fuzzy Petri nets as a
5-tuple: FPN=(FP,UT,F,W,Mp). FP={(p;, F1), (p2
F2),..., (om, Fm)} is a finite set of fuzzy places, where p;
represent a fuzzy condition and F; is a fuzzy subset of U;
to represent the fuzzy set of the condition. UT={(t}, 7J),
(£2, ©2),.-., (tn,)} is a finite set of uncertain transitions,
where # represents the causal relationship of fuzzy
conditions and 7 is a fuzzy truth value to represent the
uncertainty about the causal relationship of fuzzy
conditions. FC(FP<xUT) N(UTxFP) is a set of arcs. W:
F—{1,23,...} is a weight function, and Mp:
P—{1,2,3,...} is the initial marking. The fuzzy truth
value serves as the representation of uncertainty for its
capability to express the possibility of the degree of truth.
Each token is associated with a pair of fuzzy sets (F}' z;).
A firing of an enabled uncertain transition {j removes the
uncertain fuzzy token from each input place p; of 4j, adds
a new token to each output place pf of ¢;, and the fuzzy
set and fuzzy truth value attached to the new token will
be computed based on the mechanism in fuzzy reasoning,

3 Implementation

The Petri Nets Modeling and Analysis System is
implemented by Java Applet, an object-oriented
programming language by Sun. Java is chosen as our
programming language because it is a cross platform and
secure language.

3.1 Architecture

The architecture of network for PNMAS is shown in

D-74

dhERENA+AFZEHERTE

Figure 1. We design a Petri net server together with
Alibaba (a www server) to help with transmitting files
under Client/Server mode. In Figure 1, client 1 is a
workstation with UNIX and client 2 is a PC with Window
95. To avoid problems arising from saving or loading
files among clients, only one client who takes token can
process files at the same time..

3.2 PNMAS Organization

PNMAS consists of four subsystems: files managing
subsystem, drawing subsystem, simulation subsystems
and analysis subsystem. The subsystems are described as
follows. First, files managing subsystem, consisting of
Petri Nets server and Alibaba, deals with saving/loading
files. Second, drawing subsystem is in charge of drawing
and setting Petri nets, such as drawing places, transitions ,
arcs and setting fuzzy values. Third, simulation
subsystent is to compute the fuzzy values and move
tokens after judging firing conditions. Fourth, analysis
subsystem analyzes the properties of drawing Petri nets,
such as incidence matrix, reachability graph and state
equation.

3.3 Hierarchy

We are confronted with the problem of complexity when
the Petri nets are too large to manage. Even though a
simple system is modeled by Petri net, the Petri net may
be quite large. Therefore, we propose the notion of
hierarchy to manage the complexity of Petri nets.
Besides, hierarchy is used to structuralize Petri nets,
similar to the design of module in the rule bases of expert
systems. Hierarchy, represented by a double-lined square,
means acyclic Petri net. Hierarchy is linked to places
which can be viewed as ports. As shown in Figure 2, H;
and H> are two hierarchies, where accommodate Petri
nets, place p; is considered as the output port of
hierarchy H, and place p) is considered as the input port
of hierarchy). Once place pp in hierarchy H; receives
tokens, the tokens will be sent to place pj. Similarly,
Once place p receives tokens, the tokens will be sent to
place p, in hierarchy H>.

There are three main benefits by having a
hierarchical structure in our system: (1) the notion of
hierarchy can make easy the handling of complex
systems through decomposition; (2) a hierarchical Petri
net can facilitate the reusability; and (3) a hierarchy is an
application of the notion of system architecture
[luck95). We can consider a hierarchy as an interface. A
Petri net in a hierarchy is considered as a module. Arcs in
a Petri net having hierarchies is considered as the

connections between interfaces. Transitions is considered -

as formal consiraint. Therefore, a Petri net having
hierarchies is considered as a sysiem architecture. A
system architecture without module is called instantiated
architecture (see Figure 3).

3.4 Procedures of Implementation:

1. Defining classes: Objects are classified into three
categories [ivar92]: interface objects, entity
objects and control objects. They are described as
follows: (1) Interface objects are everything
concerning any interface to PNMAS. An example
of an interface object is the user interface
functionality for requesting inforrnation about
Petri nets. These objects are to transform users’
input into events or to show information requested
by users. (2) Entity objects model information in
PNMAS that should be held for a long time,
Examples of entity objects are places, transitions,
arcs, hierarchies and tokens. (3) Control objects
model functionality that is not naturally tied to any
other object, for example, doing some analysis of
Petri nets and then returning the result to an
interface object.

