hERE/TAEREREHTER

R R R R B R R
Program Transformation and Data Intensive Program Maintenance :
A Brief Review and Future Research Agenda

S5, RS B
Hongji Yang* William C. Chu Chih-Wei Lu
*TEEIIKEE R R BRI 2R ERREHERATIENERN

*Computer Science Department
De Montfort University
England
*hjy@dmu.ac.uk

S

T E e RN R AR E ey ARl -
[y [RR ELAERA A BN AR AR L RUREIT - J0E - 3
Fetita bl R AUHEEE LT IRER - B RS
EEITHRG - aL B TR A T BRI 75 A
- iR DURKETHOE SIS TR 3 R R (R RS -

Abstract

This paper first introduces program transformation
techniques used in software development and then
reviews the techniques used for software maintenance. In
particular, our work on data intensive program
maintenance summarized, together with experiences and
lessons learnt. More recently, a method for incorporating
reuse has been added, and experience with this is
described. Conclusion and recommendations for future
research in the field are made.

1 Introduction

1.1 Software Maintenance and Reverse
Engineering

In the early days of computing (1950s and early
1960s), software maintenance comprised a very small
part of the software lifecycle. In the late 1960s and the
1970s, as more and more software was produced, people
began to realize that old software does not simply die,
and at that point software maintenance started to be
recognized as a major activity, By the late 1970s,
industry was suffering major problems with the
applications backlog, and sofiware maintenance was now
taking' more effort than initial development in some
sectors. In the 1980s, it was becoming evident that old
architectures were severely constraining new design [9)].
All of these were placing demands that the changes to the
software were performed. Changes include, for instance,
fixing errors, adding enhancements and making
optimizations. Besides the problems whose solutions
required the changes in the first place, the
implementation of the changes themselves create
additional problems. One of the five Lehman's laws of
the evolution of a software system directly addresses the

Information Engineering Department
Feng Chia University
Taichung, Taiwan, R.O.C.
Chu@fcu.edu.tw

modification of software. It states that "a program that is
used in a real world environment must change or become
less and less useful in that environment" [34]. So
mechanisms must be developed for evaluating,
controlling, and making changes.

Software Maintenance is defined as the modification
of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the
product to a changed environment [1]. So maintenance
activities can be divided into these categories
correspondingly [42]: corrective maintenance, to remove
faults, which do not conform to the specification, in the
software; adaptive maintenance, to adapt the change to
the external environments; perfective maintenance, to be
undertaken as a consequence of a change in user
requirements of the software; and preventive mainten-
ance, to be undertaken on a system in order to anticipate
future problems and make subsequent maintenance easier

(8].

The large cost associated with software maintenance
is the result of the fact that software has proved difficult
to maintain. Early systems tended to be unstructured and
ad hoc. This makes it hard to understand their underlying
logic. System documentation is often incomplete, or out
of date. With current methods it is often difficult to retest
or verify a system after a change has been made.
Successful sofiware will inevitably evolve, but the
process of evolution will lead to degraded structure and
increasing complexity [11,25,34].

Software maintenance has its own life cycle and its
own features. Over the years, several software task
models have been proposed, while the model by Bennett
[9] is used here:

1. request control: the information about the request is
collected; the change is analyzed using impact
analysis to assess_cost/benefit; and a priority is
assigned to each request.

. change control: the next request is taken from the
top of the priority list; the problem is reproduced (if
there is one); the code (and design and the
specifications if available) are anal- the changes are

[

D-37

hERE T AEREEEREHR

designed and documented and tests produced; the
code modifications are written; and quality
assurance is implemented.

. release control: the new release is determined; the
release is built; confidence testing is undertaken; the
release is distributed; and acceptance testing by the
customer takes place.

(V3

Currently, these three steps are almost always
undertaken in terms of source code. Design information
and even adequate documentation often do not exist.
Thus software maintenance is thought of predominantly
as a source code activity. Understanding the functions
and behaviors of a system from the code is hence a vital
part of the maintenance programmer's task [39].
Approaches to program comprehension will be described
in later chapters.

Reverse Engineering involves the identification or
"recovery" of program requirements and/or design
specifications that can aid in understanding and modify-
ing the program. The main objective is to discover the
underlying features of a software system including
requirements, specification, design and implementation.
In other words, it is to recover and record high level
information about the system including:

o the system structure in terms of its components and
their interrelationships expressed by interface,

o functionality in terms of what operations are
performed on what components,

¢ the dynamic behavior of the system in understand-
ing how input is transformed to output,

o rationale - design involves deciding between a
number of alternatives at each design step,

e construction - modules, documentation, test suites
etc.

There are several purposes for undertaking reverse
engineering listed in [9]. They can be separated into the
quality issues (e.g., to simplify complex software, to
improve the quality of software which contains errors, to
remove side effects from sofiware, etc.), management
issues (e.g., to enforce a programming standard, to
enable better sofiware maintenance management
techniques, etc.) and technical issues (e.g., to allow
major changes in a software to be implemented, to
discover and record the design of the system, and to
discover and represent the underlying business model
implicit in the sofiware, etc.). In most cases, reverse
engineering is the first step of software maintenance. The
analysis of the object software is crucially important to
accomplish the request control stage of software
maintenance.

1.2 Program Refinement and Transformation

By the term refinement, we mean a technique to
produce correct implementations from specifications

[35,33]. From this, we know that specification and
implementation are two essential elements in the
refinement process.

