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Abstract

Further analysis of cryptographic properties of ex-
ponential functions given in [1] 1s made. Emphasis is
put on its enumeration, fized poinis and cyclic siruc-
ture. The resulis obtained provide some cryptographic
principles for the design of secure S bozes based on
such functions. ’
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1 Introduction

It is well known that the security of modern block
cipher system largely depends on the cryptographic
properties of its substitution boxes (or, S boxes).
Therefore the study of it appears to be more im-
portant. As shown in present research[3-6], a good
S boxes should satisfy all (or most) of the following
known security criteria, such as balance, non-linearity,
correlation-immunity, strict avalanche criteria (SAC),
propagation characteristics and I/O XOR distribution
properties, etc. To fully evaluate the S box, further
research on new designing principles is necessary.

In the general case, an S box can be denoted by the
permutation over GF(2)". There are various ways
to construct such permutations. As a result. the S
boxes obtained have different secure characteristics.
To measure its security precisely (or approximately),
the S box must have an algebric or topological struc-
ture which is convenient to analyse. With the adop-
tion of exponenti~l funstions over a finite field to con-
struct the S boxes in [1], some valuable results have
been available. Meanwhile, such exponential function
is well proved with SAC and non-linearity. With the
study of the exponential function from a new view-
point, this paper begins with the discussion on the
enumerating problem of permutations generated by
such functions, which we call exponential permuta-
tions, under different coordinate bases, followed by
two new safety indexes, or, the number of fixed points
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and cyclic periods. Certain relevent parameters of ex-
ponential functions are given. Moreover, the elements
in GF(2") are classified in accordance with its cyclic
structure. All of the results we expect to provide some
evidence in cryptology for the design of secure S boxes
based on exponential functions. Finally, some exper-
imental results and a conjecture are given.

2 Enumeration of Exponential Per-
mutations

Given that b € GF(2"),c€ {s: (5,27 —1)=1,0<
s < 2" —1}. Let {ao,al,...,an_}g} be a basis of
GF(2") over GF(2) and fo, f1, ..., Pn—1 € GF(2").
A mapping f is defined as follows:

£:GF@2)* — GF(2)"
%= (%o, ., Tp-1) — f(x)=(fo(x),...,fn_1§3;)))

n—1

where f;(x) = Tr(B;( 3 =i + b)°). Then we have
=0

the following lemma about the transformation given

in equation (1).

Lemma 1[1] f is a permutation over G‘F(%)“ if
and only if {fo,B1,...,Pn—1} is a basis of GF(2")
over GF(2). We call f an exponential permutation. ]

It is
not difficult to prove the valid of the inverse permu-
tation £~1: 1 y) = (fl;l(y)’ fl—l(y)’ cees fn——ll(y))’

where f7l(y) = Tr(cz;-((’:_i: yi8)° — b)), and ¢’ sat-
isfies ¢¢’ = 1 mod 2" — 1,0 < ¢’ < 2" — 1. Here {o;)}
is the dual basis of {o}}, and {f;} is the one of {g}}.

Obviously, the number of éxponential permusta-
tions defined by equation (1) is 'Tﬁl(Z" — 2%), when
b,c and {a;} are given. =

For the convenience of operating in Galois field and
lowering the memory capacity, sometimes we need to
select some special types of bases, for imstance, the
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polynomial basis and normal one. The number of
exponential permutation under this situation should
be considered in designing S boxes. For this reason,
a few definitions and lemmas are given as follows.

An ordered set {og,c1,...,2n-1} of any n ele-
ments in GF(2") considered as an n dimension space
over GF(2) is called a basis if it is linear independent.

If the set appears in the form of {1,c,...,a" !} and
{a,02,. .. ,oﬂ“-l}, we call a polynomial basis and a
normal one respectively (generated by the element o).

Lemma 2[2] The number of polynomial bases of
GF(2") over GF(2) is

P(n) =) p(d)2?

din

where u is the Moebius function. Similarly, given that
n = 2™nq,(n1,2) = 1, then the number of normal
bases is

Q) = 2€70m T (@ - 5
d|n1

where ¢ is the Euler function, r(d) the multiply order
of 2 modulo 4, and 7(1) = 1.0

From Lemma 1,2 we have the following results.