. Defining operation functions: Operation functions
are defined for each classes based on the classes
state and behavior.

3. Implementing operation functions: Operation
functions are implemented based on their
definitions. An operation function will be called
and carried out if specific event occurs.

. Defining subsystems: The classesects which serve
the same functionality are collected into a
subsystem. There are four subsystems in PNMAS:
Files managing subsystem, drawing subsystem,
simulation subsystems and analysis subsystem.

5. Implementing subsystems:

(a) Files managing subsystem: Files managing
subsystem, consisting of Petri Nets server and
Alibaba, is in charge of processing files, such as
saving and loading files. Files managing
subsystem allows at most ten users to login
PNMAS, but only one user who takes token can
save or load files at the same time. Besides, the

" mechanism to deal with errors is defined as
follows: (1) The subsystem will end the login of
a user if the user disconnect PNMAS. (2) An
error message will be sent to users if there is
something wrong with the servers,

(b) Drawing subsystem: First, the two fuzzy Petri
nets inherit from the classical Petri because they
both stick to the basic characteristics of classical
Petri nets (see Figure 4a). Second, the
inheritance between five basic classes (i.e.
places, transitions, arcs, hierarchies and tokens)
should be specified (see Figure 4b). In Figure
4b, places, transitions and hierarchies are
collected into a PN_Classes because they have
some similar characteristics, where PN_Classes
take charge of scaling the objects. Third, the
classes for customer windows are divided into
two groups: tool classes and canvas classes (see
Figure 5). In Figure 5, action() function is used

384

oS

D-75

PERENTAFZEHERGS

to transmit information from a lower level to an
upper level. For example, if button 1 is pushed
then a relevant event will be sent to the action()
of tool classes. After processed in tool classes,
the information is sent to customer window

- classes and then the drawing will be executed. It
is helpful to debug, maintain and modify
PNMAS that way instead of directly calling the
functions of classes. ‘

(c) Simulation subsystem: There are two simulation
modes. One is the firings of transitions and the
other is the firings of hierarchies. First, the
firings of transitions are based the enabling and
firing rules described in section 2. Second, to
increase the performance of PNMAS, the firings
of hierarchies are based on the following
conditions: (1) The Petri net in a hierarchy is
enabled in the initial marking. (2) Tokens are put
into a hierarchy by users and make it enabled.
(3) The input ports of a hierarchy receive tokens.

(d) Analysis subsystem: There are three analysis
classes: Incidence matrix classes, reachability
graph classes and state equation classes.

The PNMAS is now available on the Internet via
hitp://140.115.50.137. '

4 An Example

This section illustrates how to use PNMAS to execute the
. fuzzy Petri nets proposed by Liu [liu97] for modeling
fuzzy rule-based reasoning. Assume that there is a rule
base containing 5 truth-qualified fuzzy rules, one module
having 2 truth-qualified fuzzy rules, and three truth-
qualified fuzzy facts as follows:
Main Rules:
Rule 1: IF (X, is large) AND (X, is small) THEN
(X is large), very true
Rule 2: IF (X, is very small) THEN (X, is very
small), true
Rule 3: IF (X, is large) THEN (X, is very large),
true
Rule 4: IF (X, is large) THEN (X, is large), very
true
Rule 5: IF (X, is small) THEN (X, is very large),
very true
Module 1:
Rule 1: IF (3 is large) AND (X, is small) THEN
(X, is very large), true
Rule 2: IF (¥ is large) THEN (X, is very small),
very true :
Facts:
Fact 1: (X, is fairly large), very true
Fact 2: (X, is very small), true
Fact 3: (X, is very large), very irue
where X; is a variable; very large, large, fairly large, very
small, small, fairly small are fuzzy sets of the universe of
discourse from 0 to I to represent fuzziness; very irue,
true, fairly true, very false, false, fairly false are fuzzy

truth values to represent the uncertainty.

The rules, module and facts are input to PNMAS and
then they are automatically transformed into a fuzzy Petri
net containing a hierarchy through our proposed
algorithms (see Figure 6). The hierarchy represents a
fuzzy Petri net mapping onto on the module in the rule
base (see Figure 7). In Figure 6, the fuzzy proposition
“X, is small” in Rule 2 is transformed into a fuzzy place
(p4, S)(i.e. S: small), the fuzzy proposition "X, is very
small” in Rule 2 is transformed into a fuzzy place (p3,
VS)(i.e. VS: very small), and Rule 2 is represented by the
inference transition (¢, T)(ie. T: true). Fact 1 is
transformed into a token deposited in py, and its value is
(FL, VT)ie. FL: fairly large) which is shown after
clicking pj twice. After pushing the run button, the
dynamic behavior of the fuzzy rule-based reasoning is
animatedly shown in the window by moving tokens. The
result is shown in Figure 8. Figure 9 is clicked from p;3
in Figure 8 to show the detail information about the
result.