Refinement can be carried out informally or formally.
Figure 1 presented a general picture of formal program
development in which programs. were evolved from
specifications in a gradual fashion via a series of
refinement steps. Probably the most useful potential
application of formal specifications is to the formal
development of programs by gradual refinement from a
high-level specification to a low-level "program” or
"executable specification" [26,30,40]. Actually, some
refinement steps are more or less routine. Such
refinement steps can typically be described schematically
as transformational rules. The process of changing a
program (specification) to a different program
(specification) with the same semantics as the original
program (specification) is called program
transformation.

Any refinement obtained by instantiating a
transformation rule will be correct. Rather than proving
correctness separately for each instantiation, the rule
itself can be proved correct and then applied as desired
without further proof. This led to a method of program
construction - transformational programming, i.e., to
construct program by successive application of
transformation rules. Usually this process starts with a
formal specification and ends with an executable
program.

Much recent work has been focused on the program
transformation as one kind of programming paradigm in
which the development from specification to
implementation is a formal, mechanically supported
process. Research on program transformation aims at
developing appropriate formalisms and notations,
building computer-based systems for handling the
bookkeeping involved in applying transformation rules,
compiling libraries of useful transformation rules,
developing strategies for conducting the transformation
process automatically or semi-automatically. The long-
range objective of this paradigm is dramatically to
improve the construction, reliability, and maintainability
of software.

2 Program Transformation Systems

2.1 Program Transformation for Software
Development

Let us start with the sofiware system development.
The most widely used method is to derive the final
program from a specification. We use SP to represent a
specification of requirement which the software system is
expected to fulfill; and P to represent the ultimate object
program which satisfies the specification in SP.

D-38

PERENATAFZEGEEGE

The usual way to proceed is to construct P by
whatever means are available, making informal reference
to SP in the progress, and then verify in some way that P
does indeed satisfy SP. The only practical verification
method available at present is to test P. checking that in
certain selected cases that the input/output relation it
computes satisfies the constraints imposed by SP. This
has the obvious disadvantage that (except for trivial
programs) correctness of P is never guaranteed by this
process, even if the correct output is produced in all test
cases. An alternative to testing is a formal proof that the
program P is correct with respect to specification SP.

Most work in this area has focused on methods for
developing programs from specification in such a way
that the resulting program is guaranteed to be correct by
construction. The main idea is to develop P from SP via
a series of small refinement steps, inspired by the
programming discipline of stepwise refinement [33].
Each refinement step captures a single design decision,
for instance a choice between several algorithms which
implement the same function or between several ways of
efficiently representing a given data type. This yields the
following diagram (Figure 1) (SP, represents the initial
specification; those steps in between SP, and P are
represented by SPy, SP, and etc.).

SPy =»SP; =»SPy = . =» P
Figure 1: Stages of Program Development

If each individual refinement step (SPy=>SP,,
SP=»SP, and so on) can be proved correct. the P itself is
guaranteed to be correct. Each of these proofs is orders
of magnitude easier than a proof that P itself is correct
since each refinement step is small.

To compare the various transformation systems for
software development, and to judge whether a transfor-
mation system is good eventually depends on the extent
to which it can fulfill the goal - transforming a
specification to a running program. However, it is not the
only purpose of this review, and a more important aspect
is to learn what can be used in undertaking sofiware
maintenance.

There exist a number of transformation systems
which have been described:

° Optimizing Compilers — program transformation
techniques have been used for many years in optimizing
compilers, because inefficient programs can be
transformed into efficient programs (e.g., loop induction,
strength reduction, expression reordering, symbolic
evaluation, constant propagation, loop jamming).

* Burstall and Darlington's Work — the work on
program transformation by Burstall and Darlington was
done in the mid-1970's [16,38). Their system was based
on schema-driven method for transforming applicative

D-39

recursive program into imperative ones with improving
efficiency as the ultimate goal. The system worked
largely automatically, according to a set of built-in rules
with only a small amount of user control.

+ Balzer's Work — built an implementation system for
program transformation [4,5,6]. This system was
designed mechanically to transform formal program
specifications into efficient implementations under
interactive user control. He expressed the problem by a
formal specification language GIST, which was
operational (i.e., having an executable semantics).

« ZAP — Feather's ZAP system [24] is based on the
Burstall/Darlington system with a special emphasis on
software development by supporting large-program
transformation. The input/target language of the system
is NPL (an applicative language for first-order recursion
equations). The system provides the user with a means
for expressing guidance. An overall transformation
strategy is hand-expanded by the user into a set of
transformation tactics such as combining, tupling
generalization.

+ DEDALUS System — The DEDALUS system
(DEDuctive Algorithm Ur-Synthesiser) by Manna and
Waldinger was implemented in QLISP [36]. Its goal was
to derive LISP programs automatically and deductively
from high-level input-output specifications in a LISP-like
representation of mathematical-logical notation. The
system incorporates an automatic theorem prover and
includes a number of strategies designed to direct it away
from rule applications unlikely to lead success.

* CIP-S§ — CIP-S is the approach of the Project CIP
(computer-aided, intuition-guided programming) [7],
which is to develop along the idea of transformational
programming within an integrated environment,
including methodology, language, and system for the
construction of “correct” software. A prototype system
was built. The system is interactive and the development
process is guided by the programmer who has to choose
appropriate transformation rules. The system is language-
independent and is based on the algebraic view of
language definition; any algebraically defined language
is suited for manipulation, provided respective facilities
for translating between external and internal
representations are available.

