Joint Gonference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Enhancing the SCI Cache Coherence Protocol for Multiprocessor Clusters

Kelvin Lin, Neng-Pin Lu, Yeong-Chang Maa*, and Chung-Ping Chung

Institute of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

*Advance Technology Center
Computer and Communication Research Laboratories
Industrial Technology Research Institute
Hsinchu, Taiwan, R.O.C.

Abstract

In this paper, we designed a cache coherence
protocol for clustered multiprocessors. This protocol
combines the IEEE SCI cache coherence protocol [7]
with Write-Once protocol [5]. To evaluate and verify
this protocol, we implemented this protocol on the
PROTEUS parallel-architecture simulation system [2].
In addition, we used the enhanced PROTEUS system to
investigate the performance differentiation between
clustered, bus-based, and network-based
multiprocessor systems. Through simulations, we
Jound thar the performance of the clustered
multiprocessor is the best on heavily memory-loaded
benchmarks.

1. Introduction ‘

Muliiprocessors have become a way to implement
computer systems able to deliver high computing
power, which is increasingly demanded by users today.
This class predominantly encompassed tightly coupled
systems, often called shared-memory multiprocessors.
Such systems consist of a number of processors that
access shared memory through a communication
subsystem. Shared memory, which usually contains
multiple memory modules, enables efficient and low-
cost sharing of code and data among processors. The
interconnection path between processors and common
memory can be realized as a shared bus, or through
some kind of interconnection network.

The predominant advantages of shared-memory
muliiprocessors are their cost-effectiveness and their
very simple and general programming model, making
them increasingly popular today. However, due to the
contention on using shared resources, the average
latencies in accessing shared memory tend to be longer,
which degrades the performance. Therefore, the usual
way to shorten the memory access in computer systems

185

b

is the use of cache memory. Two types of cache
memories can be found in multiprocessors: shared and
private caches. Shared caches can reduce the average
memory access time, though, they can not alleviate the
contention for shared resources. Private caches are able
to satisfy most of the memory references locally,
eliminating the need to access shared memory. Both
types of caches inherently impose another serious
problem. Multiple copies of the same data can exist in
different caches simultaneously, and they will cause
cache coherence problem. There must be some
mechanism to solve this problem, that is the cache
coherence protocol.

Scalability is also an important design issue for
multiprocessor systems. Clustering is one of the
scaleable interconnection architectures. Clustering
technique aggregates a few processors into a cluster
node by a bus to provide high computation power and
connects these cluster nodes by a inter-cluster network.
In this paper, we proposed a two-level hierarchical
cache coherence protocol for multiprocessor clusters,
and established the PROTEUS simulation environment
to verify the protocol and to evaluate the performance
of multiprocessor systems that interconnected by bus,
general network, and clustered architecture. The
remaining of this paper is organized as follows. In
Section 2, we review some existing cache coherence
protocols, including the bus-based cache coherence
protocols, directory-based cache coherence protocols,
and the distributed directory cache coherence protocol
defined by IEEE SCI std P1596-1992 [7]. In Section 3,
we present our cluster architecture and the associated
cache coherence protocol. Section 4 ewvaluates the
performance differences among bus-based, network-
based, and cluster-based multiprocessor systems.
Finally, we conclude this paper in Section 5.

2. Cache Coherence Protocol

Proceedings of International Conference
on Computer Architecture

2.1 Bus-based Protocol

The bus-based cache coherence schemes depend
on each cache controller by observing the bus
ransactions of all other processors in the system, taking
appropriate actions t0 maintain coherence and the state
of each cache line in the systern is encoded in a
distributed way among all cache controllers. Figure 1
illustrates a typical bus-based cache coherence protocol:
Write-Once [5].

Read

| o N |
: g:: d ‘" Bus : Write
o Write. |

N

Write Wri
Read
~— A Read
S~
Write
Processor-based —
Bus-induced -

State 0 : Invaild

State 1 : Vaild (clean, potentially shared)
State 2 : Reserved

State 3 : Dirty (modified, in one cache

Fig. 1 Write-Once Cache Coherence Protocol

The Write-Once protocol works as follows:

(1) Read miss. If another copy of the block exists
and is in state DIRTY, the cache with that copy inhibits
the memory from supplying the data and supplies the

" block itself, as well as writing the block back to main
memory. If no cache has a DIRTY copy, the block
comes from memory. All caches with a copy of the
block set their states to VALID.