5 Conclusion

We have implemented Petri Nets Modeling and Analysis
System (PNMAS) using Java Applet. We have also
propose the notion of hierarchy to reduce the complexity
of Peiri nets and to structuralize Petri nets. PNMAS
consists of four major components: files managing
subsystem, drawing subsystem, simulation subsystems
and analysis subsystem. We also have shown in an
example how the subsystems to work to automatically
transform rules into Petri nets and to draw, set, execute
and analyze Petri nets. '

References :

[buga94] A.J. Bugarin and Barro. A reasoning algorithm

for high level fuzzy Petri nets,” I[EEE

Transaction on Fuzzy Systems, 4(3): 282-294,

1994 -

SM. Chen, JM. Ke, and JF. Chang.

Knowledge representation using fuzzy Petri

nets. IEEE Transactions on Knowledge and

Data Engineering, 2(3):311-319, 1990,

[ivar92] Ivar Jacobson. Objeci-Oriented Software
Engineering, Addison Wesley, 1992,

[kona96] A. Komar and A. K. Mandal. Uncertainty
Management in Expert Systems Using Fuzzy
Petri Nets, IEEE Transactions on Knowledge
and Data Engineering, 8(1): 96-105, 1996.

[liu97] K.F.R. Liy, J. Lee, S.J. Yang, and W.L. Chiang.
Fuzzy Petri Nets for Modeling Rule-based
Reasoning, In ICTAI'97(to appear), 1997.

[loon88] C.G. Looney. Fuzzy Petri nets for rule-based
decisionmaking, [EEE Transactions on
Knowledge and Systems, Man, and
Cybernetics, 18(1): 178-183, 1988.

{luck95] D.C. Luckham, J. Kenney, L.M. Augustin, J.

[chen90]

D-76

PERENATAFZEFEERTSR

Vera, D. Bryan, and Walter Mann. Systems, 4(1): 61-85, 1996 -
Specification and Analysis of System [scar96b] H. Scarpelli, F. Gomide, and R. Yager. A
Architecture Using Rapide. IEEEE reasoning algorithm for high level fuzzy Petri
Transaction on Software Engineering, 22(4): nets. [EEE Transaction on Fuzzy Systems,
336-355, 1995. 4(3):282-294, 1996 -
[mura89] T. Murata, Petri Nets: Properties, Analysis and [yang97] S.J. Yang, J. Lee, W.C. Chu and W.T. Huang,
Application. Proceedings of the IEEE. 77(4): A fuzzy Petri nets based mechanism for fuzzy
- 541-580, 1989. rules reasoning. In COMPSAC’97(to appear),
[scar96a] H. Scarpelli, F. Gomide, and W. Pedrycz. 1997 . ‘

Modeling fuzzy reasoning using high level
fuzzy Petri nets. International Jowrnal of
Uncertainty, Fuzziness and Knowledge-Based

Alibaba(WWW Server)

Petri Net Server

Customer Window Classes

Tool Classes Canvas Classes

Network
i
!
. Client 1: Client 2:
| Workstation(UNIX) PC(Window 95) | "

Button I Classes Button 2 Classes eseee-

Figure 5. Customer window classes
Figure 1. Architecture of network for PNMAS.

Hjp . H)
Pb
pi 4 p H>

OO0 640 | 8-k%

(@) | (b)

Figure 2. (a) Petri net with hierarchies, and (b) the structures of hierarchies.

interface 1 (H)

module 1
(Petri net for Hy)

interface 3 (H3)

module 2
(Petri net for H7)

module 3
(Petri net for H3)

Figure 3. An instantiated architecture.

Petri Nets Classes

Classical Petri Nets
R .

arcs PN_Classes tokens
3 . ¥ A v,
Fuzzy Petri Nets () Fuzzy Petri Nets (D . :
places transitions hierarchies
(@ - » : inherits from (1) JEREE » : inherits from

Figure 4. (a) Implemented three nets, and (b) five basic classes.

D-77

hERENA+AEZEIERe S

.ﬁ:ﬁl IUnS\gned JavaA.pplet Window
Figure 6. A fuzzy Petri net automatically transfonned from a fuzzy rule base

Figt‘;re 9, "”lr"lfe detail information Vabout the token in P 3.

D-78