To summarize, there is widespread dernand for safe,
verified, and reliable software. This demand arises from
economic considerations, ethical reasons, safety
requirements, and strategic demands. Transformational
programming can clearly make a valuable contribution
toward this goal. It already covers several phases of the
classic software engineering lifecycle and shows promise
of covering the remaining ones. But, afier near twenty

hERE /T AEZEEEHGE

year's research, existing transformation systems are still
experimental and the problems they are capable of
coping with are still more or less toy problems. To make
practical use of transformation systems is no doubt the
key “problem to be solved in transformational
programming.

2.2 Program Transformation for Software
Maintenance

Several recent transformation systems (formal and
informal) have been described:

- Reverse Engineering in REDO — REDO (Restruc-
turing, Maintenance, Validation, and Documentation of
Software Systems) is an ESPRIT II project, which ran
from 1989-93 and is concerned with "rejuvenating"
existing applications into more maintainable forms by
improving documentation, by restructuring code, and by
validating the code against the original intentions. As one
part of the REDO project, reverse engineering (reverse-
engineering COBOL programs into Z specifications) was
carried out at Oxford University [14,15,31,32]. The
strategy here is to perform abstraction first, and then
perform transformation on the high level language. The
method looks promising, but has not been investigated in
depth on industrial-scale code.

+ Sneed's Work — Sneed and Jandrasics use auto-
mated tools to support the retranslation of software code
in COBOL back into an application specification by the
process of reverse engineering [41]. Two steps are
needed, to recover a program design from the source
code and to recover a program specification from the
program design. A set of transformation rules for
mapping COBOL source code back into the design
schema is obtained by inverting those rules used to
generate COBOL programs from the design. The
programs are modularized and restructured as a by-
product of the reverse transformation process. Sneed's
work has been thoroughly described in a number of
papers, and is one of the very few commercially
successful reverse engineering methods.

+ A CASE Tool for Reverse Engineering — Bachman
introduced a CASE tool, DOCMAN, for reverse
engineering COBOL programs [3]. The Re-Engineering
Cycle chart provides an architectural view of this CASE
tool, which features both forward and reverse
engineering. Particularly, reverse engineering begins at
the bottom left with the definition of existing
applications and raises the applications to successively
higher levels of abstraction. At the top, the design objects
created by the reverse engineering steps are enhanced
and validated to become the revised design objects used
in the forward engineering process. At the bottom, a new
applications system becomes an existing applications

D-40

system at the moment that it goes into production.
Basically, this is an informal approach.

« TMM — A method was proposed in [2] for
recovering abstractions and design decisions that were
made during implementation. This method is called
Transformation-based Maintenance Model (TMM). The
purpose of this system is to reimplement a system in
order to adapt it to a new environment through reuse.
The abstractions and design decisions of software must
be recovered first before the software is reimplemented.
The recovery work in TMM paradigm is done by
maintenance by abstraction (MBA).

» A Concept Recognition-Based Program Transfor-
mation System — This is an approach that applies a
transformation paradigm to automate software
maintenance activities [22]. The characteristic of this
approach is its use of concept recognition, the
understanding and abstraction of high-level programming
and domain entities in programs as the basis for
transformations. Four understanding levels are defined:
the text level, the syntactic level the semantic level, and
the concept level. The program transformation system
depends on its program understanding capabilities up to
the concept level. The key component is a concept
library which contains the knowledge about
programming and application domain concepts, and the
knowledge about how these concepts are to be
transformed. Concept recognition is done by pattern
matching.

. REFORM — REFORM (Reverse Engineering using
FORmal Methods) is a joint project between University
of Durham, CSM Ltd. and IBM (UK) to develop a tool
called the Maintainer's Assistant. The main objective of
the tool is to develop a formal specification from old
code. It will also reduce the costs of maintenance by the
application of new technology and increase quality so
producing improved customer satisfaction. The old code
in this project is the IBM CICS. The aims of the
Maintainer's Assistant are to provide a tool to assist the
human maintainer, handling assembler and Z in an easy
to use way [10,18,13].

To summarize, most of these approaches have been
advocated for reverse engineering, but few have been
evaluated in practice on large-scale code. Results are
only available in depth for Sneed's method, and for
ReForm.

From the above systems, we know that a great effort
is still needed to put the paradigm of reverse engineering
into practical use. It is a hard job to reverse an existing
program back to its design or specification. For instance,
one of the problems is that the availability and accuracy
of the design information are both assumed. Typically,
such information is obsolete or lacking in systems which

hERENA+AFREHEREE

have gone through years of maintenance. For such
systems, source code is the only reliable source of
information. Another problem is that there is not a
method for coping crossing levels of abstraction covering
all abstraction levels in these systems.

The state of the art in reverse engineering may be
summarized as follows. Most existing commercial tools
are basically restructurers, and these operate at the same
level of abstraction. Even module recovery tools, such as
those in Sneed's work, operate at the syntactical level,
e.g., grouping variables and operations on them. Where
genuine crossing of levels of abstraction occurs, this is
done manually, e.g., in Sneed's system for COBOL, or in
redocumentation systems such as DOCMAN [3].