(2) Write hit. If the block is already DIRTY, the
write can proceed locally without delay. If the block is
in state RESERVED, the write can also proceed
without delay, and the state is changed to DIRTY. If
the block is in state VALID, the word being written is
written through to main memory (ie., the bus is
obtained, and a one-word write to the backing store
takes place) and the local state is set to RESERVED.
Other caches with a copy of that block (if any) observe
the bus write and change the state of their block copies
to INVALID. If the block is replaced in state
RESERVED, it need not be written back, since the
copy in main memory is current.

(3) Write miss. Like a read miss, the block is
loaded from memory, or, if the block is DIRTY, from

186

the cache that has the DIRTY copy. Then this cache
controller invalidates its copy. Upon seeing the write
miss on the bus, all other caches with the block
invalidate their copies. Once the block is loaded, the
write takes place and the state is set to DIRTY.

2.2 Directory-based Protocol

Three techniques exists for implementing the
directory, namely the full-mapped, limited and chained
directory. In the full-mapped case, information about
all lines in all caches resides in memory. In recognition
of the fact that usually a certain memory line will only
exist in a few number of cached copies, a limited
number of directory references could be implemented
for each memory block. A limited pointers contain the
cache ID exists along with a memory block. Instead of
having a centralized directory containing information
about all cache lines, the directory information can be
distributed over the system as a linked list.

2.3 SCI Cache Coherence Protocol

The SCI cache coherence protocol is a chained
directory-based protocol [7]. Figure 2 shows the
distributed directory used in the protocol.

Cache 1 Cache 2 Caéhe 3
[k Tl e L=

N

. Memory

=
Fig. 2 A Distributed Directory in SCI Cache Coherence
Protocol

The SCI cache coherence protocol supports a rich
set of performance enhancement options, including
minimal set, typical set, and jfull set. In this paper, we
consider typical set only. Typical set has provisions for
read sharing, purging of the list in the case of writing to
a line. Subsequent read requests from other caches will
achieve data form the cache having the dirty copy of
the line. A cache in a list can roll out in case of a line
replacement by making the previous and succeeding
caches in the list point to each other. Special actions
have to be taken when the cache rolling out is the head
of the list. Direct memory access (DMA) controller
access to the memory system is also supported by the.
typical set.

A memory line can either be the only copy in a
system, or it can be cached in one or several caches. If
no cached copies of the line exist, the memory line will
always be the prevailing copy. This corresponds to the
MS_HOME state in Table 1. If an active sharing list
exists, the copies in the list will either be consistent

with the memory line or not. If all copies are consistent
with memory, the memory line will be in the
MS_FRESH state. Otherwise the memory line is said to
be gone, ie. the memory line is no longer consistent
with the prevailing cached copy. The corresponding
state is MS_GONE. The above memory line states are
outlined in Table 1.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Name Description

CS_INVALID Line is invalid and can be used for

caching new lines

CS_ONLY_FRESH {Only cached copy, consistent with

memory

CS_ONLY_DIRTY Only cached copy, write-able and|

inconsistent with memory

CS_HEAD_FRESH [Head of fresh list, consistent with|

memory

Mame Description
MS_HOME [No sharing list exists and memory is valid
MS_FRESH |Sharing list copies are identical with memory
MS5_GONE |Sharing list copies might be different from
memory

CS_HEAD DIRTY Head of valid list, write-able and|

inconsistent with memory

Table 1 Typical Set Stable Memory Coherence States

A cache line can either be invalid or active. If it is
invalid, it can be replaced directly in case of a
subsequent cache miss. The invalid state is indicated by
CS_INVALID in Table 2. When a line is active, it
might either be consistent with memory or not. When
the line has not been written by a processor it is
consistent with memory, and is therefore said to be
fresh. If it furthermore is the only cached copy, the
corresponding state is CS_ONLY_FRESH. If, however,
the processor attached to the cache performs a write to
the line, it will enter the CS_ONLY_DIRTY state. The
cache will inform memory about the write, but memory
will not be updated. Further writes to line by the cache
in the CS_ONLY_DIRTY state will not be reported to
memory.