Theorem 1 Let oy = o,0; = p,(7 =
0,1,...,n—1), and & can generate a polynomial basis,
then f is an exponential permutation if and only if §
can generate a polynomial basis. And if b, ¢ and {o'}
are given, the number of such permutations is P(n).
Similarly, let a; = o ,8; = % ,(j =0,1,...,n—1),
and o can generate a normal basis, then f is an ex-
ponential permutation if and only if 8 can generate
a normal basis. Under the same condition mentioned
before , the number of such permutation is Q(n).0

3 Fixed Points of Exponential Func-
tion

Let f(z) = (z + b)° be an exponential function

over GF(2"), where b € GF(2"),(c,2" —1) =1, and

c=2 424 (1< <l <... <, < 7).
We define the set of fixed points of f as

Fi:c(fb’c) = {z0 € GF(2") : f(z0) = z0}
It is easily seen that

Fz'z’ffb’c) = {zo+beGF(2") : 2§ + 20 + b =0}

In view of the design of an S box, [ should have any
fixed points as less as possible so that f can provide
the necessary confusion ai all the points, concerning
all the parameters (b, ¢).

When b = 0, the following resulis can be found.

Theorem 2 (1) I ¢ = 2/, then Fiz!™") = GF(2?)
and |Fi:v.(fo’c)| = 2%, where d = (I, n). Especially when
n is prime, Fizsco’c) = {0,1}. (2) If s > 2, then
Fiz"?) = {0,5 € GF(2") : o)|(c ~ 1,2" — 1)} and

\Ficl®| =1+ T
d|(e—1,27-1)

that 2™ — 1 is prime, we have Fiz&o’c) = {0,1}.0

©(d). In the special case

Generally, we have the following theorem.

Theorem $ (1)

y (672)_ ﬂ Trb #0
Fizg ‘{ o+ b+ CGF(2) Tr{b Zo

where 33 + 2o + b =0, and

cb2)_ [ O Tr(b)#0
|Pizy |-{2 Tr§b=0

When I > 2 and if 22’ +2+b has no factor in GF(2")[1)
of even degree, then

b2y _ [ 0 C Tr(b) #£0
Fizy —{ g0 +b+ GF(2) Tr(b) =0

where z2' + 2o +b =0, and

. b2y, _ | 0 Tr(b)#0
\Fizy I—{ 2 Tr(b)=0

(2) Let B = {b e GF(2") * +z +
b is irreducible over GF(2")}, then for each element

be B, Figl" = 0.0

It is our regret that we could not yet get the ex-
pression of |F" z'zg.(b‘c)| when s > 1, for the question
concerned is equivalent to factoring the general poly-
nomial ™ + z + b over GF(2!). However, it is shown
from some experiments that there exists many (b, ¢)
satisfying the condition of theorem 3, each of which
makes f have some fixed points. For this reason, the
security of such functions deserves to be gquestioned.

4 Cyclic Structures of Exponential
Functions

Definition 1 For the given b € GF(2") and
ceS={s:(52"-1) =10<s< 2" ~1}, a
recurrencing sequence {z;}{2, is defined by the ex-
ponential function f(z) = (z + b)° over Galois field,
as well as initial state zp € GF(2") with a relation
of i1 = fl&) = f2(zi-1) = -+ = f*(z0). The
sequence {z;}72, we call one derived from f(z). I
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there exists a minimum positive integer T satisfying
zier = 75t > 0), T is called the period of {z:12,
and the cyclical one of f(zo) as well, which is writ-
ten by T(pe,a0)- For zj, if there exists a minimum
positive integer &; satisfying that z;4¢; = 34, then
t; is called the period of z;, with its written form of
torers,) Tibe) = min{T : jT(2) = z,Vz € GF(2")}
is said to be the period of f(z) = (z+b)°.0

Prom this definition, the following results are easily
found.

Lemma 4 Suppose zo € GF(2"), then the se-
quence {z;}%2, derived from f{zo) satisfies

T(b,c,zo) = t(b,c,:cj) |1‘(b,c) (.7‘ =0,1,2,.. )
O

Lemma 5 For any element z in GF(2"), the in-
equality T(p,c,z) < 2" is held. O

The above lemmas make it clear that the period of
each element in sequence {z;}2, derived from f }azo
is the same. In addition, as shown in figure 1, j(z

started at any point zo must pass T(p,c,z,) times iter-
ation before it return to the point zo.