The first step for conducting software maintenance is
to understand the software to be maintained and the
abstraction of the program design and specification from
the existing source code is one of the methods which
helps us to- understand software systems. Reverse
engineering is particularly important when the source
code is the only source with which to work. Reverse
engineering data intensive programs based on a
transformation approach for the purpose of software
maintenance and aims to find out the formal relation
between program code and its design and eventually
specification surely crucial for software maintenance.

3 Sunmunary of REFORM and Data Intensive
Programs

3.1 Failures of REFORM

The prototype of the Maintainer's Assistant in the
REFORM Project started with tackling computation
intensive program. Before the work on data intensive
program maintenance began, the following points were
noticed:

* Almost all program transformations in the
transformation library based on Ward's work were
mainly for dealing with functional abstraction (or
control abstraction) most transformations
operated on control structures of a program while
few transformations on data structures. In another
words, the system was only suitable to operate on
computation-intensive programs, not data-intensive
programs. The program transformer can only deal
with the construction of well-structured code.

¢ To obtain a specification expressed in Z is a long-
term goal for the REFORM project. Most of the
program transformations can only be used for
restructuring programs at the code level, i.e., both
programs before and after the transformation being
applied are in the same abstraction level.

D-41

¢ Most of the program transformations that currently
are implemented can only be used for restructuring
programs at relatively low levels of abstraction.

= No representations of types, complex data structures
and data design yet exist in WSL.

* A new application area of the tool was identified as
acquiring data design from data-intensive programs
written in e.g. COBOL. After seeing the
demonstration of the prototype of the Maintainer's
Assistant, many industrialists were disappointed with
the tool for being unable to deal with COBOL
programs though they confirmed the potential
capability of the Maintainer's Assistant.

These facts urged a new research direction to be set
up i.e., employing program transformation technique
emphasizing data abstraction and to end up with data
designs.

3.2 Problems with of Data Intensive
Programs

Data-intensive programs and computation-intensive
programs are comparative notions. There is no clear
distinction between these two sorts of programs. Dara-
intensive programs mean programs which are written in
data-intensive programming languages that provide
complex data structuring mechanisms and high-level
composite operations to manipulate them.
Computational-intensive programs mean programs
which are written in computational-intensive languages
that provide ways to express computations using
relatively simple operations on elementary objects [28].
COBOL is a typical data-intensive programming
language.

The COBOL language used in this research not only
is unrestricted to any dialect of COBOL but also covers
features written in ANSI COBOL Standard 1985. More
importantly, this research will be not only of benefit to
COBOL programs but also to other data intensive
programs written in other languages. Programs written in
COBOL have characteristics which are different to those
of typical computation-intensive programs. and these are
important constraints in reverse engineering such
systems, e.g.:

¢ Important data is represented in the form of records
-and operations on data are therefore heavily record
based.

¢ COBOL programs are often designed using Entity-
Relationship Attribute Diagrams, rather than process
based design methods.

+ COBOL allows the programmer to specify that two
different records (with different structures) may
share the same memory location. This is known as

tEREN\TAEREE EHREHR

the aliasing problem and is found in many COBOL
programs.

- COBOL programs usually have external calls to the
operating system and database management system.

+ COBOL programs may use many foreign keys to
represent complex data structures which in other
languages would use pointers.

4 Recent Research Results

One of the characteristics of data intensive third
generation languages is that high level data designs often
translate at the implementation level to constructs in both
the code and data. For example, a reference in the data
design between two data structures is typically
implemented in COBOL by a foreign key, i.e., an integer
index from one to the other. The relation between the
two data structures can only be discovered by
examination of the data and the code, not the data alone.
Existing reverse engineering techniques have difficulty
handling this. It seemed to us that formal transformation
offered potential to solve this problem.

It is considered that the approach using program
transformations is also a suitable method for acquiring
data designs, because performing data abstraction
operations also needs the properties of program
transformations, such as the preservation of semantics
and suitability for tools, etc.

WSL currently has declarations which introduce the
name of an identifier without its type. Therefore,
variables are not typed, but all values in WSL have a
type which belongs to a distinct set of values. Since
COBOL treats all significant data as records, defining
"records” in WSL for modeling COBOL records is a
clear requirement. The external calls to the underlining
operating system and the embedded database can be
modeled as external procedure calls and external
functions. WSL already has mechanisms for dealing with
external calls. The foreign key problem can be dealt with
by program transformations. These transformations
analyze the code with foreign keys and relations between
modules using foreign keys could be found.

ERA (Entity-Relationship Attribute) Diagrams are
based on entity models [17,20,21,37]. Entity models
provide a system view of the data structures and data
relationships within the system. Entity-Relationship
Attribute Diagrams are suitable forms for representing
data designs for data-intensive programs and therefore
WSL needed to be extended to include Entity-
Relationship Attribute Diagrams.

4.1 A Method for Design Recovery and Reuse

A new method for design recovery and identifying
reusable components through program understanding
was proposed.

1. Translating a COBOL program into WSL.

2. Using initial tidy-up transformations to "clean up” the
target program in WSL in order to reduce - the
redundant statements introduced during the translation.

3. Looking for functionally self-contained modules. A
code module, a function or a procedure in the original
software system, are potentially self-contained
modules. A reusable component may well be obtained
from one of the above modules. A module which is not
a function or a procedure may also transformed into an
abstract data type, and hence also a candidaie of a
reusable component.

4. Taking one module obtained from the above process
to work, one at a time. Program transformations are
applied to the module to reverse the module into its
high-level representation in ERA diagrams. These
ERA diagrams are the main results of the reverse
engineering process.