If several cached copies exist in the sharing list, the
same principle as described above applies to the head
of the list. It will either be in the CS_HEAD FRESH or
CS_HEAD DIRTY state. The CS_HEAD FRESH
case is rather trivial, since the head will be consistent
with memory. The head of the list will always be the
only cache that might gain write permission to the line.
Therefore, when the head and memory are consistent,
all elements within the list will be so too. Elements
residing in the middle of the list will be in the
CS_MID_VALID state, and the tail element will be in
the CS_TAIL_VALID state. If a processor predicts that
it sometime in the future will need write permission to
a given cache line, it might add itself as the head of the
list and by the same time invalidate memory. The

cached line will then enter the C5_HEAD_DIRTY state.

This action will, however, not invalidate the rest of the
list as long as the processors do not write to the line
being the head of the lisi. Mid elements will still be in
the CS_MID_VALID state, and the tail will be in the
CS_TAIL_VALID state. Only when a write is actually

performed, the rest of the list will be purged. The above

cache line states are outlined in Table 2.

187

CS_MID_VALID Mid element in valid list, possibly,

inconsistent with memory

CS_TAIL_VALID Tail of wvalid |list,
inconsistent with memory

possibly|

Table 2 Typical Set Stable Cache Coheremee States

Table 3 shows the memory states and cache states
of a shared list in SCI cache coherence protocol.

Memory Head Mid Tail
states
MS_ - : -
HOME
MS_ CS_ONLY_ - -
FRESH FRESH
MS_ CS_HEAD _ - CS_TAIL_
FRESH FRESH VALID
MS_ CS_HEAD _ CS_MID_ CS.TAIL
FRESH FRESH VALID VALID
MS_ CS_ONLY_ - -
GONE DIRTY
MS_ CS_HEAD _ - CS_TAIL_
GONE DIRTY VALID
MS_ CS_HEAD _ CS_MID_ CS_TAIL_
GONE DIRTY VALID VALID
Table 3 Stable Memory States and Cache States in a
Shared List

3. Cache Coherence Protocol for Multiprocessor
Clusters

3.1 Clustered Architecture

Figure 3 shows the clustered architecture. In our
design, each cluster equips with a cluster local memory
(LM), a inter-cluster cache (IC), four processors (P)
with local caches (LC) of its own atiaching on a cluster
bus (CB). The clusters connect through a interconnect
network (IN) in some topology. The inter-cluster cache
caches the remote usunally used daia to reduce the long
memory aceess latency. The main design issue of ICs is
the inclusion property in memory hierarchy. That is,
the data residing in a LC must have a copy in IC or in
LM of this cluster, and the total data set in the LCs in a

Proceedings of International Conference
on Computer Architecture

cluster is the subset of the union of those in LMs and
ICs of this cluster, while the data sets of LMs and ICs
of the same cluster are disjointed. The cluster cache or
local memory will send invalidation signals to the local
caches when a location is no longer available or flush
signals to get the dirty data in local caches. The cluster
cache and local memory will serve as a cache
coherency monitors for all the local caches connected
to them.

3.2 Memory Hierarchy

As illustrated in Figure 4, there are five hierarchies
in the clustered architecture. The first level is the
processor's cache that is designed to match the
processor speed. A request can not be served by the
processor's cache is sent to the local cluster level which
includes the other processors' caches within the
requesting processor's cluster. Otherwise, the request is
sent to the cluster level. This level includes the cluster
cache and memories associated with this cluster. When
the request can not be served in this level, it is send to
the home directory level. The home directory level
consists of the cluster that contains the directory and
physical memory for a given memory address. If the
directory entry is in a dirty state, or in a shared state
when the requesting processor requests exclusive
access, the fifth level must also be accessed. The
remote cluster level for a memory block consists of the
clusters marked by the directory as holding a copy of
the block.

| N |

cB

LC|LC | LC LT
(PYPIPYP)

Fig. 3 Clustered architecture

e [LC | LC |LC

(PXPXPXP)

— e’

Figure 4 also shows the inclusion relationships
between any two levels. The data set in a larger
rectangle includes that of the upper rectangle. The data
sets of inter-cluster cache and local memory are
disjointed while the union of these two data sets
compose the third level of the memory hierarchy.