X ___ X3
X1

“f ()

X1 I
X1-2

K4
X5

Figure 1. The state diagram of the sequence
derived from f{zo).

With lemma 4, we can see that there is no smaller
cycle in figure 1. Lemma 5 shows that (5. 5) < 27.
Hence, the elements in GF(2") can be categoried with
the help of the state diagram of sequence derived from
f(z) as shown in figure 2.

Let

Ai= a0, o)

i
z )
T(b,c,:‘(;))-—l

He=1,2,...,s)
then .
GF(2") =] 4
i=1
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(s)

X1

x (1) x4

26 0

\ (1\)\0\\_/0/ .(1)
ATF! -2

Figure 2. The cyclic siructure of elements in
GF(2™).

and for any i # j, the two equations A;[4; =
9, i2=:1 I}b,c,xé”) = 2" hold.

In view of cryptographic design, we hope that all
(or almost) of the points in GF(2") are in the same
circle. In this case, the period is the largest.

In general case, the cyclic structure of the elements
in GF(2"), as shown in figure 2, can lead to the fol-
lowing theorem.

Theorem 4 (1) IfT(b,c,zg“) # T(b’c’z‘()j)), then 4; #
Aj.

(2) ET(b,c.af)‘)) = T(b.c.zf)j)) > 271 them 4; = Aj.

(3) It ‘T(b,c.::((,l)) = T(B’c'z(():)) = . = :r(b‘c,m((,')) >

2" /r, then there must be A; = A; for some 1 < <
j<r.

(4)
Tioe) = (T 000y T Tg,ain)- O

The discussion on the distribution of T c,z) is 2s
follows. Suppose b = 0 firstly.

Theorem 5 For any z in GF(2"), there is
T(o,c,2)[0(¢) = T{o,c) (2™ — 1), where o(c) is the or-
der of ¢ modulo 2" — 1, ¢ the Euler function. And

for the cyclic classification U A; of GF(2™), there is
s>2"/o(c) > 1.0 =

It is shown by theorem 5 that when b = 0, each
A;in '01 A; consists of oc) elements at most. At the

13
same time, there exist at least A; and A; whose in-
tersection is empty. Therefore, considering the design
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of 8 box, o(c) should be as large as possible.

When b # 0, it is so diffucult to calculate T(v,0,2)
accurately that we can only have the following result
(simply written as m = Tis,e,2))-

Theorem & When ¢ = 2!, there is

manzecr(2n) (b2t ,z) = min{m: 22 o+ 3 b
’ =1
€ GF(2")[z] is reducible over GF(2")}

When s > 1, we could not provide the algebric
expression of manT(p,c,z) except the following experi-
mental results.

Choose n, = 13, with the adoption of irreducible
polynomial h(z) = 2'°+ 2124 £1% 4 2%+ 1 over GF(2),
the finite field GF(2'?) can be constructed. It can be
proved|2] that the set {a, a2, -, a2"’} of all the roots
of h(z) in GF(2'%) is a normal basis of GF(213). Let

5

b=3 o®,c=241 =27+ 2425+ 2* 1 1, then we
=0

have

6527 20 = o

T s 1420 gz = o?*

(2

=0

a3%,241,30) {

a.bcﬁt the cyclic periods of the function f(z) = (z +
b)24t,

We see from above discussion that there may ex-
ist some small cycles in the diagram of cyclic struc-
tures, which is unfavorable to cipher designers. So, to
prevent such disadvantage from appearing, we must
choose (b,c) cautiously. However, considering the
number of keys in cryptology, it narrows the range
of (b,c) available in a further step. As a result, it
must be tradeoff while considering this point.

Finally, as to cyclic structure diagram, we have the
following conjecture.

Conjecture If T(b,c'z,.) = T(b,c,zj) and z; € A7 #
7), then z; € A;.0

5 Conclusion

For the S box constructed by an exponential func-
tion, two new security indexes are proposed. More-
over, the enumeration of exponential permutations,
the distribution of fixed points of exponential func-
tions and its cyclic structure diagram are discussed
theoretically, which to some degree provide some
cryptographic characteristics of such type of S box
and point out the problems deserving more attention
concerning to the design of S box. However, the work
on the paper need to be gone a step further which
makes us deal with some of the problems unsolved in
finite field.
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