5. The obtained ERA diagrams are viewed as reusable
components. The ERA diagrams, together with the
original code, are used by a Semantic Interface
Analysis tool to generate semantic predicates and
interface predicates for a reusable module in terms of
its preconditions, post-conditions and obligations.
These predicates are used to serve as the rules of
describing implicit semantics, characteristics, and
interface requirements of each- software component
explicitly.

6. Storing a reusable module in the Reuse Library, and
maintaining a formal link between the reusable module
and its high abstraction level representation.

In implementing the above method, MA has to be
extended (Figure 2), which mainly includes development
of transformations for dealing with data intensive
programs and development of the Semantic Interface
Analyzer. '

e ————e
‘ Reuse Library

Code
Component .
Program ERD. DFD with & D?p::%“
Scgmenis \ SC. Ete. Predicate
AN Annotation

i

\

q

\
/

. Program Semantic Reusable Interfuce 10
Modutasiser tnterfisce Component =<3 Reuse and
Teansfonner -
Analyzer Sclector Re-developer
WSt
Representation |-
N—
: Krowledge Base
Source Code Traastator - S
. Browser + Interface
/Uscr\)
L____] “Toot Componcat —— Dala Flow v
KEY:
Data Presentation =———— Dala und Conirol

Figure 2: Extended MA

hERE/ N\ AEZERTEREER

4.2 Development of Transformations

Transformations developed for extracting Entity-
Relationship models in our tool are divided into seven
categories [18]:

1. Basic Data Structures and Entity Relationship
Components: Transformations in this category deal with
simplifying data objects in basic data types according to
the properties of data type, i.e. (1) from record to entity
(2) acquiring a relationship from a record with sub-
records.

2. Transformations for Manipulating Data Items:
Transformation in this category deal with manipulating
data items for the preparation of applying further
transformations, for example, to move a record to a
position closer to another record so permitting them to be
joined to form an entity.

3. Filess Though COBOL file operations can be
translated into WSL as external procedures and external
functions (i.e., we effectively ignore them, and
knowledge of variable usage is lost across calls), more
suitable forms of data representations are required to
replace these external procedures and functions in order
to examine file operations at a high abstraction level. In
our tool, a queue data type is proposed to model COBOL
sequential files and operations on these files, in order
that files (external storage objects) can be transformed
into queues (internal mathematical objects). We have not
yet addressed random access files, but would model them
with arrays.

4. Aliases: We first determine which records are aliased
and determine a mapping between the aliased records.
We then define a function to describe a WRITE to an
aliased record as mapping the COBOL data structure to a
low level memory model and a function to describe a
READ from an aliased record as a mapping in the
reverse direction.

5. Foreign Keys: A relationship can exist between two
entities that both have the same attribute (known as a
foreign key) and the relationship can be spotted by
transformations in the imperative code. This relationship
can be abstracted from two entities which have been
derived already from source code (e.g. record
definitions) and two relations which between two pairs of
entity attributes (e.g. assignment statements).

6. Abstract Data Types : Transformations in this
category deal with recognizing an abstract data type from
constituent data declarations and operations on them. An
abstract data type consists of "objects" and "operations",
Objects are usually implemented as variables and
operations are implemented as procedures and functions.
In reverse engineering, an abstract data type may be
formed by looking for a closure of a group of variables
and a group of procedures (or functions).

D-43

7. Functional Relationships: Transformations in this
class address how ERA models are extracted from code,
in particular, from assignment statements, branching
structures and loop statements.

4.3 Case Studies

A number of case studies on COBOL code (including
real programs of several thousand lines) were used in
experiments [23].

+ Some of the "data" statements which are not able to
contribute to the eventual ERA diagrams are omitied.
For example, COBOL statements, such as MOVE 0
TO A-VARIABLE, MOVE SPACES TO A-
VARIABLE, INSPECT statements, COMPUTE
statements, etc. -were omitted. This represents
information not needed in abstraction.

Almost all the assignment statements that were
originally translated from the MOVE statements in
COBOL were abstracted to relate statement. So were
those assignment statements originally from ADD
and SUBTRACT statements. A comment statement
was usually added along with each abstraction in
order to record information which will be used to
decided the degree of the relationship between the
two entities which would be obtain from the two
records linked by the relate statement later on.

The REDEFINES statements in the original COBOL
program were translated into redefine statements in
WSL. According to observation, all original records
to be redefined were of the same data types as that of
the redefining records. The conclusion how applying
those functions for dealing with aliased records was
that aliased records would not affect each other in
the abstraction process. Therefore, a record and its
redefining record were treated as independent
records.

Entities were abstracted from records and this is the
starting point of moving from the code level to the
conceptual level. This was done when restructuring
work at the code level had been finished.

Relationships mainly derived from the relate
statements and information recorded by the comment
statements were used to decide the degrees for the
relationships by transformations with a help of
human expertise.

Duplicate entity relationships which might be
obtained from different places of the program, and
these were checked and removed. All the comment
statements were removed when the abstraction
process was finished.

Data designs obtained from programs made these
programs much more comprehensible.

hEREN\HAFREERGER

The method developed in this research can deal with
most code in the case studies. In particular, COBOL
records and files are able to be represented in WSL and
this is crucial to the implementation of the prototype as
well as the successful application of the method.
Therefore, it is comparatively easier to extract ERA
models from a relatively independent (self-contained)
segment of COBOL code with record (file) definitions,
but it is more difficult for a COBOL segment with many
calls to other segments (i.e. with many PERFORM
statements) because the structural complexity is
increasing. The problem may be helped by building more
powerful "restructuring” transformations, which is not a
main thrust of the paper.