3.3 The Cache Coherence Protocol

The protocol for data comsistency among inter-
cluster nodes is the SCI cache coherence protocol. The
directory of SCI cache coherence protocol is disiributed
in LMs and ICs in Figure 3. The LMs contain the data
and the head pointer of directory of this memory block,

188

while the ICs caching the same memory block in other
clusters contain the foreword and backward pointers as
well as the data. Data consistency within a cluster node
is done by Write-Once cache coherence protocol. For
snoopy protocol, there is not any state in memory
system, so the ICs-and LMs do not contain any state for
Write-Once protocol but just monitor the bus
transitions in the way similar to the snoopy protocol.
LCs contain states for Write-Once cache coherence
protocol.

A datum in a LC must have a copy either in IC or in
LM of this cluster. The SCI state of this copy will
restrict the Write-Once cache state of the datum in LC.
If a datum is in IC, it means this datum is a copy of the
memory block addressed in some other cluster. Then
the possible combinations of SCI cache state of this
copy in IC and Write-Once cache state of the datum in
LC are following:

('Processor Level \

k processor cache)
N~ ——

< Bus

Local Cluster Level
other processor caches

within local cluster

(Cluster Level T Cluster Level)
@tercluster caches) Local Memory J

Network
(Directory Home Level \ Network
| directory and main memory J
associated with given address \
/\ Remote Cluster Level)
NCtWOI‘k processor caches in J
remote clusters

\

{Rcmote Cluster Level

processor caches in
remote clusters

Fig. 4 Memory Hierarchy for Clustered Architecture

The notation INVALID+ means at least one cache
state is INVALID. The notation INVALID* means
there may be more than zero cache line in INVALID
state. The notation VALID+ and VALID* have the
same meanings like INVALID+ and INVALID*. The
RESERVED or DIRTY means there exists only one
cache in RESERVED or DIRTY state respeciively.

When the datum in IC is in CS_INVALID state, it is
impossible that the copy in LC is in other state rather
than INVALID. When the IC state is in read-only state,
i.e., CS ONLY FRESH, CS_HEAD FRESH, CS_

MID _VALID or CS_TAIL VALID, the possible LC
states associated with this cache line are either in
INVALID state or some in state VALID and the others
in INVALID state. It is because when data in IC are
readable, the copies may appear in LCs in readable
states. When the IC state is in a writable state, for
example in CS_ONLY_DIRTY state, the states of its
copies in LC could all be in INVALID, or some are in
VALID, the others are in INVALID, or one is in
RESERVED or DIRTY and the others are in INVALID,
since the LCs can be in writable state when IC gets the
ownership of this cache Iline. The state
CS HEAD DIRTY is a special case in this
classification. The datum in state CS_HEAD_DIRTY is
permitted to write only after it purges the shared list, so
the datum in state CS HEAD DIRTY is seen as read-
only.

IC state LC state
CS_INVALID INVALID+
CS_ONLY_DIRTY INVALID+ or

INVALID* VALID+ or
INVALID* RESERVE or
INVALID* DIRTY
INVALID+ or
INVALID*VALID+

CS_ONLY_FRESH,
CS_HEAD_FRESH,
CS_HEAD_DIRTY,
CS_MID _VALID,
CS_TAIL_VALID
Table 4 Possible Combinations of SCI Cache State and
Write-Once Cache State of the Copies of the Same
Memery Block

If a datum is in LM, it means this local memory of
this cluster is the home location of this datum. Also, the
SCI memory state of this copy will restrict the Write-
Once cache state of the datum in LCs. The possible
combinations of SCI cache state of this copy in IC and
Write-Once cache state of the datum in LC are
following:

LM state LC state

MS _HOME INVALID+ or
INVALID* VALID+ or
INVALID* RESERVED or
INVALID* DIRTY

MS_FRESH INVALID+ or
INVALID*VALID+

‘LS_GONE INVALID+

Table 5 Possible Combinations of SCI Memory State and
Write-Once Cache State of the Copy

When the datum in LM is in MS_GONE state, it is
impossible that the copy in LC is in other state rather
than INVALID. When the LM state is in read-only

189

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

state, ie., MS_FRESH, the possible LC states
associated with this cache line are either in INVALID
state or some in state VALID and the others in
INVALID state. It is because when data in LM .are
readable, the copies may appear in LCs in readable
states. When the LM state is in MS HOME state, the
states of its copies in LC could all be in INVALID, or
some are in VALID, the others are in INVALID, or one
is in RESERVED or DIRTY and the others are in
INVALID, since the LCs can be in writable state when
LM gets the ownership of this cache line.

3.4 IC State Transition Diagram

The state transition table for the clustered cache
coherence protocol induced by intra-cluster bus
transition is shown in figure 5. Here, we omit the
transient states of SCI and Write-Once states in LCs.
The initial states of the cache lines are CS_INVALID.
Each bus transaction requesting to IC may cause the
state transition of cluster cache. The most state
transitions are caused by cluster bus read (CBR) or
cluster bus write (CBW). Others are caused by the
replacement. A cache line watching a CBR or a CBW
in CS_INVALID state will send mread64.cache_fiesh
or mread64.cache_dirty (first item in parentheses in
figure 5) to memory controller re., . tively. The next
step after these two transitions depends on the memory
state. If the memory state is in MS_HOME, the
requesting cache will be the first element of the shared
list and its state will be in CS_ONLY_FRESH for read
request or CS_ONLY_DIRTY for write request. Then
the memory state will goes from MS HOME to
MS_FRESH (indicated by MS(H->F)) of to
MS_GONE (indicated by MS(H->F)) respectively and
the first cache of this shared list is born (indicate by
CS(NULL->OF) or CS(NULL->0OD)). If the memory
state is in MS_FRESH, telling the existence of shared
list, the requesting cache will be the first cache in
CS HEAD FRESH staie of the shared list for read and,
otherwise, be the first cache in CS_HEAD DIRTY
state temporarily and then goes to the state
CS_ONLY _DIRTY for write. The memory state will
be the same if request is a read or changes to
MS_GONE if request is a write.

If the memory state is in MS_GONE, any request
will not change memory state. The state of the
requesting cache will goes to the CS_HEAD_DIRTY
for reading or CS_ONLY DIRTY via
CS _HEAD DIRTY for writing. The cache state in
either CS_MID VALID or CS_TAIL VALID can
satisfy the request of CBR locally, but it will roll out
before a write can be continued. It then goes io
CS_INVALID state to competing the addition to the

Proceedings of International Conference
on Computer Architecture

head of the shared list as if it was originally in
CS_INVALID state.

CBRY mrsd_oache_fresh

N ASE>)
aitDe " Roll Owt ~~.CS NULL>O
CBR ari_prev_viai mr00_lisi_kom P
(’4@/ -) e /c8
L ~_(oF)¢’
e CBWI mir64_cache_dirty
o S" ad CBW nv00_list_gone
CBW or Roll Ou AP)
IMd Del CBR mrd_cache fresh Roll Out/ CS0F>0
00 et vmid crtd_clynvalid N\ w63 _tist_fiom
cr_prev_vail ASG) N\ cB
/ €5 O TVHEEM BR mrtl_cache
cerR CBWI mrt4_cuche_diny ,;’g”g;‘i““""
My o< et €5 OFSTVHFSM
R CS OFTVHPM CBRor
RoNOW | oy mrcd_eache_diny cawpurge_—v (%P1 cauy
00 e diead 10T 00 valid_imelid, .
nird_pass_hea NS G)-
ce €S OD>TVHDSM
ob 7

(> \?:) cer
CBWi(mr00_ist_goneAS(F>G).CSHFSHD))

Fig. 5 State Transition Induced by Intra-Cluster Bus
Tramsition. IN:CS_INVALID, OF:CS_ONLY_FRESH,
OD.CS_ONLY_DIRTY, HF:.CS_HEAD_FRESH,
HD:CS_HEAD_DIRTY, MV:CS_MID_VALID,
TV:CS_TAIL_VALID, CBR: cluster bus read, CBW: cluster
bus write, CBI: cluster bus invalidation, Purge: head cache
purge shared list, Roll Out: replacement cache line. The
contents in parentheses are the packet names to be sent, the
state transitions of replying memory and the state transitions
of the first cache of this shared list.