4.4 Reuse of COBOL Code and Design

Semantic interface analysis is a formal approach
where semantic attributes of sofiware components were
described by formal notations. Software reuse includes
areas of concern such as representation, retrieval, and
adaptation and integration [12]. Our work, at this stage,
is focussing on representation and retrieval, i.e., firstly to
identify reusable components and to store these reusable
components in a reuse library, which contain formal
semantic interface specifications consisting of
precondition, postcondition, and obligation predicates
represented as specialized comments. An existing reuse
library system will provide the initial retrieval
mechanism for the selection of candidate reuse
components. A candidate reuse component is then
inserted into the application system. The application
system consist of both newly developed components, and
previously adapted reuse components all of which
contain formal semantic predicates.

There are two basic technical approaches to reuse:
parts-based and formal language-based [27], the parts-
based approach assumes a human programmer
integrating software parts into an application by hand. In
the formal language-based approach, domain knowledge
is encoded into an application generator or a
programming language. Our study on COBOL code
reuse focus on the parts-based approach. In parts-based
approach, components are required to be found and
. understood, and then incorporated into the designed
system. Reusable parts are identified through reverse
engineering via program transformation. Program
understanding is done inside the program transformation
process. Data structures are the main points to reverse
COBOL programs because they are written in a data
intensive program language (COBOL).

4.5 An Example

The example program used in this illustration was
taken from a COBOL text book [29] and its COBOL
source code is shown in Figure 3.

LRI A R I I 2 2 25 2R B2 B R R A A A

D-44

*

THIS PROGRAM SEQUENTIALLY ACCESSES TO TWO SEQUENTIAL
FILES, ONE IN INPUT MODE AND ONE IN OUTPUT MODE.
2 ¢ € 2 # € ¢ 2 ® € ¥ W U G T T ¥ e X FOCENETRY OO
IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-CUSTOMER-LIST.

e

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL. .
SELECT CUSTOMER-LIST ASSIGN TO XYZ
ORGANIZATION SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.
SELECT CUSTOMER-LIST-BACK ASSIGN TO WXY
ORGANIZATION SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER-LIST.
01 CUSTOMER-RECORD.

02 NAME PIC X(20).
02 ADDRESS PIC X(50}.
02 PHONENUM PIC X(20).
FD CUSTOMER-LIST-BACKUP.
01 BACKUP-RECORD.
02 B-NAME PIC X{20).
02 B-ADDRESS PIC X(50).
02 B-PHONENUM PIC X(20).

WORKING-STORAGE SECTION.
01 EOF PIC X.

PROCEDURE DIVISION.
MAIN.
OPEN INPUT CUSTOMER-LIST
OQUTPUT CUSTOMER-LIST-BACKUP

PERFORM, WITH TEST AFTER, UNTIL EOF = °T"
READ CUSTOMER-LIST NEXT;
AT END
MOVE ¢ TO EOF
NOT AT END

MOVE "F" TO EOF
MOVE CUSTOMER-RECORD TO BACKUP ~RECORD
WRITE BACKUP-RECORD;
END-PERFORM
* THE STOP RUN STATEMENT CLOSES THE FILES
STOP RUW.

Figure 3: A File-backup Program in COBOL

This program is translated into its equivalent form in
WSL (Figure 4). The program module was a procedure
in the original program and it would be called by a
(COBOL) PERFORM statement. This program copies
the contents in one file to another file. Figure 4 shows the
format of the program when loaded in to the prototype
transformation tool. The program in Figure 5 is then
dealt with by the Program Transformer, which applies
transformations to it. The final result of the "file-backup"
program can be shown by an ERA diagram (Figure 6).

When the original program was transformed into an
ERA diagram, the user can easily decide that the
program segment can be a good candidate of a reusable
component. Therefore, the component in WSL (Figure 3
and 4) will also be analyzed by the Semantic Interface
Analyzer (SIA) in order to generate a form annotated
with formal pre-conditions, post-conditions and
obligations. For details of annotation rules of SIA, please
refer to [19].

Based on the predefined software templates for
COBOL in the Knowledge Base, predicate analysis and
propagation, we can infer that the module file-backup
contains the predicates as shown in Figure 7.

comment: “program-id: file-backup®;
file source-file-name with
record source-record end;

PEREN\+AFEEHERGE

end;
file target-file-name with
" record target-record end;
end;
eof:=20;
'p open_file (i var source-file-name);
!p open_file (o var target-file-name);
while (eof # 1)
do
if non_empty? (!f eof? (source-file-name))
then eof := 1
else eof := Q;
"Tip read_file (source-record var source-file-name);
target-record -= source-record;
'p wrice_file (target-record var target-file-name); £i;
od;

Figure 4: The File-backup Program in WSL

entity source-record end;

entity backup-record end

relationship entity target-record has one back-up relation
with one entity source-record;

Figure §: An Entity Relationship Diagram for the File-backup Program
in WSL

Source-Record

one

Back-up

one
A4

Target-Record

Figure 6: Entity Relationship Diagram for “File-Backup” Program
pre-condition

!Sequential-file(File2, record-type2)
!EQU(record-typel, record-type2)

post-condition
1EQU{ Filel, File2)

file-backup(Filel, File2)

Figure 7: Semantic Interface Predicates Generated

5 What still Needs Doing

This paper has reviewed program transformation
techniques for both software development and software
maintenance, focussing in particular on our work in data
intensive program maintenance. From our experiences in
acquiring data designs from data intensive programs for
software maintenance using program transformation, it is
possible to identify weaknesses as well as strengths.