When a cache line is selected for replacement, this
cache must send at least two packets (if no retry
happens) to inform its neighbors to modify the pointers
to link each other. After done the modifications, its
neighbors will send acknowledged messages to this
cache line. This cache line then goes to a transient state
and issues a flush transaction to the bus to invalidate
the data copies in LCs.

Figure 6 shows the state transition diagram
induced by inter-cluster operations of a cluster. The
main actions are shown in bold form. These actions are
caused by receiving the packets (shown in italic form in
figure 6) from neighbors. The difference between this
protocol and SCI protocol is' that the purge of the
shared list and the flush of the shared list may issued by
the memory coniroller (Mem purge, Mem Flush in
figure 6). When the cache state in CS_ONLY_DIRTY
goes to any other state rather than CS_INVALID, it
must issue a flush transaction to flush the dirty data
possibly residing in LCs from the OWNED siate to
SHARED state. When a caches copy in IC in any state
rather than CS INVALID changes to the staie
CS_INVALID, the IC controller must issue an
invalidation transaction to invalidate the data possibly
residing in LCs from SHARED or OWNED staie to
INVALID siate before it go to the CS_INVALID state.

190

N
~ -
Purﬁl(aﬂﬂV\‘aJHJm‘nlw -, ;Q\\ Hom p‘*mc'é’i""”-”mw
/ ’ N -

- v
#d DoK o _ _ " _Prpondieto pund =

ero0.noxt_vmich ST lamuqm et dmdcsmr;)_ ‘
=17 ~ -
Tatl Be} = 7~ Hosd Dolord0 o dhei N
cro0_prav_vial) 4 csmm)

\ Mo Purgo(mpoo Invatiod
Pnpmar - 3 \ sasm nusmmo fushlt

! ;
[Pum(nm valt_tmald) [e copy vonay \\. -
cor o
tom Purgu(rmoa tnvatid)l

tad 03K g wm Purgaimpo0_invatiah
€r00_next_s wrld

~ —Prepend{atd_pend val
o crd0_prov_vmid) PRI el veld)

T Heed ml(
Prapendy > TO0M 1 dhebd, CSHDY)

- Dok Hd Doy
aM next_dhsod, CSTHE))- NP K croo_next_vmid
abd_copy. vcxﬂd] \ -

or cro0_prov._vmid)
o Flushimedo_flushi =
CcBF

\.

11d Osff G
croo_next_vmid
o er00_prov_vmid)

Fig. 6 State Transition induced by Imter-Cluster
Operations. IN:CS_INVALID, OF:CS_ONLY_FRESI],
OD:CS_ONLY_DIRTY, HF:CS_HEAD_FRESH,
HD:CS_HEAD_DIRTY, MV:CS_MID_VALID,
TV:CS_TAIL_VALID, CBIL: cluster bus invalidation, CBF:
cluster bus flush. The bold style describes the actions and the
contents in parentheses are the packet name to be sent, and an
optional state that is included in reply packet.

CBR or CBW

mr6d_cache _ﬂ'«k ~mr6d_cache_fresh
mrsd_cache_dint mﬂ)_pass_head
mr00_pass_head © — _list | ~ -

CBR#c00_flush CBR

Fig. 7 Memory State Transition Diagram. Home:
MS_HOME, Fresh: MS_FRESH, Gone: MS_GONE, CBR:
cluster bus read, CBW: cluster bus write, CBI: cluster bus
invalidation, CBF: cluster bus flush

3.5 LM State Transition Diagram

Figure 7 shows the state transition of memory
states. The solid line indicates the active operation
caused by the cluster bus transition.' The dashed line
indicate the passive operation caused by the reception
of the packet from inter-cluster interconnection. These
transitions includes some undocumented messages.
Because the LM must have the ability to access the
ownership of a memory block for further write of the
processor within the same cluster, it must have the
mechanism different from SCI protocol to purge shared
list or clean the dirty shared list. These are done by
sending message mp00_invalid or mc00_fiush. The
memory state then goes from MS_FRESH to
MS_HOME or MS_GONE to MS_HOME for wriie or
goes from MS_GONE to MS _FRESH for read,
respectively. When receiving the read request from
other IC, the local cluster bus controller must issue a
flush transition to guarantee to get the latest version of

data in this cluster and the memory state changes from
MS_HOME to MS_FRESH. If the request is for write,
the local cluster bus coniroller must issue an
invalidation transition to invalidate all the copies in
LCs and the memory state goes from MS_HOME to
MS_GONE or from MS_FRESH to MS_GONE.

4, Performance Evaluation

4.1 PROTEUS System ,

PROTEUS [2] is a execution-driven simulation
environment. It is not actually a simulator; rather, it is
a simulation engine that combines with architecture-
specific modules and user applications to create a
simulator. The resulting executable provides high-
performance simulation of the user's application on the
target architecture.

We have modified PROTEUS environment to
simulate the hierarchical architecture with inier-cluster
connection network of ring and the intra-cluster
connection of bus system. The main differences
between this simulator and original version are the
memory hierarchy as well as cache coherence protocols.
The 7 stable states and more than 20 transient states
make SCI protocol very complex. The most important

" implementation of SCI protocol is the forward progress

of shared list creation. That is, the transient state must

_ be able to change to a stable state and the retry message

must be overcome in a finite times of retry.

4.2 Benchmark Programs

We choose two applications from the SPLASH suite
[11] as our benchmark programs.

MP3D solves a problem in rarefied fluid flow
simulation. Two large arrays of structures account for
more than 99% of the static data space used by MP3D.
The amount of data accessed by MP3D is largely
determined by the number of molecules simulated. The
user specifies the initial number of active molecules as
an argument to the application, and over the course of a
simulation run the number of active molecules typically
increases by about 25%. There are about 71% for
shared variable reads (of all reads) and 80% for shared
variable writes.

Barnes-Hut simulates the evolution of a system of
bodies under the influence of gravitational forces. It is a
classical gravitational N-body simulation, in which
every body is modeled as a point mass and exerts
forces on all other bodies in the system. There are
about 25.5% for shared variable reads (of all reads) and
1.3% for shared variable writes.

4.3 Simulation Results

191

Joint Conference of 1996 International Computer Symposium
December 19~21, Kachsiung, Taiwan, R.0.C.

For MP3D, the input file ‘est.geom is used to
evaluate the performances. We use 1000 particles and
run 100 steps, to increase the parallel execution time.
The cache size (LC) is reduced to 4k bytes compared to
the problem size. The bus access time and the memory
access time are all 6 cycles-in bus system. The packet
length of SCI is 16 bytes (plus the cache line size if
with data). The IC is 16k bytes of 2 way associative
cache with 16 bytes per line. The size of LM is 1M~2M
bytes. The IC access time is the same as that of LM and
is 6 cycles. For the parameters of the cluster, each
cluster contain 4 processors with LCs of its own
attaching to a cluster bus. The network topology among
the cluster nodes is a ring.

Speedup

—&— network|
‘/ —— cluster
. 4 ——

O = N W ohs N

0 8 16 24 32 40 48
Processor

Fig. 8 Speedups of MP3D for Bus, Network and Cluster

From the figure 8, we can watch out the
performance speed up on these three types of
architectures. MP3D is a heavily memory loaded
program. The scalability of clustering is better than
those of network system and bus system. The

.degradation of each line means the saturation of the

resources. For the bus system, the bus is saturated on
the point of 24 processors that is caused by serial bus
access. The network system is saturated on the point of
24 processors connected by ring using SCI cache
coherence protocol. It almost needs more 4 messages to
complete a read or a write (writes may need more
messages due to the invalidation). The topology is also
a reason that the network saturation on such a point.
The messages need more time to transfer in a ring
structure in a serial matter. Cluster behaves beiter than
the others. Because the reduction of the network size
makes the cluster speedup more.

For Barnes-Hut, the input parameters are following:

initfile:null, nbody:1024, seed: default, outfile: null,
dtime: 0.025, .eps: 0.05, tol: 0.6, fcells: 0.8, tstop: 0.25,
and dtout: 0.25. The other architecture parameters are
the same as that used to simulate MP3D.