There is an "informal” stage in our approach, i.e. the
translation from COBOL to WSL is currently done
manually. For the time being, building a translator is
considered as a disadvantage because it needs to consider
all possible syntax combinations of the COBOL language
while hand translation can tailor any program as long as
the program is semantically translated into an equivalent
form in WSL. Such a translator needs to be built.

More experiments should also be carried out with
data intensive programs in other programming languages.
This includes not only building translators for translating

programs in other languages but also studying the
features of programs in those languages. At present, the
prototype is mainly COBOL-specific and it can only deal
with the sort of data structures that exist in COBOL.
However, the method developed in this paper is general
enough to cope with data-intensive programs in other
languages. Experiments carried out so far have only been
focussed on capturing reusable data intensive program
components. Future work needs to be conducted in
adapting and integrating these reusable components into
a new system to being developed or being re-engineered.

Another area for future research is to find out whether
the approach developed in this paper can be used to
acquire specifications (e.g., specification written in Z)
from programs, which was the original aim of the
REFORM project and remains an open question.

Combining program transformations with object
orientation will also be an very important issue. Initial
thoughts about introducing an object-oriented approach
into our system include extending the existing kernel and
re-building a WSL kernel language in order to develop
an object-oriented WSL, developing transformations
under the object-oriented approach for reverse
engineering data intensive programs, developing a new
method or extending the existing method for data
intensive program reuse, etc.

Meaéures for both code and designs/specifications
need to be defined. It is perhaps important that a metric
can reflect the process of crossing levels of abstraction.

This research has so far indicated that the approach of
program transformation can be used to acquire data
designs from data intensive programs. However, the real
application of this approach will not be seen until an
industrial-strength tool has heed built. Therefore, more
research should be conducted to improve the prototype
developed in this paper into a practical tool.

6 Concluding Remarks

We have reviewed briefly the approach using
program transformations as a tool for software
development and software maintenance. We have also
giving an example of investigation and feasibility study
of the problems concerning data intensive program
maintenance and reuse using a program transformation
approach,

Program transformations are a powerful tool in
reverse engineering existing data intensive programs and
providing a facility for reuse of these programs. Our
approach of dealing with data-intensive programs is to
derive a program data design from a data intensive
program through program transformations, to represent
designs in Entity-Relationship Attribute Diagrams and to
annotate reusable components with pre-conditions, post-

D-45

i RE /A EREEH AT ®

conditions and obligations through Semantic Interface
Analysis techniques.

The development of the method and the
implementation of the prototype show that this approach
has covered a scope from theory to practice. Other
systems which can derive data designs represented in
ERA Diagrams have not been described. The abstracted
ERA Diagrams are able to represent the designs of the
original programs. The correctness of the obtained ERA
diagrams is at present checked manually based on human
knowledge and expertise.

Finally, research work on dealing with data intensive
programs through program transformations remains a
fruitful area, because it offers much potential for solving
programs of major importance in industry. Further
research into program transformation techniques may
useful besextended to incorporate other techniques, such
as Object Oriented technology

References
0]
@
Bl
4
(51
(6

ANSI, Standard 729, IEEE Standard Glossary of Software Engineering Terminology,
1983

Arango, G.. Baxter, I, Freeman, P. and Pidgeon, C., Software Maintenance by
Transformation®, IEEE Software, May, 1986.

Bachman, R., A CASE for Reverse Engineering, Cahners Publishing Company, July,
1988, reprinted from DATAMATION.

Balzer, R., "Transformational Implementation: An Example”, IEEE Transactions on
Software Engineering, Vol. SE-7, No. {, pp. 3-14 (January 1981)

Balzer, R., "A 15 Year Prospective on Automatic Programming”, IEEE Transactions on
Software Engineeriny, Vol. SE-11, No. 11, pp. 1257-1267 (November 1985).

Balzer, R, Goldman, N. and Wile, D, "On the Transformational Implementation
Approach to Programming”, The 2nd International Conference on Software Engineering,
San Francisco, California, 1976.

Bauer, F L, Moller, B. B, Partsch, H. and Pepper, P, "Formal Program Consteuction by
Transformation - Computer-Aided, Intuition-Guided Programming®, IEEE Transactions
on Software Engineering, Vol. 15, No. 2, pp. 165-180 (February 1989)

Bennett, K. H., "The Software Maintenance of Larye Software Systems: Management
Method and Tools®, Technical Report, Durham University, 1989

Bennett, K. H , "An Overview of Maintenance and Reverse Engineering”, in The REDO
Compendium, John Wiley & Sons, Inc., Chichester, 1993

Bennett, . H.. Bull, T and Yang, H., "A Transformation System tor Maintenance
Turning Theory into Practice”, 1EEE Conference on Software Maintenance-1992,
Orlando, Florida, November, 1992,

Bennett, K. H, Denier, J and Estublier, J., "Environments for Sof'ware Maintenance”,
Technical Report, Durham University, 1989

Biggerstaff, T J and Ritcher, C., "Reliability Framework, Assessment and Direction”,
IEEE SOfiware, Vol, 14, No. 4, pp. 252-257 (1987).