Figure 9 shows the speedups of executing Barnes-
Hut program on these three types of architectures. The
scalability of clustering is better than that of the
network system but worse than that of the bus system,

Proceedings of International Conference
on Computer Architecture

and the overall speedup is more than that of the MP3D.
This is because the Barnes-Hut program has a light
percentage of shared variable references compared with
MP3D. The load on memory system in this program is
small due to the little amount of shared variable
references. The access time in bus system is the bus
transaction time plus the arbitration time while the
access time in network grows with the size of the
neiwork. The arbitration time is small compared to the
propagation time for sending a packet in the increased
nodes. If the needed data are distributed randomly in all
memory modules, the bus transaction time for a bus
system from different memory modules does not
increase, but the time of the network system will. This
may cause that the speedup of the cluster is worse than
the bus system no matter how small of the networl size.

Speedup
—&—Bus

35 | —&— Network

- &,
22 —f— Cluster "
20
15 b Fo- =
0 g

-;’ —
0 10 20 30 40 50
Processors

Fig. 9 Speedups of Barnes-Hut for Bus, Network and
Cluster

5. Conclusions

In this paper, we have enhanced the SCI cache
coherence protocol for clusiered architecture and
implemented a cluster simulation environment based on
PROTEUS system. Then, we use the modified
PROTEUS system to investigate the behavior of the
real applications and evaluate the performance on
different hardware configurations. It shows that the
cluster really has benefits in system architecture. It is
the trade off between bus-based system and network-
based system in fast computing power and scalablility.
From the simulation results, we obtain the following
conclusions:

(1) Memory access time through network sysiem is
usually longer than that through bus, but the bus must
serially serve these requests. Network packeis can be
transfer in parallel, thus hiding the more packet transfer
time. Therefore, the scalability of a network system is
better than bus system.

(2) Cluster interconnection is a more scalable
architecture than a bus-based system or a network-
based system when the memory system is heavily
loaded. It is because of the reduction of bus contention

192

by clustering fewer processors into a node and the
reduction of network size by interconnecting these
nodes. Thus, the performance can be improved.

(3) Clustered architecture is also an approach to
scale the machine size when the memory system is
lightly loaded. Though the performance of the bus
system is the best, bus-based system has its potential
problems, such as the long circuit propagation delay
due to large number of devices connecting to it. At this
situation, cluster architecture may be a good extension
of a bus system.

References

[1] J. Archibald and J.-L. Baer, "Cache Coherence
Protocols: Evaluation Using a Multiprocessor
Simulation Model,” ACM Trans. Computer
Systems, Vol. 4, No. 4, Nov. 1986, pp. 273-298.

[2] E.A. Brewer and C.N. Dellarocas, "PROTEUS
User Documentation Version 0.5," Dec. 1992.

[3] M. Dubois and S. S. Thakkar edited, Cache and
Interconnect Architectures in Multiprocessors,
Kluwer Academic Publishers, 1990.

[4] D.D. Gajski and J.-K. Peir, "Essential Issues in
Mulitprocessor Systems," IEEE Computer, pp. 9-
27, Jun 1985.

[5]1 J.R. Goodman, "Using cache-memory to reduce
processor-memory traffic," in Proc. of 10th Int'l
Symp. Computer Architecture, pp. 124-131, June
1983.

[6] K. Hwang, Advanced Computer Architecture:
Parallelism, Scalability, Programmability,
McGraw-Hill Inc., 1993.

[71 IEEE SCI draft 2.00: "SCI Scalable Coherence
Interface" Draft Document for the IEEE SCI
standard.

[8] R. L. Lee, P. C. Yew, and D. H. Lawrie,
"Multiprocessor Cache Design Considerations,"
in Proc. 14th Symp. Computer Architecture, pp.
253-262, 1987.

[9]1 D. Lenoski, et al., "The Directory-based Cache
Coherence Protocol for the DASH
multiprocessor," in Proc. 17th Symp. Computer
Architecture, pp. 148-159, May 1990,

[10] D. Lenoski, et al, "The Stanford Dash
Multiprocessor,” IEEE Computer, pp. 63-79,
March 1992.

[11] J.P. Singh, W.-D. Weber and A. Gupia, "SPLASH:
Stanford Parallel Applicaiions for Shared-
Memory," Technical Report, Stanford University.

[12] P. Stenstrom, "A Survey of Cache Coherence
Schemes for Multi-processors," IEEE Computer,
Jun. 1990.