Yang, H. and Bennett, K. H., "Extension of A Transformation System for Maintenance -
Dealing With Data-Intensive Programs®, 1EEE International Conference on Software
Maintenance (ICSM '94), Victoria, Canada, September, 1994

Breuer, P., "Inverse Engineering: The First Step Backwards” , Technical Report (ESPRIT
Project: 2487-TN-PRG-1031), Programming Research Group, Oxford University, 1990,
Breuer, P, *Tackling Reverse Engineering”, Technical Report (ESPRIT Project: 2487-
TNPRG-1037), Programming Research Group, Oxford University, 1990.

Burstall, R. M. and Darlington, J. A., "A Transformation System for Developing
Recursive Programs®, Sournal of the ACM, Vol. 24, pp. 44-67 (1977).

Chen, P. P, "The Entity-Relationship Model — Toward a Unified View of Data”, ACM
Transaction on Database Systems, Vol. 1, No. {March 1976).

Yang, H. and Bennett, K. H., "Aquairing Entity-Relationship Attribute Diagrams from
Code and Data through Program Transformation”, |[EEE lnternationat Conference on
Software Maintenance (ICSM '95), Nice, France, October, 1995,

Chu, W. C. and Yang, H., "Component Reuse Through Reverse Engineering and
Semantic Interface Analysis®, Accepted by The 19th IEEE Annual Computer Software
Application Conference (CompSac ‘95), Dallas, Texas, August, 1995.

Cutts, G, Structured Systems Analysis and Design Methodology, Paradigm Py
Company, London, 1987.

Date, C. 1, An Introduction to Database Systems, Vol I, Addison-Wesley Publishing
Company, Manchester, 1986.

Engberts, A., Kozaczynski, W. and Ning,)., "Concept Recognition-Based Program
Transformation”, |EEE Conference on Software Maintenance-1991, Sosrento, ltaly,
1991,

Yany, H, "Acquiring Data Designs from Existing Data lntensive Programs®, Ph.D.
Thesis, Durham University, 1994,

Feather, M S, *A System for Assisting Program Transformation”, ACM Transactions on
Programming Language Systems, January, 1982,

Federal Infosmation P ing Standards, "Guidelines on Software Maintenance”, U.S.
Depariment Commerce/National Bureau of Standards, Standard FIPS PUB 106, June,
1984,

Fickas, S. F., "Automating the Transformational Development of Software”, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 11 {(November 1985).

g

{8
{9)
(o}

{tu
(12

{4
{13]
{t6]
{1n
(18]

{19]

Klicht

{20]
{21

22

(23}
(24

{23}

[26

D-48

(27)

[28]

(29]
(30]

(34
B2

33
B34

(3s

(36

(37

(38]
391
{40

(31

(2]

Frakes, W. B. and Pole, P. T., "An Empirical Study of Representation Method for .
R ble Software Ce " [EEE T ions on Software Engineering, Vol. SE-
20, No. 8, pp. 617-630 (August 1994).

Ghezzi, C., "Modern Non-Conventional Pro ing L Concepts”, in Software
Engineer's Reference Book, Butterworth Heinemann, 1991, pp. 44/1-44/16 .

Inglis J., COBOL 85 for Programmers, John Wiley & Sons, Inc., Chichester, 1989.

Kant, E., "Efficient Synthesis of Efficient Programs®, in Artificial Intelligence and
Software Engineering, 1986, pp. 157-188.

Lano, K. and Breuer, P. T.. "From Programs to Z Specifications®, Technical Report,
Oxford Universsity, 1990.

Lano, K. and Haughton, H., "Applying Formal Methods to Maintenance”, Technical
Report (ESPRIT Project: 2487-TN-PRG-1042), Programming Research Group, Oxford
University, 1990.

Wirth, N., "Program Development by Stepwise Refinement™, CACM, Vol. 14, No. 4
(1971).

Lehman, M. M., "Programs, Life Cycles, and Laws of Software Evolution®, Proc [EEE,
Vol. 68, No. 9 (1980).

Whysall, P., "Refinement”, in Software Engineer's Reference Book, Butterworth
Heinemann, 1991,

Manna, Z. and Waldinger, -"A Deductive Approach to Program Synthesis*. ACM
T ions on Progr ing Lang Sy , February, 1980.

Martin, J. and McClure, C., Structured Techniques for Computing, Prentice-Hall
international,

Inc., Englewood Cliffs, New Jersey, 1985.

Partsch, H. and Steinbruggen, R., "Program Transformation Systems", Computing
Surveys, Vol 15, No. 3. pp. 198-236 (September 1983).

Robson, D. J., Bennett, K. H., Cornelius, B. J. and Munro, M., “Approaches to Program
Comprehension”, Journal of Systems Software, 1991.

Sannella, D. and Tarlecki, A., "Toward Formal Development of Programs from Algebraic
Specification: Implementation Revisited”, ACTA Informatica, 1988,

Sneed, H. M. and Jandrasics, G., “Inverse Transformation of Software from Code to
Specification®, 1EEE Conference on Software Maintenance-1988, Phoenix, Arizona,
1988

Swanson, E. B., *The Dimension of Mai ", Second Inter
Software Engineering, Los Alamitos, California, 1976.

| Conference on

